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TWIST SPINNING REVISITED
by

deborah l. goldsmith and louis h. kauffman1

Abstract. This paper contains several applications of the following

theorem: The 1-twist spin /_,(&) of any knot k c S"~l is interchangeable

with the standard unknotted (n - 2)-sphere K in S" by means of a

homeomorphism of triples h: (Sn, K, Lt(k)) -» (Sn, L¡(k), K) which rever-

ses the orientation of S", and preserves the orientations of K and Lt(k). One

of these applications is Zeeman's Theorem about twist spun knots; another

is a proof of a conjecture of R. H. Fox about certain manifolds which have

the same fundamental group.

We also prove that the iterated twist spun knot Lab(k) c Sn+l is fiber

equivalent to one of L^^'k) or Lg¡g(k) where g = g.c.d.(a, b).

Introduction. In this paper we return to E. C. Zeeman's original article

Twisting spun knots [6]. Bringing to it our point of view, we are able to

reprove his results in, we believe, an enlightening way, as well as to prove

several new theorems which will be stated later on in this introduction.

Throughout the paper we shall be working in the piecewise linear (PL)

category. Thus homeomorphism means PL homeomorphism, and all mani-

folds are PL manifolds.

Our viewpoint, expressed in the lowest possible dimension, is the following

(see [4]):

Let S3 be the solid torus D2 X Sx with identifications (x, 9) ~ (x, 6') on

the boundary x EdD2, and denote the unknotted circle 3D2 X 9/ ~ by Kx.

This is a book structure on S3 with binding K' and leaves D2 X 9. Suppose

K° c D2 is a O-dimensional knot in the 2-dimensional disc, consisting of two

points.

Define the a-twist spin of K° in S3 to be the oriented knot (or link) in S3

swept out by K° as it simultaneously twists through a rotation of am in the

factor D2, and spins through a rotation of 2tt in the factor Sx, as in Figure A.

Observe that the a-twist spin of K° maps to the 1-twist spin of K° under the

û-fold cyclic branched covering pa: S3 -> S3 of the 3-sphere branched along

the unknotted circle Kx.
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HXyocx^
the a-t wist spin of K° CD2

Figure A

The 1-twist spin of K° is obviously unknotted; in addition, it is

interchangeable with the unknotted circle K1 by a self-homeomorphism of

S3. (See Figure B.) Therefore, the cz-twist spin of K° is actually equal to the

inverse image päx(Kx) of the circle Kx under the cz-fold cyclic branched

coveringpa: S3 -> S3 of the 3-sphere branched along the 1-twist spin of K°.

the 1-twist spin

the 1-twist spin

Figure B

Now, the 1-twist spin of K° meets each leaf D2 X 9 of the book structure

on S3 with binding AT1, in precisely two points. (The circle Kx is said to be an

axis for the 1-twist spin, or, equivalently, the 1-twist spin is a closed braid

about Kx.) Consequently, the book structure on S3 with binding Kx and leaf

D2 X 9 lifts to a book structure on the branched covering spacepa: S3 -> S3

with binding p~\Kl) and leaf pa-l(/>2 X 9). This gives a second book

structure on S3, whose leaves are the cz-fold cyclic branched covering of the

disc D2 x 9, 9 E Sx, branched along two points, and whose binding is the

cz-twist spin of the 0-dimensional knot K° (usually called a (2, a) torus knot).

This proves that the (2, a) torus knot, a odd, is a fibered knot of genus

(a — I)/2 (i.e., the complement of the (2, a) torus knot is a surface bundle

over the circle, whose fiber is the interior of a compact, connected, oriented

surface with boundary in S3, having (a — l)/2 handles).

We are able to prove an analogous Interchange Theorem for the twist spun

knots which Zeeman studied! The Interchange Theorem (1.10) states that

"the 1-twist spin Lx(k) c S" of any knot k c S"~x is interchangeable with

the standard, unknotted (n - 2)-sphere K in S" by means of a

homeomorphism of triples h: (Sn, K, Lx(k))-*(S", Lx(k), K) which reverses

the orientation of S", and preserves the orientations of K and Lx(k)."

Therefore the argument just presented, which we repeat in §2, is a proof of

Zeeman's theorem that is different from Zeeman's original proof. Zeeman's

theorem (2.3) states that the cz-twist spin La(k) of a knot k c S"~x is a
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fibered knot, or (equivalently) the binding of a book structure on S", whose

leaf is the a-fold cyclic branched cover of S"~x branched along k c S"~x,

with a disc removed.

In §3 we use the Interchange Theorem to prove a conjecture of R. H. Fox,

that the a-fold cyclic branched cover of S" branched along the 6-twist spin

Lb(k) of the knot k c S"~x is homeomorphic to the 6-fold cyclic branched

cover of 5" branched along the a-twist spin La(k) of k.

§4 proves that the iterated twist spun knots Lab(k) and Lba(k) in S"+x

(LXj(k) is they-twist spin Ly(Lx(k)) c S"+x of the x-twist spin Lx(k) c S"

of k E S"~x) are fiber equivalent fibered knots, where the fibration of their

complements over S ' is given by Zeeman's theorem. The proof is similar to

that of Fox's conjecture in §3.

§5 proves the special cases of the previous two theorems when either a or b

isO.

In §6 we state and prove a generalization of Zeeman's theorem for knotted

submanifolds k c S"~x, and describe the fiber of the fibration of the

complement S" — La(k) over the circle.

In §7 we prove the following two theorems:

Theorem *. Let k e S"~x be a knot. Let (a, b) E Z X Z - {(0, 0)}, (a, b)

= (gr, gs) where g = g.c.d.(a, *), (r, s) E Z X Z - {(0, 0)} and g.c.d.(r, s) =

1. Then the b-fold cyclic branched cover Mab(k) of S" branched along the

a-twist spin La(k) c S" of k c S"~x is homeomorphic to M0g(k) if either r or

s is even, and to Mgg(k) if both r and s are odd.

Theorem **. Let k e S"~x be a knot. Let (a,b)EZxZ- {(0, 0)},

(a, b) - (gr, gs) where g = g.c.d.(a, b), (r, s) E Z X Z - {(0, 0)} and

g.c.d.(r,s) = 1. Then the iterated twist spin Lab(k) c Sn+X of k E S"~x is

fiber equivalent to L0g(k) if either r or s is even, and to Lgg(k) if both r and s

are odd, where the fiber of the fibration of their complements over Sx is given by

Zeeman's theorem.

We wish to thank Cameron Gordon for suggesting this problem to us. He

has also proved results along these lines, which are described in §7.

§8 describes another application of the Interchange Theorem. Here we

define the notion of an a-symmetric collection C of knotted discs in D"~x,

a E Z+, and of spinning such a collection to obtain a knotted (n — 2)-sphere

in S". We prove the theorem that every knotted (n - 2)-sphere in S"

produced in this way is equivalent (ambient isotopic) to the a-twist spin of a

knot k c S"~x associated to C, and conversely.

1. An interchange theorem.

1.1 Some book structure preliminaries. A book structure on a closed, oriented

manifold M" consists of a closed, oriented codimension-2 submanifold k c
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M", called the binding of the book, and a fibration M — k-*Sx of its

complement over the circle. The closure in M" of each fiber is a compact,

oriented, codimension-1 submanifold Fe, 9 £ Sx, called a closed leaf of the

book, whose oriented boundary is oFe = k; the interiors F0 are called open

leaves of the book. The orientation on the bundle M" — k, given by the

product of the orientations on the fiber Fe and on the base S ' (in that order),

should agree with the orientation of M".

The manifold M" has a book structure with leaves F0 = F if and only if

M" is the quotient space M" = F X [0, l]/(x, 1) ~ (h(x), 0) for all x E F,

(x, 0) ~ (x, t) for all x EdF, t E [0, 1], for some homeomorphism h: F-» F

which is the identity on the binding 3F, and if M" is oriented by the product

orientation on F x [0, 1]. The map h, called a monodromy for the book

structure, is not unique; in fact, any isotopic deformation of h, relative to 3F,

produces the same book structure.

We will denote the book structure on M" by Fe. A presentation for the book

structure Fe is (M",F,h), where we understand that h: F^>F is a

monodromy for F; thus the same book structure has many presentations.

Two book structures Fe, F¿ on M are equivalent (denoted F9 = F¿) if

Fe — F¿ — F, and there exists a homeomorphism/: M -» M (which need not

preserve orientation) preserving leaves.

Definition 1.2. A knot k c S" is an oriented, locally flat submanifold of

the oriented /z-sphere 5", which is homeomorphic to S"~2.

Definition 1.3. Afibered knot k c S" is a knot which is the binding of

some book structure on S".

Definition 1.4. Two knots k,k'cS" are equivalent if there is a

homeomorphism /: (Sn, k) -» (Sn, k') (not necessarily orientation preserving

on either S" or k).

Definition 1.5. Two fibered knots k, k' c S" are fiber equivalent if they

are equivalent by a homeomorphism / which is also an equivalence of their

associated book structures on S".

For the remainder of this section, and §§2, 3, 4, 5 and 7 it will be assumed

that the binding of every book structure on S " is a knot.

Lemma 1.6. Let k c S" be a closed, oriented, connected, locally fiat, co-

dimension-2 submanifold, and let M denote the complement of an open regular

neighborhood of k in S". (Note that a closed regular neighborhood of k in S" is

homeomorphic to k X D2, whence oM — k X Sx.) Then there is a map p:

M^>SX representing a generator of HX(S" — k; Z), such that p\dM is the

projection k X Sx -» Sx andp is a fibration over all but finitely many 9 E Sx.

Hence, except for a finite number of 9's, Fe= p~x(9) is a compact, codi-

mension-l submanifold of M, and dFe = k X 9 is a longitude on the boundary

k X Sx of the regular neighborhood of k in S".
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Proof. This lemma is a standard result, and its proof will be omitted.

Notation. The circle is taken to be the quotient space S'l = R1/f?~(0 +

2tt) for all 9 E R1. By abuse of notation, we will sometimes write 9 E Sx.

The «-sphere S" has a natural book structure whose leaves are (n — 1)-

balls Dg~x and whose binding is an unknotted (n - 2)-sphere K"~2. It is

given by the presentation (Sn, D"~x, id).

In the quotient space

5"*7)n-1 X Sx/(x,9)~(x,9')   forallx EöD"-x, 9, 9' ESX,

let D¡¡~x denote D"~x X 9, 9 E S\ and i„: D"~x -»Zy~' be the inclusion

x-*(x, 9); let Kn~2 be the (n - 2)-sphere W~x X S'/~ included in
S" - Dn~x X S'/~.

Let r6: D"~x -* D"~x be rotation by 9 E Sx about the last coordinate axis,

where T)"-1 = {x GR""1: \x\ < 1}.

Definition 1.7. A fibered knot L c S" is an axis for a knot L' c 5"

(equivalently L' is said to be spun about L) if there is a book structure F9 on

S" with binding L, and an orientation preserving homeomorphism j : S"~2-*

L', which maps the natural book structure on S"~2 into the book structure on

L'\ that is, we require that:
(i)LnL'=j(Kn-4),

(ii)j(Dff"-3) C F„.
Notation. Let k c S" be a knot. Then (7)", £) will denote the oriented

knotted ball pair obtained by removing from S" a tiny ball centered at a

point of k. We say that ÍceD" is the knotted disc corresponding to the

knotted sphere k c S".

Remark 1.8. The knotted ball pair (Dn, k) is independent of which point of

k we choose, and of which ball centered at that point is removed.

Definition 1.9 (Zeeman [6]). Let k c S"~x be a knot, and let a G Z. The

a-twist spin of k in S" is a knot L' c S" spun about the standard unknotted

sphere K"~2, which satisfies

j(Dr3) = i9ra9(k).

We will denote the a-twist spin of k in S" by 7fa(£).

Theorem 1.10 (Interchange Theorem). The l-twist spin Lx(k) of any knot

k c S"~x is interchangeable with the standard, unknotted sphere K"~2 in S" by

a homeomorphism of triples h: (Sn, K, Lx(k)) -> (S", Lx(k), K) which reverses

the orientation of S", and preserves the orientations of K and Lx(k).

Corollary 1.11 (Zeeman [6]). The l-twist spin Lx(k) of every knot k C

S"~x is unknotted in S".

Before proving the theorem, we will set up some notation: Let k X D2 be a

trivial disc bundle neighborhood of the knotted disc kcD"~x associated to
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the knot k c S""1. Then M = C\(D"~i - k X D2) is the compact comple-

ment of k in S"~x. Its boundary, dM, is the union of two homeomorphic

pieces, A = kXdD2 and B = Cl(dDn~l - k X D2), which together form

S"'3 X Sx (see Figure 1).

A = k x bD2

Figure 1

Let Be = Dg~3 n B be the natural fibration induced on B by the book

structure D¡¡~3 on the (n - 2)-sphere bDn~x.

By Lemma 1.6 there is a mapping p: M -> Sx such that F^ =p~'(c» is a

surface except for finitely many <p E Sx, where it is not a manifold, and such

thatp|3M-> S1 is a fibration whose fibers are longitudes of the knot k. We

may assume that the longitude />"'(<?>) n 9Af consists of the disc kx<j>ck~

XaD2 in A, together with the disc B^ in B.

Proof of Theorem 1.10. The triple (Sn, Lx(k), K) is easily seen to be

homeomorphic to the triple (M x SX,A x Sx, B X S') after the identi-

fications.

(i) k X <z> x 9 ~ ic X cj>' X 9 for all k X c>, k X <>' c A, 9 E S\
(ii) B^X9^B^.X 9' whenever <f> + 9 = cj>' + 9'.

We will define an orientation reversing homeomorphism h: M X Sx -* M X

S1 which interchanges A X S1 and B X Sx. The reader can check that h is

compatible with identifications (i) and (ii) on M X Sx, and therefore induces

the desired map h: S" --> S".

Let /: M X Sx -> M X Sx he defined by F^ X 9-> F^ X (-9 - d>), 9, e>

ES1. (The map / is the identity on the first factor. It reverses orientation

because its restriction f(x, <$>, 9) = (x, <¡>, — 9 — ¿>) to the boundary x E SFq,

9,<j>ESx, has negative determinant.)

Let g = gXid: M X Sx -* M X Sx, where g: M -» M is an orientation

preserving homeomorphism satisfying

(1) F^ is invariant under g for all ci £ S1,

(2) ¿(A) = B and g(B) = A,

(3) g is the identity outside of an open collar neighborhood of oM.

Finally, let h = g ° f.
Remark. Note that g satisfies
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(4) g(k X d>) = Bq and 1(5^) = k x <p for all d> G Sx as a consequence of

(l)-(2)- It is also the case that the restrictions h\: Lx(k)^>K and h\: 7Í-»

£,(/:) are both orientation preserving.

Remark. One can also obtain a homeomorphism of triples h:

(Sn, K, L_x(k))^>(S", Lx(k), K) which is orientation preserving on S" and

on the 1-twist spin L_x(k), and orientation reversing on K. Simply note that

L_x(k) is homeomorphic to the triple (M X SX,A X SX,B X Sx) after the

identifications (i) and

(ii') BçX9~B#X 9' whenever 9 - <f> = 9' - ¿>'.

Then redefine the map /: M X Sx -> M X Sx by F+ X 9 -> F^ X (9 - <p),

and let h = g ° f, as before.

2. A new proof of Zeeman's theorem. In §2 and §3 we assume that the

reader has some familiarity with branched covering spaces. Recall that if A""

is a manifold and Y"~2 c X" is a subcomplexof dimension(n — 2), then given

a representation o: ttx(X — Y)^S(m) to the symmetric group on m

elements there is an associated branched covering M-^X, which is the

unique completion (see [2]) of the covering space M -> X — 7 corresponding

to o. The set of points 7 over which M -» X fails to be a covering space is

called the singular, or branch, set.

Definition 2.1. Let 7" ~2 c X" be an oriented, connected submanifold of

the oriented manifold X", which is properly embedded in X" (i.e., 37=7

n dX). An oriented simple closed curve m on the boundary of a regular

neighborhood N ( 7) c X of 7 is called a positive meridian for Y in X if m is

the boundary of a fiber of the 2-disc bundle N(Y) -» 7, and the orientation

of the fiber is such that it, together with the orientation of 7, induces an

orientation on N( Y) agreeing with that on X.

Definition 2.2. Let 7"~2 c X" be as in Definition 2.1, and suppose

HX(X — 7; Z) = Z is generated by the class [m] of a positive meridian m for

7 in.A". The a-fold cyclic branched covering of X branched along 7,

a E Z — {0}, is the branched covering associated to the representation

ttx(X- Y)'-^HX(X- 7;Z)sZ-»Z/aZ

where the last map is defined by mapping [m] -» +1. The branched covering

space is given the orientation induced by X if a E Z+, and is given the

opposite orientation if a G Z~.

Notation. Let k c S"~x be a knot and k c Dn~x be the knotted disc

associated to k. Denote by Ma(k) -» S"~x the a-fold cyclic branched covering

of S"~x branched along k. Denote by Ma(k)-* D"~x the a-fold cyclic

branched covering of D"~x branched along k. Note that Ma(k) is obtained

from Ma(k) by removing an (n — l)-ball.

Let pa: S" -» S" be the a-fold cyclic branched covering of S" branched
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along K"~2 c S" induced by

TTa:D"-x X Sx^D"-lXSx,

(x,9)^(x,a9).

Lemma 2.3. Let k c S"~x be a knot, a Et- {0}, and let pa: S" -» S" be

the a-fold cyclic branched covering of S" branched along the unknotted sphere

K"~2 c S". Then the a-twist spin La(k) of k in S" is the inverse image

Pâx(Lx(k)) c S" of the l-twist spin of k under the map pa. The orientation of

La(k) agrees with the orientation of p~x(Lx(k)) if a > 0, and is opposite to it if

a<0.

Proof. It follows from the definition of La(k) thatpa(La(k)) = Lx(k), since

*.{'*{£) x 9) = '«*(*) xrf = r¿k) x <p   for<p = a9.

Checking orientations is left to the reader.

Remark. Note that Ma(k) is homeomorphic to M_a(k) by an orientation

reversing map, and that the pairs (Sn, La(k)) and (Sn, L_a(k)) are

homeomorphic by a homeomorphism which is orientation reversing on both

5" and La(k).

Corollary 2.4. Let k c S"~x be a knot, a ET— {0}, and let p_a:

S" -» S" be the ( — a)-fold cyclic branched covering of S" branched along the

unknotted sphere Lx(k). Then the a-twist spin La(k) of k in S" is the inverse

image (p-a)~'(K) c S" of the standard, unknotted sphere K"~2 under p_a.

The orientation of La agrees with the orientation of pZxa(K) if a > 0, and is

opposite to it if a < 0.

Proof. We have simply interchanged the roles of Lx(k) and K in Lemma

2.4, as an application of the Interchange Theorem. (Recall that the

interchange map h: (S", K, Lx(k))-*(S", Lx(k), K) is orientation reversing

on S", and thereforepa in Lemma 2.3 is replaced by/_a in Corollary 2.4.)

Theorem 2.5 (Zeeman [6]). Let k c S"~x be any knot and let a E Z - {0}.

Then the a-twist spin La(k) of k is a fibered knot in S"; it is the binding of a

book structure on S" with leaf M_a(k).

Proof. We will use the characterization of La(k) given by Corollary 2.4.

The sphere K"~2 c S" is the binding of the book structure Dg~x (see §1).

Since Lx(k) is spun about K, it meets each leaf Dg~l in a homeomorphic

copy of k, namely ierB(k). Therefore the book structure D¡¡~x lifts, under the

branched covering mapp_a: S" -> S", to a book structure on the branched

covering space S" having binding (/_„)" X(K) = La(k) and leaf

(p_a)~'(.D',~1) s M_a(k). This is indicated in the following diagram:
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La(k)-> M_ß)-► Sn

P-c P-c P-a

K-> D"6-1-► S"

A close look also reveals the monodromy of the book structure, by which is

meant an extension to the closed leaf M_a(k) of a pasting map M_a(£) -»

M_a(k) for the fibration S" - La(k)-> Sx of the knot complement over the

circle. A more complete discussion of this appears in §7.

3. A conjecture of R. H. Fox. Let k c S"~x be a knot, a, b E Z - {0}; and

define tt: Mab(k)-» S" to be the 6-fold cyclic branched covering of S"

branched along the a-twist spin La(k) c S" of the knot k. R. H. Fox

conjectured [3] that the spaces Mab(k) and Mb^(k) are homeomorphic. We

will now prove his conjecture.

In this section we assume a, b E Z - {0}. Theorem 3.1 is immediate from

Lemmas 3.3 and 3.4, which follow.

Theorem 3.1. Let k c S"~x be a knot. Then Mab(k) at Mba(k); i.e., the

b-fold cyclic branched covering of S" branched along the a-twist spin of

k E S"~x is homeomorphic to the a-fold cyclic branched covering of S"

branched along the b-twist spin of k c Sn~x.

We begin by defining the following branched covering of the sphere:

Definition 3.2. Let k c S"~x be a knot. Let mx, m2 c S" - K u Lx(k) be

positive meridians in S"~x for K and ¿[(A:), respectively, and identify

77, (Sn - K u Lx(k); Z) ^Z © Z

by [mx] -> 1 © 0 and [m2] ->0 © 1. Finally, let Z4 Z/mZ be the quotient

map.

Define the branched covering space Xab(k)-+S" branched along the

subcomplex K u Lx(k) c S" by the representation:

i

w        ttx(S" -Ku Lx(k)) ̂ 77, (Sn - K u Lx(k); Z) %Z © Z

<7°^(Z/aZ)©(Z/¿Z).

Lemma 3.3. Xa>b(k) ̂ MaM(k).

Proof. Since the branched covering pa: S" -* S" is determined by the

representation:

ttx(S" - K) ^Hx (Sn - K; Z) %Z%Z/aZ
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and the branched covering tt: MaJ}(k) -» S" is determined by the repre-

sentation:

i

ttx(S" - La(k)) 4/7, (Sn - La(k); Z) ^Z%Z/bZ,

and since pa(La(k)) = Lx(k) by Lemma 2.3, it follows that the composition

pa » ti: Mab(k)-+ S" is a branched covering with branch set K u Lx(k) c

S", determined by the representation (*). Hence Mab(k) = Xab(k).

LE)mA3A.Xa¡b(k)sXb,a(k).

Proof. It follows immediately from the Interchange Theorem that Xab(k)

= X_b_a(k). Since the representation (*) has the same kernel if cz (or b) is

replaced by — a (resp., -b), we also have X_b_a(k) = Xba(k).

Remark. The homeomorphism Mab(k) -» Mba(k) of Theorem 3.1 is orien-

tation reversing.

4. Iterated twist spinning. Let k c S"~x be a knot, a, b £ Z - {0}. We

will let Lab(k) c Sn+X denote the ¿-twist spin Lb[La(k)] c Sn+1 of the

cz-twist spin La(k) c S" of k. In this section we prove that Lab(k) is fiber

equivalent to Lba(k). The proof is very similar to that of Fox's conjecture,

and, in fact, Theorem 3.1 can be deduced as a corollary.

Notation. Let U"+~2 (Ul~2) be the upper (resp. lower) hemisphere of the

boundary sphere 3D"-1. If k c S"~l is a knot, then the associated knotted

arc k c D"~l is always placed so that U+ n U_ intersects 3/c in its equator

(if n = 4, each hemisphere of 3/)"_1 contains exactly one endpoint of k).

Represent (Sn+X, Lxx(k)) by the pair

(*) (D"-1 XSX x Sx,kxS] XSX)

with identifications

(x, 0, <?) ~ (r_e(x), 9, <f>)   for all jc £ U_, 9, <J> £ Sx,

(x, 0, 0) ~ (/_„,(*), (9, <i>)   for all x £ t/+, 9, <p E 51.

Let Sl~x he the oriented (zz - l)-sphere U+ X Sx X Sx/~, and let S"_~x he

the oriented (n - l)-sphere U_X Sx X Sx/~. The unknotted (zz - 1)-

spheres S+, S_ c Sn+X intersect in general position in an (n - 3)-sphere,

(U+ n i/_) X Sx X 5'/~.

Let Pa: Sn+X -» 5n+l be the cz-fold cyclic branched cover of Sn+1 branched

along 5_, induced by

pa: Dn'x X S] X Sl-*D"-1 X Sx X Sx,

(x, 9, <p) -> (x, a9, c/»).

Let Q,: S"+l -> S"+1 be the cz-fold cyclic branched cover of 5n+1 branched

along S+, induced by
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qa: D"-x X Sx XSX^ D"~x X Sx X Sx,

(x, 9, <¡>) -* (x, 9, a<¡>).

We would just as well let (S"+', L, x(k)) be the pair (*) with identifications

t     N (x,0,<j>)~(r_g(x),9,<l>)   for all xEU+, 9, <(>ESX,
(***)

(x, 9, 0) ~ (r^^x), 9, ¿>)   for all x E i/_, 9, <f> G Sx.

(This follows from Remark 1.8.) We will denote the pair (*)/(***) by

(Sn+X, LXJ(k)). Let S± be the (n - l)-sphere U± X Sx X S'/(***)• Let Pa:

§»+' _> sn+x be the a-fold cyclic branched cover of Sn+X branched along S+

which is induced by pa, and let Qa'. Sn+X-> Sn+X be the a-fold cyclic

branched cover of Sn+X branched along S_ which is induced by qa.

Lemma 4.1. & ° 5fl = 5a o Qb: S"+x -* S"+x and Qb°Pa = Po° Qb: Sn+X
->Sn+x.

Proof. This follows because

% °Pa=Pa ° qb- Dn~x XSXX SX-*D"~X XSXX Sx,

(x, 9, ¿>) -* (x, a9, b<¡>).

Definition 4.2. 7: (Sn+X, LX](k))^(Sn+x, Lux(k)) is the orientation

reversing homeomorphism induced by

i:D"-x X Sx X SX-*D"-X X Sx X Sx,

(x, 9, <b) -* (x, <b, 9).

(I reverses the orientation of both factors.)

Lemma 4.3. 77ie homeomorphism I: (Sn+X, Lxx(k)) -» (5"+l, Lxx(k))

preserves the book structures corresponding to the iterated twist spun knot

Lxx(k) and Lxx(k), given by Zeeman's theorem.

Proof. Let p: D"~x - £-» Sx be the singular fibration described in

Lemma 1.4, with F+ =p~'(<#>). The leaves % of the book structure on S"

with binding Lx(k) given by Zeeman's theorem are % = U^eS1^ x (# ~ "íO

(see, for example, the proof of Theorem 1.10, or Theorem 6.4). The leaves §a

of the book structure on Sn+X with binding Lxx(k) are therefore

S„ =  U %X(a-9)
ees}

=   U   F^X(9-<b)x(a-9) =   (J   Fa_6_^x9x<p.
4,9 es' flies'

Now it is clear that I(§a) = §a for all a E S '.

Theorem 4.4. Let k c S"~x be a knot; a, b E Z - {0}. Then the iterated

twist spun knots Lab(k) and Lba(k) in S"+x are fiber equivalent fibered knots,
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where the fibration of their complements over Sx is given by Zeeman's theorem.

Proof. By two applications of Lemma 2.3, we have that the iterated twist

spun knot LXJf(k) c Sn+X is the inverse image [Qy ° Px]~\Lxx(k)) of the

trivial knot LXA(k) c Sn+X under the branched covering map Qy ° Px: Sn+X

-* Sn+X; likewise, we also have that Lx<y(k) is the inverse image

[Qy ° -PJ~'(^i i(*)) of ¿i i(*) under the branched covering ß ° Px; §*+* _»
Sn+X.

Now observe that the following diagram is commutative:

Sn+1-L->Sn + i

Qb°Pa

(S"+1,IM(*))—^— (ÏÏn+l,LulQr))

Finally, since Pb ° Qa « Qa » Pb: S"+I-> S"+l, we have that Lba(k) =

[Qa • n]"'(A,,W) = [Ffr » Qa)-\Lu(k)); hence,

(5»+1, La>6(rc)) = (S"+,,[& o Pa]-x(LXA(k)))

*(s"+\ [Pb o Qayx(Lx,(k))) = (S"+l, Lbia(k)).

Furthermore, since /: (Sn+X, Lx x(k))-+(S'l+\ LXtX(k)) is an equivalence of

book structures, then /: (S"+x, Lab(k))-*(Sn+l, Lba(k)) is also an equiva-

lence of the book structures induced on the branched covering spaces, which

is precisely that given by Zeeman's theorem.

Remark. Fox's conjecture is actually a corollary of Theorem 4.4. This is

because the fiber equivalence /: (S"+l, Lab(k))->(Sn+x, Lbta(k)) carries the

leaf M_a_b(k) homeomorphically to the leaf M_b_a(k) (in an orientation

reversing manner). It is interesting to note that the Interchange Theorem is

not used in the proof of Theorem 4.4.

5. The special case a or b is zero. We will now extend the theorems of §2,

§3, and §4 to include the cases where a or b is zero.

Definition 5.1. Let S" be the space with identifications D"~x X Sx/(x, 9)

~(x, 9') for all x EdD"~x, 9, 9' E Sx. Then define p0: S" -> Dn~x to be

induced by projection D"~l XS1-» D"~\ (Note. If 5" is represented as the

space with identifications D"~x X Sx/(x, 0)~(rae(;c), 9) for all x EdD"~x,

9 E S', thenp0: S" -* D"~ ' is induced by

D"~x X SX-»D"-X,

(x,0)-*r_ae(x).)

Pb°Qa
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Definition 5.2. Let 5n+I be the space (*)D"~X x Sx X Sx with identifi-

cations

,   , (x,9,<b)~(x,9',4>)    for all xEU_,9, 9', <{>ESX,
(**) v

(x, 9, <p) ~ (x, 9, <p')    for all x G U+, 9, d>, d>' G S '.

Then define 50: 5"+1 -» Sn+X to be induced by

Dn~x X Sx X SX^>D"-X X Sx X Sx,

(x, 9, ¿>) -» (x, 0, d>),

and define QQ: S"+x -» Sn+X to be induced by

(2) Z)"-' xS'xSU Z)"-1 xS'xS1,

(x,0,d>)^(x,0,O).

Let Sn+X be the space (*) with identifications

(x, 0, <i») ~ (x, 9', ¿>)    for all x E U+, 9, 9', <b E S ',

(x, 9, 4>) ~ (x, 9, <#>')    for all x G IL, 0, <í>, </>' G S'.

Then define 50: S"+1 -> 5"+1 to be induced by (1) and define QQ: S"+x ->

Stt+X to be induced by (2).

(Ato/e. If S"+x is represented as the space (*) with identifications

(**)' (*> °> *) ~ (r*<>(x)> 9' *)    for all x G i/_, (?, <i» G 5 ',

(x, 9, 0) ~ (rb<b(x), 9, <p)    for all x G U+, 9, ¿> G 5 ',

then 50: Sn+X -* Sn+X is induced by

D"-x X Sx X SX->D"~X X Sx X Sx,

(^(^-»(/•^(x^O.d.)

and ßo: S"+1 -* s"+l is induced by

(2V Z)"-' X S1 X Sx -» Z)"-' X Sx X Sx,

(x,9,<t>)-^(r_b^(x),9,0).

Similarly, if S"+x is represented as the space (*) with identifications

(x, 0, <p) ~ (ra9 (x), 9, ¿>)    for all x G U+, 9, ¿> G S ',

(x, 9, 0) ~ (r^(x), 0, ¿>)    for all x G í/_, 9, ¿> E S \

then 50: 5n+l -» Sn+X is induced by (1)' and Q0: S"+x -» 5n+1 is induced by

(2)'. In §4, S"+x « (*)/(**)' and S"+x s* (*)/(*♦*)' where a = b = -1.)

Definition 5.3. Let K c S" be a fibered knot, which is the binding of a

book structure on 5" with leaf F. Denote by M0(K) the underlying manifold

of the book structure (M0(K), F, idf). Let M0(K) be M0(K) minus an open

ball centered at a point of K = 65 c MQ(K).

Definition 5.4. Let k c S"~x be a knot. In Definition 5.3, let K be the
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fibered knot Lg(k) c S", g E Z - {0}, which is the binding of a book

structure on S" with leaf Mg(k). Denote by Mg0(k) the manifold M0(Lg(k));

denote by Mg0(k) the manifold M0(Lg(k)).

The following theorem is well known (see, for example, On higher-dimen-

sional fibered knots by Andrews and Sumners, Trans. Amer. Math. Soc. 153

(1971), 415-426). The short proof which follows is our own:

Theorem 5.5 (Zeeman's theorem). Let k c S"~x be a fibered knot, which is

the binding of a book structure on S"~x with leaf F. Then the 0-twist spin

L0(k) c S" is a fibered knot; it is the binding of a book structure on S" with

leafM0(k).

Proof. The knot L^k) is the inverse image pö x(k) of the knotted disc

k c D"~x under the mappingp0: S"-+D"~\ The book structure on S"~x

with binding k, when restricted to (D"~x, k), lifts to one on S" with binding

L0(k) and leaf p0_'(F) s M0(k).

Corollary 5.6. Let k c S"~x be a knot, g E Z - {0}. Then the iterated

twist spun knot Lg0(k) c Sn+X is a fibered knot; it is the binding of a book

structure on Sn+X with leafM_g0(k).

Proof. Apply Theorem 5.5 to the fibered knot Lg(k) c S", which is the

binding of a book structure on S" with leaf M_g(k).

Theorem 5.7. Let k c S"~x be a knot, g £ Z - {0}. The iterated twist spun

knots Lo¡g(k) and Lg0(k) in S"+i are fiber equivalent fibered knots, where the

fibration of their complement over S ' is given by Zeeman's theorem.

Proof. The proof is identical to that of Theorem 4.4.

Corollary 5.8 (Fox's conjecture). Let k c S"~x be a knot, g E Z -

{0}. Then M0s(k) « Mgfí(k).

Proof. See the remark at the end of §4.

6. A generalization of Zeeman's theorem. Now let us suppose that k c S"-1

is not a sphere. In this section we will employ the notation developed in §1,

reinterpreting k as in 6.1 :

Definition 6.1. A knotted submanifold k c S"~x is an oriented, connected,

codimension-2, locally flat submanifold of S"~x.

Definition 6.2. A fibered knotted submanifold k c S"~x is a knotted

submanifold of S"~x which is the binding of some book structure on S"~x.

Definition 6.3. If k c S"~x is a knotted submanifold and a £ Z, the

cz-twist spin La(k) c S" of k is a knotted submanifold of S" which satisfies

[4(*)] n IV"1 - to*(*)-
(As before, the pair (D"~\ k) is obtained from (S"~\ k) by removing a tiny

ball centered at a point of k.)
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Notation. Recall the definition of M from 1.10. Let N be obtained from M

by making the identifications Bl¡)~ 5^. for all «p, d»' G Sx; thus N is the

compact complement in Sn~x of a regular neighborhood of the knotted

submanifold with boundary, k c D"~x E S"~x. Denote by Na(k)^N the

a-fold cyclic branched covering of N branched along the complementary disc

C1(A: - k) e N. (See Figure 2.)

/^(ESj\ \ci(fc-fc)

fzJregular neighborhood \,_■—

of/tCS"-2

Figure 2

Theorem 6.4. Let k c S"~x be a knotted submanifold and let a E Z - {0}.

Then the a-twist spin La(k) ofk is a fibered knotted submanifold of S"; it is the

binding of a book structure on S" with leaf N_a(k).

Proof. The entire proof of the Interchange Theorem 1.10 may be carried

over to our present context, excepting the construction of g, which no longer

exists. In particular, the map /: M X Sx ̂ > M X Sx induces a map /:

N X SX-*S" such that for all 9 E Sx,f(dN X 9) = Lx(k). Thus, the 1-twist
spin Lx(k) of A: is a fibered knotted submanifold of S", which is the binding

of a book with leaf/(A X 9) =- N. By Lemma 2.3, and the property that the

branch set K"~2 is spun around Lx(k) (see Definition 1.7), we may lift the

book structure f(N x 9) to the total space of the branched covering pa:

S" -> S". Since each leaf/(A X 9) intersects K"'2 in the disc BB c /C"-2,

and since/is orientation reversing, the leaf p~x(f(N X 9)) of the lifted book

structure is N_a(k). •

Remark. Theorems 4.4 and 5.6 are true in the broader category of knotted

submanifolds, since their proofs did not require k to be a sphere.

7. Fox's conjecture is generalized, and we prove a result about iterated

twist spinning. Recall (Definition 1.5) that two fibered knots K, K' c S"

are fiber equivalent if there is a homeomorphism h: (S", K) -» (S", K') which

preserves the fiber structure of their complements. In this section we prove:

Theorem *. Let k e S"~l be a knot. Let (a,b)EZxZ- {(0, 0)}, (a, b)

= (gr, gs) where g = g.c.d.(a, b), (r,s)EZxZ- {(0, 0)} and g.c.d.(r, s) =

1. Then the b-fold cyclic branched cover Mab(k) of the a-twist spin La(k) c S"
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ofkcS" ' is homeomorphic to M0g(k) if either r or s is even, and to Mgig(k)

if both r and s are odd.

Theorem **. Let k c S"'x be a knot. Let (a, b) £ Z X Z - {(0, 0)},

(a, b) = (gr, gs) where g = g.c.d.(a, b), (r, s) E Z X Z - {(0, 0)} and

g.c.d.(r, s) = 1. Then the iterated twist spin Lab(k) c 5"+1 of k c S"~x is

fiber equivalent to L0g(k) if either a or b is even, and to Lgg(k) if both a and b

are odd, where the fiber of the fibration of their complements over Sx is given by

Zeeman's theorem.

Since we cannot prove Mgg(k) =* MgQ(k), it is not clear to us that the knots

Lgg(k) and Lg0(k) (= L0g(k)) are fiber equivalent. Cameron Gordon claims

that these knots are equivalent (not necessarily fiber equivalent) if n > 5. He

is also able to show that Mab(k) =* M0g(k) if n > 5 (the manifold Mab(k)-

ball is the leaf of the book structure on S"+x with binding Lab(k)).

Definition 7.1. Let Y"~2 c X" be a codimension 2, properly embedded,

oriented submanifold of the oriented manifold X", let m c X — Y he a

positive meridian for Y in X on which there is a distinguished point p Em,

and suppose HX(X — Y, Z) =; Z is generated by [m]. Then t is a positive

generator for the group Z/aZ of covering translations of the cz-fold cyclic

branched covering tt: Xa-+X of X" branched along Y"~2, a E Z — (0), if

there is a lift m c Xa of m such that

(i) dm = t(p) — p for somep £ tt~x(p), if a > 0,

(ii) dm = p — t(p) for somep E tt~ x(p), if a < 0.

Definition 7.2. Let K c S" be a knot, a EZ- {0}, and let Afa(Ar) -> £>"

be the cz-fold cyclic branched cover of D" branched along the associated

knotted disc K c D"; let tg: Ma(K) -» Ma(K) he a positive generator for the

group of covering translations of Ma(K). Define Ta: Ma(K)^> Ma(K) to be

the following homeomorphism:

First note that aMa(K) is a sphere S"~x on which the restriction Ta\dMa(K)

of the covering translation Ta is the rotation r2„/a: S"~x->S"~x with axis

(fixed point set) the unknotted sphere S"~3 =dK cdMa(K) = S"~x. Let

oMa(K) X [0, 1]^-» Ma(K) he a collar of the boundary of Ma(K) such that

aMa(K) X 0 is identified with oMa(K) (by projection to the first factor). We

may assume that the restriction of Ta to this entire collar is the rotation

r2v/a x id: S"-1 X I^>S"~X X I. Now define the homeomorphism Ta to

agree with Ta on the complement of the collar, and inside the collar to slow to

the identity on dMa(K). On the collar, define Ta by the equations:

(x,t) ifxEoMa(K)and0<t<\,

■ (r>2«/a)u,-\)(x\t)    üxEoMa(K)and\<t<\,

{r2«/a(x)> 0 if x E 3Ma (zV ) and f < í < 1.
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Definition 7.3. Suppose K c S" is a fibered knot, a G Z (we allow a = 0).

Let the associated book structure on S" with binding K be given by

(Sn, F, h), where 95 = K and A is a monodromy map for the book (see 1.1).

Define a fiber-preserving homeomorphism fa: Ma(K) -» Ma(K) as follows:

The a-fold cyclic branched covering Ma(K) -> S" of S" branched along K

is easily seen to have the book structure (Ma(K), F, h"), if a ¥=0; if a = 0,

this is the definition of Ma(K) (see 5.3). Thus Ma(K) = F X [0, l]/(x, 1) ~

(ha(x), 0) for all x G 5, (x, 0) ~(x, t) for all x EdF, t G [0, 1]; Ma(K) has

the orientation induced by the product orientation on F X [0, 1]. Define fa:

Ma(K) -* Ma(K) by fa(x, t) = (h~\x), t) for (x, t) E F X [0, 1], and let fa:

Ma(k)-*Ma(K) be the restriction of fa: Ma(K)->Ma(K) to Ma(K) -

A/o(70-ball.

Lemma 7.4. Let K e S" be a knot, a G Z - {0}. 77te« rAe 6o0& structure on

S"+x whose binding is the a-twist spin La(K) of K is given by

(Sn+x,M_a(K),T.a).

Proof. Let (Sn+X, LX(K)) be the pair (Dn X [0, 1], K X [0, l])/(*) with

identifications

(x, 0) ~ (x, 0 for all x G W ", t G [0,1 ],

(x, 1) ~ (Tx (x), 0)    for all x G Z>",

and let N = dDn c D" X [0, l]/(*) be the standard unknotted (n - 1) =

sphere in Sn+X. Let p_a: S"+x-* S"+x be the (-a)-fold cyclic branched

covering of Sn+X branched along the 1-twist spin LX(K).

We have the following commutative diagram:

K x [0, !]/(*)'

id

■+M_a(K)x  0,l]/(*)'

P-a

+ D» x [0, !]/(*)—

-►Sn+l

-> sn+1

(*)'

Ll(K) = Kx [0,1]/(*)<^

where the set of identifications (*)' is the lift of (*), and hence

(x, 0) ~ (x, t) for all x G 3M_a (K ), t G [0, 1 ],

(x, 1) ~ ( T.a (x), 0)    for all x G M_a (K ).

Now by Corollary 2.4, La(K) is the inverse image pZ\(N) of the standard

(n - l)-sphere TY c Sn+X, under the branched covering p_a: Sn+X-*S'I+1

of Sn+X branched along LX(K). Hence

La(K) =pZxa(N) =pZxa([dD»] X[0, l]/(*)) =[3M_a(ZC)] x[0, !]/(*)

The lemma is immediate.
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Lemma 7.5. Let K E S" be a fibered knot, and let (S", F, h) give a book

structure on S" whose binding is K = 3F. Let a E Z - {0}. Then Ta: Ma(K) -»

Ma(K) is isotopic, relative to dMa(K), to the fiber preserving homeomorphism

fa: Ma(K)-*Ma(K). Hence, the book structure (Sn+x,M_a(K),T_a) on

S"+x whose binding is the a-twist spin La(K) of K is also given by

(Sn+\M_a(K),T_a).

Proof. First, F,: (Dn, K)->(D", K) is isotopic to F,: (D", K)->(Dn, K)

relative to 3D" and K, because K c S" is a fibered knot. Denote the isotopy

by Ty: (Dn, K)-*(D",K), where F,0= F, and F,, = F„ and let tt:

(Ma(k),K)-*(D",K) he the a-fold cyclic branched covering of D"

branched along K. Then, as shown in the following commutative diagram, the

isotopy Tu lifts to an isotopy Tat: (Ma(K), K)-* (Ma(K), K) relative to

dMa(K) and K, between Ta<0 = Ta and Fa>, = fa:

T
(Ma(K), K)-^-> (Ma(K), K)

T
(D", K)-—-»• (£>", K)

This automatically implies the second part of the lemma.

Recall that if k c S"~x is a knot, cz, b E Z and b ¥* 0, then Mab(k) -> S"

denotes the ¿-fold cyclic branched covering of S", branched along the cz-twist

spin La(k) c S" of k c S""1. If b = 0, the definition of Mab(k) is given by

5.4. There is a natural identification of La(k) c S" with its inverse image in

Mab(k) given by the covering projection, and this is what we will mean by the

notation Lfl(zc) c Mab(k).

Theorem 7.6. Let k c Sn~x be a knot, a, b E Z - {0}. Then there is a

homeomorphism H: (Ma¿(k), La(k)) -»(Mab±2a(k), La(k)).

Proof. It is an easily proven property of the book structure (M, F, h) on a

manifold M, that the /--fold cyclic branched covering tt: Mr -» M of M

branched along the binding 3F of the book, r £ Z - (0), has a book

structure given by (Mr, F, hr).

Consequently, if r E Z, Lemma 7.4 and Definition 5.4 imply that the

manifold Mar(k) has a book structure with leaf Ma(k) and monodromy

(T_aY: M_a(k)^M_a(k). Next, we observe that the homeomorphisms

(T_af and (T_a)b±2a agree outside of the collar [dM_a(k)]X[\, §].

Further, their difference

(T_a)±2a: [3A/_fl(/c)] X[I, \]^[oM_a(k)} x[\, f ]
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on   this   collar  is   isotopic   to   the   identity,   relative   to   the  boundary

[M-a(k)]x{{> §}:

Since dM_a(k) =■ Sn~x and the monodromy T_a is defined on the collar

S"~x x[|, f] by T_a(x,t) = (r2v/_a0l_X)(x),t), we have that (r_(J)±2a:

S"~x   X [I, f]-* S-'   x [}, f]   defined   by   (T_a)±2a(x, t) =

(r±4jr(3/-i)(x)' 0 represents the trivial element of t7,(SO(aj)).

Now we apply another property of book structures, that (M, F, h) is

equivalent to (M, F, h') if h and h' are isotopic relative to 35.

Remark. In fact, it is clear from the proof that

(a) H carries a tubular neighborhood N of La(k) c MaJ>(k) to a tubular

neighborhoodN' of La(k) c Mab±2a(k).

(b) the spaces Mab(k) - N and Mab±2a(k) — N' are fiber bundles over Sx

with the same fiber, and the same monodromy.

(c) Z7: MaJb(k) -AT-» Ma¡b±2a(k) - N' is the identity.

Theorem 7.7. Let k c S"~x be a knot, a, b E Z - {0}. Then the iterated

twist spun knots Lab(k), La,b±2a(k) c S"+x are fiber equivalent, fibered knots.

Proof. Let H: M_b(La(k))^>M_b±2a(La(k)) be the restriction 77|:

Ma_b(k)-ball -» A7a _/)±2a-ball of H, to the manifold Ma_b(k) with an open

«-ball centered at a point of La(k) c Ma_b(k) removed from the interior of

the tubular neighborhood N of La(k). Now by Lemma 7.5 and Corollary 5.6,

the knot Lar(k) c Sn+X, r E Z, is the binding of a book structure on S"+x

with leaf M_r(LJJc)) = Ma_r(k)-ball, and monodromy f_r: M_r(LJfi))^>

M_r(LJk)). It may be assumed that f_r: M_r(La(k)) -» M_r(LJJc)) is the

identity on a tubular neighborhood of La(k) which includes the collar

[tiM_a(k)] X[\, I ] X Sx. Since H is the identity off of this collar ̂ seepart

(c) of the Remark), it follows that f_b = H~x « f_b±2a ° 77: M_b(Ljlc))^>

M_b(La(k)). Thus H may be extended to a fiber-preserving homeomorphism

(S"+x, M_b(LJJcj), f-b)^(S"+x,M_b±2a(Ljlc)), f_b±2a)

of these book structures on S"+x, giving the desired fiber equivalence

(Sn+x,La¡b(k))^(S"+x,La¡b±2a(k)).

Corollary 7.8. Theorems * and **.

Proof. We have objects, either Mab(k) or Lab(k), indexed by pairs of

integers (a, b) E Z X Z - {(0, 0)}. Let us denote the object simply by the

pair (a, b). We also have an equivalence relation between, objects, namely

homeomorphism for the manifolds Mab(k) and fiber equivalence for the

fibered knots Lab(k); we will denote the equivalence by (a, b) ~ (a', b').

Observe that we have proved these relations:

(\)(a,b)~(a, -b),
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(2)(a,b)~(b,a).

(3) (a, b) ~(a,b + 2d).

As a consequence of (a), (b), (c) we have:

(4)(cz,¿0~(c7,¿-2cz).

By (1) and (2) we need only consider the pairs (a, b) with b > a > 0.

Suppose b ¥= a and a ¥= 0. If b > 2a then (cz, b) ~(a,b - 2d). If b < 2a

then (a, b) ~ (a, 2a — b). In either case we have (a, b) — (cz', b') where

V > a' > 0 and a' < a, b' < b.

Repeating this procedure we finally arrive at (a, b) ~ (a', b'); where either

a' = V = g or a' = 0, b' = g and g E Z+.

We now observe the following facts:

(a) If (a, b) ~ (a', b'), then g.c.d.(cz, b) = g.c.d.(a\ by

(b) If (a, b) ~ (a', b') and (a, b) = (gr, gs), (a', b') = (gr1, gs') as in the

statement of Theorems * and **, then r and s are both odd <=> / and s' are

both odd.
It follows that if (a, b) ~ (0, g) or (a, b)~(g, g), then g = g.c.d.(c7, b).

Also if (cz, b) = (gr, gs), then (cz, b) ~ (0, g) precisely when either r or s is

even, and (a, b) ~ (g, g) when both r and s are odd.

8. Spinning symmetric arc collections. We believe that the exposition of this

section will be clearest if we restrict ourselves to dimension 3. It is

understood, however, that dimensions 3 and 4 may be replaced by « — 1 and

n, respectively, in the statement of the definitions, Theorem 8.5 and Corollary

8.6, and that these two results will still be correct.

For a discussion of 2-symmetric arc collections, the reader is referred to

Dennis Roseman's article [5].

Definition 8.1. A collection C of a embedded arcs in D3 with disjoint

interiors, whose common boundary is the poles K° c dD3, is a-symmetric if it

is invariant under the rotation r2„/a: D3 -» D3.

Definition 8.2. The quotient arc k(C) c D3 of C is the image of C under

the projection to the space of orbits of the action r2„/a: D3-* D3.

Definition 8.3. Let C be an cz-symmetric collection of arcs in D3. The knot

associated with C is the union of the quotient arc k(C) and the unknotted arc

which is the fixed point set or axis, of the rotation r2v/a: D3-*D3. (See

Figure 3.)

Definition 8.4. Let C be an cz-symmetric collection of arcs in D3. A knot

L c S4 is called the spin of C about the unknotted sphere K2 c S4 if

L n D3 = iere/a(C).

We denote the spin of C about K by L(C).

Remark. The knot L(C) is locally flat at each pole, since the intersection
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0)

2-symmetric C

k(Q

the associated knot

(ü)

$*> b K"

3-symmetric C the associated knot

Figure 3

of a regular neighborhood of the pole with L(C) is an (a, l)-torus knot

(which is trivial).

Notation. If C is an a-symmetric collection of arcs in D3 with quotient arc

k(C), let L denote the spin of the 1-symmetric collection k(C) in S4. Let K

denote the spin in 5"* of the unknotted arc which is the fixed point set, or

axis, of the rotation r6/a: D3 -» D3. There is an obvious deformation of K to

the standard unknotted 2-sphere K.

Let pa: D3-> D3 be the a-fold cyclic branched covering of D3 branched

along the unknotted axis of the rotation rg/a: D3-*D3. (This is just the

restriction to the unit ball D3 c S3, of the mappa: S3 -» S3 defined in §2.)

Note thatpa(C) = k(C).

Let the a-fold cyclic branched covering 5a: S4 -» S4 of S4 branched along

Kbe induced by

paXid:D3X SX^D3X Sx.

Note that 5a(L(C))= L.

Theorem 8.5. Let C be an a-symmetric collection of arcs in D3, and let

k E S3 be the knot associated with C. Then L(C) = La(k): the spin of the

collection C about the unknotted sphere K2 c S4 is ambient isotopic to the

a-twist spin of the knot k associated to C.

Proof. We will use the characterization of L(C) given above; namely,

L(C) is the inverse image P~X(L) of L under the branched covering map 5a:



250 D. L. GOLDSMITH AND L. H. KAUFFMAN

S4-» S4. Then by Lemma 2.3, the theorem will be proved if we can exhibit

a homeomorphism h: S4-> S4 such that h(K) = K and h(L) = Lx(k).

Let h: S4 -» S4 he the homeomorphism constructed in Theorem 1.10 which

interchanges K and K. Then h(L) = Lx(k):

As in the proof of 1.10 the 4-tuple (S4, K, K, L) is homeomorphic to the

4-tuple (M X SX,A X SX,B X Sx,k(C) x Sl) after the identifications (i)

and (ii). Therefore it is equivalent to check that h(k(C) X Sx) = k X Sx, or,

for each 9 £ Sx, h(k(C) x S") n (M x 9) = k x 9, where k c D3 is the

knotted arc associated toicS3. The reader should review the definitions of

the maps f,g,h: M X Sx -» M X Sx and g: M-» M in the proof of 1.10

before beginning what follows:

h(k(C) xsx)n(M x9) = flUk(C) x sx) n (ñ)~\m x 0)]

(1) a

= /z

= h

= h

= h

(k(C)xSx)n(h)~ll U ^x0)

(zc(C)X5')n( U F„X(-9-<P))

U  (/c(C)XS1)n(F„X(-r?-cp))

U (k(C)nF+)x(-9-<b)
tes1

= g°j]  U (*(C)n^)x(-î-*)
..¡.es1

= g U  (MC) nFjXÍ
.¡.es1

= g[k(C) X9]= g[k(C)] X9 = k X9.

(2)

V
2-symmetric C the associated knot

Figure 4
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the knotted arc k corresponding to the knot k

Figure 4 (continued)

The final step, which asserts the equality g[k(C)] = k of g[k(C)] and the

knotted arc k corresponding to the knot k associated with the arc collection,

is left to the reader, with the aid of Figure 4.

References

1. A. Durfee and L. Kauffman, Periodicity of branched cyclic covers, Math. Ann. 218 (1975),

157-174.
2. R. H. Fox, Covering spaces with singularities, Algebraic geometry and topology-A

symposium in honor of S. Lefschetz, Princeton Univ. Press, Princeton, N. J., 1957, pp. 244-257.

3. _, Some n-dimensional manifolds that have the same fundamental group, Michigan

Math. J. 15 (1968), 187-189.
4. D. L. Goldsmith, Symmetric fibered links, knots, groups and 3-manifolds, papers dedicated to

the memory of R. H. Fox, Ann. of Math. Studies, Princeton Univ. Press, Princeton, N. J., 1975,

pp. 3-25.
5. D. Roseman, Half-twist spinning of arc pairs and inversions of knots, Illinois J. Math, (to

appear).

6. E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Department of Mathematics, University of Illinois at Chicago Circle, Chicago,
Illinois 60680


