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TWIST SPINNING REVISITED
BY
DEBORAH L. GOLDSMITH AND LOUIS H. KAUFFMAN'

ABsTRACT. This paper contains several applications of the following
theorem: The 1-twist spin L,(k) of any knot k c S"~! is interchangeable
with the standard unknotted (n — 2)-sphere K in S" by means of a
homeomorphism of triples A: (S", K, L,(k)) — (S”, L,(k), K) which rever-
ses the orientation of S”, and preserves the orientations of X and L,(k). One
of these applications is Zeeman’s Theorem about twist spun knots; another
is a proof of a conjecture of R. H. Fox about certain manifolds which have
the same fundamental group.

We also prove that the iterated twist spun knot L, ,(k) C S"*! is fiber
equivalent to one of Ly z(k) or L, (k) where g = g.c.d(a, b).

Introduction. In this paper we return to E. C. Zeeman’s original article
Twisting spun knots [6]. Bringing to it our point of view, we are able to
reprove his results in, we believe, an enlightening way, as well as to prove
several new theorems which will be stated later on in this introduction.
Throughout the paper we shall be working in the piecewise linear (PL)
category. Thus homeomorphism means PL homeomorphism, and all mani-
folds are PL manifolds.

Our viewpoint, expressed in the lowest possible dimension, is the following
(see [4)):

Let S be the solid torus D2 X S with identifications (x, 8) ~ (x, ") on
the boundary x €9D?, and denote the unknotted circle 3D X 6/~ by K'.
This is a book structure on S* with binding XK' and leaves D? X 8. Suppose
K° c D?is a 0-dimensional knot in the 2-dimensional disc, consisting of two
points. .

Define the a-twist spin of K° in S to be the oriented knot (or link) in S*
swept out by K as it simultaneously twists through a rotation of ar in the
factor D?, and spins through a rotation of 2 in the factor S', as in Figure A.
Observe that the a-twist spin of K° maps to the 1-twist spin of K° under the
a-fold cyclic branched covering p,: S* — S of the 3-sphere branched along
the unknotted circle X'
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the a-twist spin of K® C D?

FIGURE A
The 1-twist spin of K° is obviously unknotted; in addition, it is
interchangeable with the unknotted circle K' by a self-homeomorphism of
S3. (See Figure B.) Therefore, the a-twist spin of K° is actually equal to the
inverse image p; '(K") of the circle K' under the a-fold cyclic branched
covering p,: S°— §3 of the 3-sphere branched along the 1-twist spin of K°.

Kt C) t‘he 1-twist spin
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the 1-twist spin

FIGURE B

Now, the 1-twist spin of K° meets each leaf D? X 6 of the book structure
on S? with binding K, in precisely two points. (The circle K is said to be an
axis for the 1-twist spin, or, equivalently, the 1-twist spin is a closed braid
about K'!.) Consequently, the book structure on S* with binding X' and leaf
D? x 0 lifts to a book structure on the branched covering space p,: S*> — S>
with binding p;'(K") and leaf p;'(D? X ). This gives a second book
structure on S 3, whose leaves are the a-fold cyclic branched covering of the
disc D2 X 8, § € S, branched along two points, and whose binding is the
a-twist spin of the 0-dimensional knot K° (usually called a (2, a) torus knot).
This proves that the (2, @) torus knot, @ odd, is a fibered knot of genus
(a — 1)/2 (i.e., the complement of the (2, a) torus knot is a surface bundle
over the circle, whose fiber is the interior of a compact, connected, oriented
surface with boundary in §3, having (a — 1)/2 handles).

We are able to prove an analogous Interchange Theorem for the twist spun
knots which Zeeman studied! The Interchange Theorem (1.10) states that
“the 1-twist spin L,(k) C S” of any knot k C S"~! is interchangeable with
the standard, unknotted (n — 2)-sphere K in S” by means of a
homeomorphism of triples h: (S”, K, L,(k)) = (S", L,(k), K) which reverses
the orientation of S”, and preserves the orientations of K and L,(k).”
Therefore the argument just presented, which we repeat in §2, is a proof of
Zeeman’s theorem that is different from Zeeman’s original proof. Zeeman’s
theorem (2.3) states that the a-twist spin L, (k) of a knot k Cc S"7! is a
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fibered knot, or (equivalently) the binding of a book structure on S”, whose
leaf is the a-fold cyclic branched cover of S”~! branched along k c S$"~,
with a disc removed.

In §3 we use the Interchange Theorem to prove a conjecture of R. H. Fox,
that the a-fold cyclic branched cover of S” branched along the b-twist spin
L,(k) of the knot k c "' is homeomorphic to the b-fold cyclic branched
cover of S” branched along the a-twist spin L,(k) of k.

§4 proves that the iterated twist spun knots L,,(k) and L,,(k) in S"*!
(L, (k) is the y-twist spin L,(L,(k)) C S"*+1 of the x-twist spin L (k) C S”
of k ¢ S§"~") are fiber equivalent fibered knots, where the fibration of their
complements over S’ is given by Zeeman’s theorem. The proof is similar to
that of Fox’s conjecture in §3.

§5 proves the special cases of the previous two theorems when either a or b
is 0.

In §6 we state and prove a generalization of Zeeman’s theorem for knotted
submanifolds k ¢ S"~!, and describe the fiber of the fibration of the
complement §” — L, (k) over the circle.

In §7 we prove the following two theorems:

THEOREM *. Let k C S"~" be a knot. Let (a,b) € Z X Z — {(0, 0)}, (a, b)
= (gr, gs) where g = g.c.d.(a, b), (r,s) EZ X Z - {(0, 0)} and g.c.d.(r,s) =
1. Then the b-fold cyclic branched cover M, (k) of S" branched along the
a-twist spin L,(k) C S" of k C S"~" is homeomorphic to M, ¢ (K) if either r or
s is even, and to M, (k) if both r and s are odd.

THEOREM #+. Let k C S""' be a knot. Let (a,b) €Z X Z — {(0, 0)},
(a, b) = (gr, gs) where g =gcd(a,b), (r,s) EZXZ - {0 0)} and
g.c.d(r,s) = 1. Then the iterated twist spin L,,(k) C S"*' of k c "' is
fiber equivalent to Ly (k) if either r or s is even, and to L, (k) if both r and s
are odd, where the fiber of the fibration of their complements over S is given by
Zeeman’s theorem.

We wish to thank Cameron Gordon for suggesting this problem to us. He
has also proved results along these lines, which are described in §7.

§8 describes another application of the Interchange Theorem. Here we
define the notion of an a-symmetric collection C of knotted discs in D"},
a € Z7, and of spinning such a collection to obtain a knotted (n — 2)-sphere
in §". We prove the theorem that every knotted (n — 2)-sphere in S”
produced in this way is equivalent (ambient isotopic) to the a-twist spin of a
knot k ¢ S"~! associated to C, and conversely.

1. An interchange theorem.
1.1 Some book structure preliminaries. A book structure on a closed, oriented
manifold M" consists of a closed, oriented codimension-2 submanifold k C



232 D. L. GOLDSMITH AND L. H. KAUFFMAN

M?, called the binding of the book, and a fibration M — k— S! of its
complement over the circle. The closure in M" of each fiber is a compact,
oriented, codimension-1 submanifold F, § € S, called a closed leaf of the
book, whose oriented boundary is dF, = k; the interiors 15[, are called open
leaves of the book. The orientation on the bundle M” — k, given by the
product of the orientations on the fiber I:'o and on the base S'! (in that order),
should agree with the orientation of M".

The manifold M" has a book structure with leaves F, = F if and only if
M?" is the quotient space M" = F X [0, 1]/(x, 1) ~ (h(x), 0) for all x € F,
- (%, 0) ~ (x, ?) for all x €9F, ¢t € [0, 1], for some homeomorphism h: F— F
which is the identity on the binding 0F, and if M" is oriented by the product
orientation on F X [0, 1]. The map h, called a monodromy for the book
structure, is not unique; in fact, any isotopic deformation of A, relative to 9F,
produces the same book structure.

We will denote the book structure on M" by F,. A presentation for the book
structure Fy is (M", F, h), where we understand that hi: F—> F is a
monodromy for F; thus the same book structure has many presentations.

Two book structures Fy, F; on M are equivalent (denoted Fp = Fp) if
F, = Fj = F, and there exists a homeomorphism f: M — M (which need not
preserve orientation) preserving leaves.

DEFINITION 1.2. A knot k C S" is an oriented, locally flat submanifold of
the oriented n-sphere S”, which is homeomorphic to $"~2,

DEFINITION 1.3. A fibered knot k C S" is a knot which is the binding of
some book structure on S”.

DerINITION 14. Two knots k, k' ¢ S" are equivalent if there is a
homeomorphism f: (S”, k) = (S”, k') (not necessarily orientation preserving
on either S” or k).

DEerINITION 1.5. Two fibered knots &, k€’ C S” are fiber equivalent if they
are equivalent by a homeomorphism f which is also an equivalence of their
associated book structures on S”.

For the remainder of this section, and §§2, 3, 4, 5 and 7 it will be assumed
that the binding of every book structure on S” is a knot.

LEMMA 1.6. Let k C S™ be a closed, oriented, connected, locally flat, co-
dimension-2 submanifold, and let M denote the complement of an open regular
neighborhood of k in S™. (Note that a closed regular neighborhood of k in S" is
homeomorphic to k X D?, whence M = k X S') Then there is a map p:
M — S representing a generator of H'(S" — k; Z), such that p|oM is the
projection k X S'— S" and p is a fibration over all but finitely many 6 € S'.
Hence, except for a finite number of 0’s, Fy = p~'(8) is a compact, codi-
mension-1 submanifold of M, and 9F, = k X 0 is a longitude on the boundary
k X S of the regular neighborhood of k in S™.
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ProoF. This lemma is a standard result, and its proof will be omitted.

Notation. The circle is taken to be the quotient space S' = R!/8 ~ (0 +
27) for all @ € R'. By abuse of notation, we will sometimes write § € S''.

The n-sphere S” has a natural book structure whose leaves are (n — 1)-
balls D;~' and whose binding is an unknotted (n — 2)-sphere K"~2 It is
given by the presentation (S”, D"~ id).

In the quotient space

S"= D" X S/ (x,0) ~(x,0) forallx €3D"", 0,0’ € S,

let D! denote D"~ ! x 8, € S', and i,: D"~'— D}~! be the inclusion
x —(x, 0); let K"~2 be the (n — 2)-sphere dD"~! X §'/~ included in
S"=D"'x S'/~.

Let r,: D"~'— D"~ be rotation by § € S! about the last coordinate axis,
where D"~ ' = {x e R !: |x| < 1}.

DEFINITION 1.7. A fibered knot L c S§” is an axis for a knot L' C "
(equivalently L’ is said to be spun about L) if there is a book structure Fp on
S" with binding L, and an orientation preserving homeomorphism j: $"~2 -
L', which maps the natural book structure on $"~2 into the book structure on
L’; that is, we require that:

(O LnL=j(K"%,

)05 %) C Fy. i

Notation. Let k C S" be a knot. Then (D", k) will denote the oriented
knotted ball pair obtained by removing from S” a tiny ball centered at a
point of k. We say that £ c D" is the knotted disc corresponding to the
knotted sphere k C S".

REMARK 1.8. The knotted ball pair (D", k) is independent of which point of
k we choose, and of which ball centered at that point is removed.

DEFINITION 1.9 (ZEEMAN [6]). Let kK  S"~! be a knot, and let a € Z. The
a-twist spin of k in S" is a knot L’ C S” spun about the standard unknotted
sphere K"~2, which satisfies

J(D373) = igrag (K).
We will denote the a-twist spin of k in S” by K, (k).

THEOREM 1.10 (INTERCHANGE THEOREM). The 1-twist spin L,(k) of any knot
k c S""is interchangeable with the standard, unknotted sphere K" =2 in S" by
a homeomorphism of triples h: (S", K, L,(k)) — (S", L,(k), K) which reverses
the orientation of S", and preserves the orientations of K and L (k).

CoRroLLARY 1.11 (ZEEMAN [6]). The 1-twist spin L,(k) of every knot k C
S"~Yis unknotted in S".

Before proving the theorem, we will set up some notgtion: Letk X D%bea
trivial disc bundle neighborhood of the knotted disc k ¢ D"~! associated to
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the knot k ¢ $"~!. Then M = CI(D"~"' - k X D? is the compact comple-
ment of k in $"~'. Its boundary, 9M, is the union of two homeomorphic
pieces, A = k X3D? and B = CI(dD"! — k X D?), which together form
S$"~3 x S (see Figure 1).

FIGURE 1

Let By = D;~* N B be the natural fibration induced on B by the book
structure D;'~3 on the (n — 2)-sphere 9D~ !,

By Lemma 1.6 there is a mapping p: M — S' such that F, = p~'(¢) is a
surface except for finitely many ¢ € S, where it is not a manifold, and such
that p|0M — S' is a fibration whose fibers are longitudes of the knot k. We
may assume that the longitude p~'(¢) N M consists of the disc kK X ¢ C k
X 3D? in A, together with the disc B, in B.

Proor oF THEOREM 1.10. The triple (S”, L,(k), K) is easily seen to be
homeomorphic to the triple (M X S',4 X S', B X S') after the identi-
fications.

DEXPXO~kX¢ XOforallk X,k X¢' CA,0 €S,

(ii) B, X § ~ B, X ' whenever ¢ + = ¢’ + 0".

We will define an orientation reversing homeomorphism A: M X S'— M X
S' which interchanges 4 X S' and B X S'. The reader can check that 4 is
compatible with identifications (i) and (i) on M X S, and therefore induces
the desired map h: S" —» S".

Let f: M X S'—> M X S' be defined by F, X § > F, X (=0 — ¢), 0, ¢
€ S'. (The map f is the identity on the first factor. It reverses orientation
because its restriction f(x, ¢, ) = (x, ¢, — § — ¢) to the boundary x E9F,,
0, ¢ € S', has negative determinant.)

Letg=g Xid: M X S' 5> M X S!, where §: M — M is an orientation
preserving homeomorphism satisfying

(1) F, is invariant under g for all ¢ € S,

(2)(4) = Band §(B) = 4,

(3) g is the identity outside of an open collar neighborhood of M.

Finally,leth = g o f.

REMARK. Note that g satisfies
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(4) g(k X ¢) = B, and §(B,) = k X ¢ for all ¢ € S' as a consequence of
(1)<2). It is also the case that the restrictions h|: L,(k)— K and h|: K—
L (k) are both orientation preserving.

REMARK. One can also obtain a homeomorphism of triples h:
(S™ K, L_,(k)) > (S", L,(k), K) which is orientation preserving on S” and
on the 1-twist spin L_,(k), and orientation reversing on K. Simply note that
L_ (k) is homeomorphic to the triple (M X S', 4 X S', B X S) after the
identifications (i) and

(i) B, X § ~ B, X 0" whenever § — ¢ = 0" — ¢'.

Then redefine the map f: M X S' > M X S' by F, X 0 > F, X (0 — ¢),
and let h = g o f, as before.

2. A new proof of Zeeman’s theorem. In §2 and §3 we assume that the
reader has some familiarity with branched covering spaces. Recall that if X"
is a manifold and Y"~2 ¢ X" is a subcomplex of dimension(n — 2), then given
a representation o: 7, (X — Y)— S(m) to the symmetric group on m
elements there is an associated branched covering M — X, which is the
unique completion (see [2]) of the covering space M — X — Y corresponding
to 0. The set of points Y over which M — X fails to be a covering space is
called the singular, or branch, set.

DEFINITION 2.1. Let Y”~2 C X" be an oriented, connected submanifold of
the oriented manifold X", which is properly embedded in X" (ie, Y =Y
N 9X). An oriented simple closed curve m on the boundary of a regular
neighborhood N (Y) C X of Y is called a positive meridian for Y in X if m is
the boundary of a fiber of the 2-disc bundle N(Y) — Y, and the orientation
of the fiber is such that it, together with the orientation of Y, induces an
orientation on N (Y) agreeing with that on X.

DEFINITION 2.2. Let Y"~2 C X" be as in Definition 2.1, and suppose
H\(X — Y; Z) = Z is generated by the class [m] of a positive meridian m for
Y in_X. The a-fold cyclic branched covering of X branched along Y,
a € Z — {0}, is the branched covering associated to the representation

m(X-Y)SH (X~ YV;Z)=Z—>Z/d
where the last map is defined by mapping [m] — + 1. The branched covering
space is given the orientation induced by X if a € Z*, and is given the
opposite orientation if a € Z~.

Notation. Let k c S"~' be a knot and k c D"~! be the knotted disc
associated to k. Denote by M, (k) — S"~! the a-fold cyclic branched covering
of §”~' branched along k. Denote by M,(k)— D"~! the a-fold cyclic
branched covering of D"~ ! branched along k. Note that Ma(k~) is obtained
from M, (k) by removing an (n — 1)-ball.

Let p,: §" — S” be the a-fold cyclic branched covering of S” branched
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along K"~% ¢ S" induced by

7. D" ' X S' 5 D" x S,
(x,0)—>(x,a0).

LEMMA 23. Let k ¢ S" ! be a knot,a € Z — {0}, and let p,: S" — S" be
the a-fold cyclic branched covering of S" branched along the unknotted sphere
K"=2C S". Then the a-twist spin L,(k) of k in S" is the inverse image
P \(Ly(k)) C S™ of the 1-twist spin of k under the map p,. The orientation of
L, (k) agrees with the orientation of p; \(L,(k)) if a > 0, and is opposite to it if
a<o.

Proor. It follows from the definition of L,(k) that p,(L,(k)) = L,(k), since
To(raa(k) X 0) = r,g(k) X af = r (k) X ¢ for¢ = af.

Checking orientations is left to the reader.

REMARK. Note that M, (k) is homeomorphic to M_,(k) by an orientation
reversing map, and that the pairs (S”, L,(k)) and (S", L_,(k)) are
homeomorphic by a homeomorphism which is orientation reversing on both
S"and L, (k).

COROLLARY 24. Let k C S"~! be a knot, a €Z — {0}, and let p_,:
S" — S" be the (— a)-fold cyclic branched covering of S™ branched along the
unknotted sphere L(k). Then the a-twist spin L, (k) of k in S" is the inverse
image (p_,)"(K) C S™ of the standard, unknotted sphere K"~2 under j_,.
The orientation of L, agrees with the orientation of p-}(K) if a > 0, and is
opposite to it if a < 0.

PrOOF. We have simply interchanged the roles of L,(k) and K in Lemma
24, as an application of the Interchange Theorem. (Recall that the
interchange map h: (S”, K, L,(k)) > (S", L,(k), K) is orientation reversing
on S”, and therefore p, in Lemma 2.3 is replaced by g _, in Corollary 2.4.)

THEOREM 2.5 (ZEEMAN [6]). Let k C S"~! be any knot and let a € Z — {0}.
Then the a-twist spin L,(k) of k is a fibered knot in S™; it is the binding of a
book structure on S" with leaf M _ ,(k).

ProoF. We will use the characterization of L,(k) given by Corollary 2.4.
The sphere K"~2 c S" is the binding of the book structure D}~! (see §1).
Since L,(k) is spun about K, it meets each leaf D;'~! in a homeomorphic
copy of k, namely iyr,(K). Therefore the book structure D} ! lifts, under the
branched covering map j_,: S” — S”", to a book structure on the branched
covering space S" having binding (§_,)"N(K) = L,(k) and leaf
(-~ (D""Y = M_,(k). This is indicated in the following diagram:
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LK) —— M_ (&) —>s"

li_,t lE’.,l li,

K——_) Dg—l____) Sn

A close look also reveals the monodromy of the book structure, by which is
meant an extension to the closed leaf M_,(k) of a pasting map M —a(K)>
M _a(k) for the fibration $” — L,(k) = S' of the knot complement over the
circle. A more complete discussion of this appears in §7.

3. A conjecture of R. H. Fox. Let k ¢ S"~!be aknot, a, b € Z — {0}; and
define 7: M, ,(k)—> S" to be the b-fold cyclic branched covering of S”
branched along the a-twist spin L,(k) C S” of the knot k. R. H. Fox
conjectured [3] that the spaces M, ,(k) and M, ,(k) are homeomorphic. We
will now prove his conjecture.

In this section we assume a, b € Z — {0}. Theorem 3.1 is immediate from
Lemmas 3.3 and 3.4, which follow.

THEOREM 3.1. Let k C S"~! be a knot. Then M, ,(k) = M, ,(k); i.e., the
b-fold cyclic branched covering of S" branched along the a-twist spin of
k c §"' is homeomorphic to the a-fold cyclic branched covering of S"
branched along the b-twist spin of k C S"~ .

We begin by defining the following branched covering of the sphere:
DEFINITION 3.2. Let k ¢ S"~! be a knot. Let m;, my ¢ §" — K U L,(k) be
positive meridians in $”~! for K and L,(k), respectively, and identify

H(S"-KUL(k;Z)S28Z
by [m,]— 1@ 0 and [m,] -0 @ 1. Finally, let Z23 Z/mZ be the quotient
map.

Define the branched covering space X, ,(k) —» S" branched along the
subcomplex K U L,(k) C S” by the representation:

@ (8= KU LK) SH(S"-KUL(k;Z) 32012

2.9,
- (Z/aZ) ® (Z/bZ).
LEMMA 3.3. X, (k) = M, , (k).

Proor. Since the branched covering p,: S$” — S” is determined by the
representation:
i

m(S" - K) S>H,(S"- K;2) 5252/a2
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and the branched covering 7: M, ,(k)— S" is determined by the repre-
sentation:

7,(8" — L(k)) - H, (5" — L,(k); Z) 32 52/b2,
and since p,(L,(k)) = L,(k) by Lemma 2.3, it follows that the composition

Pa° 7 M,,(k)—> S" is a branched covering with branch set K U L,(k) C
S", determined by the representation (). Hence M, (k) = X, , (k).

Lemma 34. X, , (k) = X, ,(k).

ProoF. It follows immediately from the Interchange Theorem that X, ,(k)
= X_, _,(k). Since the representation (*) has the same kernel if a (or b) is
replaced by —a (resp., —b), we also have X _, _ (k) = X, ,(k).

REMARK. The homeomorphism M, ,(k) - M, ,(k) of Theorem 3.1 is orien-
tation reversing.

4. Iterated twist spinning. Let kK C S"~! be a knot, a,b € Z — {0}. We
will let L,,(k) C S"*! denote the b-twist spin L,[L,(k)] C S"*' of the
a-twist spin L,(k) C S” of k. In this section we prove that L,,(k) is fiber
equivalent to L, (k). The proof is very similar to that of Fox’s conjecture,
and, in fact, Theorem 3.1 can be deduced as a corollary.

Notation. Let U2 (U "=2) be the upper (resp. lower) hemisphere of the
boundary sphere 3D"~'. If k c S"~! is a knot, then the associated knotted
arc k c D"~ is always placed so that U, n U_ intersects 9k in its equator
(if n = 4, each hemisphere of dD"~! contains exactly one endpoint of k).

Represent (S"*!, L, (k)) by the pair

*) (D" 'x S'X SLEXS'x S

with identifications

(x,0,¢) ~(r_g(x),0,¢) foralxe U_,8,¢ €S,
(x,8,0) ~(r_4(x),0,9) forallxe U,,0,¢€S".

Let S”~! be the oriented (n — 1)-sphere U, X S' X S'/~, and let S~ be
the oriented (n — 1)-sphere U_ X S! X S'/~. The unknotted (n — 1)-
spheres S,, S_ c S"*! intersect in general position in an (n — 3)-sphere,
U,NnU)XS'x S/~

Let P,: S"*! — S"*! be the a-fold cyclic branched cover of S”*! branched
along S_, induced by

Pi:D" X S'x S' D" x ST x S,
(x, 0, ¢) > (x, ab, ¢).

Let 0,: S"*!' > 5"*! be the a-fold cyclic branched cover of S"*! branched
along S, induced by

(*+)
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g:D" "X S'x S'5 D" x ST x S,
(x, 0, ¢) > (x, 0, ad).
We would just as well let (S"*', L, ,(k)) be the pair (x) with identifications
(x,0,¢) ~(r_g(x),0,¢) forallxe U,,0,¢€ S,
(%,0,0) ~ (r_o(x),6,¢) forallxe U_,0,6€S".

(This follows from Remark 1.8.) We will denote the pair (x)/(*##) by

(§"*1, L, (k). Let S, be the (n — 1)-sphere U, X S' X S'/(s++). Let P:

§7+1 5 §7*+1 be the a-fold cyclic branched cover of $§”*! branched along S,

which is induced by p,, and let 0,: $"*'— §"*! be the a-fold cyclic

branched cover of $”*! branched along §_ which is induced by 4,
LEMMA4.1.Q, o P, = P, 2 Q,: S"*' > S"* ' and §, o B, = B, o §,: §"*!
Sn+l

Proor. This follows because
G °Pa=P,°q: D" ' X S'X S'5 D" x ST x S,
(x, 8, ¢) > (x, ab, bo).
DEFINITION 4.2, It (S™*', L, (k) = (S"*!, L, (k)) is the orientation
reversing homeomorphism induced by
D" 'XxS'xS'5D"Ix S'x S,
(x, 0, %) > (x,9,0).
(I reverses the orientation of both factors.)
LEMMA 4.3. The homeomorphism I: (S"*', L, (k) - (§"*", L, (k)

preserves the book structures corresponding to the iterated twist spun knot
L, (k) and L, \(k), given by Zeeman’s theorem.

(xxx)

PrOOF. Let p: D" ! — k— S' be the singular fibration described in
Lemma 1.4, with F, = p~'(¢). The leaves %, of the book structure on S”
with binding L,(k) given by Zeeman’s theorem are % = U ,e51F, X (6 — ¢)
(see, for example, the proof of Theorem 1.10, or Theorem 6.4). The leaves §,
of the book structure on S"*! with binding L, ,(k) are therefore

= U FHx(a-9)
ges!
U F,x(@-¢)x(a-0)= U F,_4_,%X0 x4
¢,0€S! 0,6€S! ‘

Now it is clear that 1(8,) = §, foralla € S'.

THEOREM 4.4. Let k C S"~! be a knot; a, b € Z — {0). Then the iterated
twist spun knots L, , (k) and L, ,(k) in S"*" are fiber equivalent fibered knots,
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where the fibration of their complements over S' is given by Zeeman’s theorem.

Proor. By two applications of Lemma 2.3, we have that the iterated twist
spun knot L, (k) C S"*! is the inverse image [Q,°P] WLy, (k)) of the
trivial knot L, ,(k) C S"*! under the branched covering map Qy P, S"*!

S"‘”, likewise, we also have that L, (k) is the inverse image
[Q,, °P]” l(Ll 1(k)) of Ll 1(k) under the branched covering Qy oP: S

Now observe that the following diagram is commutative:

sn+1 1 , S+t

lQbo‘Pa l?’boa’a

™+, Ly () —— 1, T, ()

Finally, since P o0, = Qa o B,: §7+1 §7+1 we have that L, (k) =
[0, ° P \Ly (k) =[P, ° 0,1 I(Ll 1(K)); hence,

(S™, Ly (k) = (S"1[ Q, o P.] (L1 (K))
(S"“[ ] (Lll(k))) (S'M'l ]:ba(k))'

Furthermore, since I: (S"*, L, ,(k))-—>(S"“l LI ,(k)) is an equivalence of
book structures, then I: (S"*!, L‘,,,(k))—>(S"+l l:,, .(k)) is also an equiva-
lence of the book structures induced on the branched covering spaces, which
is precisely that given by Zeeman’s theorem.

REMARK. Fox’s conjecture is actually a corollary of Theorem 4.4. This is
because the fiber equivalence I: (S"*!, L, ,(k)) > (S"+l L, o(K)) carries the
leaf M_, _ ,,(k) homeomorphically to the leaf M_, _o(k) (in an orientation
reversmg manner) It is interesting to note that the Interchange Theorem is
not used in the proof of Theorem 4.4.

5. The special case a or b is zero. We will now extend the theorems of §2,
§3, and §4 to include the cases where a or b is zero.

DEFINITION 5.1. Let S” be the space with identifications D"~ x §'!/(x, 9)
~(x,8’) for all x €dD""', 0,0’ € S'. Then define py: S"— D"~! to be
induced by projection D"~! X S'— D"~!. (Note. If S" is represented as the
space with identifications D"~ X S'/(x, 0) ~ (r,4(x), ) for all x €9D""},
6 € S', then p,: S" — D"~ ! is induced by

D" 'x §'- D",
(%, 0) > r_a(x)-)
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DEFINITION 5.2. Let S"*! be the space (+)D"~! X S! X §! with identifi-
cations

(x,0,9) ~(x,0,¢) forallxe U_,0,0,¢€S',
(x,0,¢) ~(x,0,¢") forallx e U,,0,¢,¢ €S
Then define Py: S"*! — $"*! to be induced by

D" lx S'x S'> D x ST x S,

(++)

1

® (x,0,8) > (x, 0,9),

and define Qy: S"*! —» S"*! to be induced by

@) D" !'x S'x S'-» D" 'x S'x S,
(x,0, ) > (x,0,0).

Let $7+! be the space (+) with identifications
(x,0,¢) ~(x,0,¢) forallx e U,,0,0,¢6€S',
(x,0,6)~(x,0,¢") foralxe U_,0,¢,¢' €S".
Then define Py: $"*! — §"*! to be induced by (1) and define Jy: §"*! -
S"*! to be induced by (2).

(Note. If S"*!is represented as the space (*) with identifications
, (x,0,¢) ~ (rg(x),8,¢) forallxe U_,0,¢€ S,

(x,0,0) ~ (r,¢(x), 0,¢) forallxe U,,0,¢ €S,
then Py: S"*! — §"*!is induced by
ay D" 'x S'Xx S'> D" x S'x S,
(x, 0’ 4’) = (r—aﬂ(x)’ 0’ ¢)
and Qy: S"*! - §"*!is induced by
@ D 'x S'x S's D" x ST x S,
(x,0,¢)> (r_ s6(X)s 8, 0).

Similarly, if $"*+! is represented as the space (+) with identifications
(%,0,¢) ~(rg(x),0,¢) forallxe U,,0,¢6€S',
(%,0,0) ~ (r(x),0,0) forallxe€ U_,0,¢ €S,
then Py: §"*' — §*! is induced by (1)’ and Jy: §"*! — §"*1 is induced by
(2y.In §4, S"*! = (»)/(++)’ and S"*! = (+)/(+++) wherea = b = —1))

DEFINITION 5.3. Let K C S” be a fibered knot, which is the binding of a
book structure on S” with leaf F. Denote by M(K) the underlying manifold
of the book structure (My(K), F, idg). Let My(K) be My(K) minus an open

ball centered at a point of K =9F C My(K).
DEFINITION 5.4. Let k ¢ S"~! be a knot. In Definition 5.3, let K be the

(%)

(+%)

(#**)’
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fibered knot L,(k) C §", g € Z — {0}, which is the binding of a book
structure on S” W1th leaf M, (k) Dgggt_e/ by M, (k) the manifold M(L,(k));
denote by M o(k) the mamfo]d My(L,(k)).

The followmg theorem is well known (see, for example, On higher-dimen-
sional fibered knots by Andrews and Sumners, Trans. Amer. Math. Soc. 153
(1971), 415-426). The short proof which follows is our own:

THEOREM 5.5 (ZEEMAN’S THEOREM). Let k C S™~! be a fibered knot, which is
the binding of a book structure on S"~"' with leaf F. Then the O-twist spin
Ly(k) c S" is a fibered knot; it is the binding of a book structure on S" with
leaf Mo(k~).

ProoF. The knot Ly(k) is the inverse image py I(k) of the knotted disc
k c D""! under the mapping p,: S”" — D"~". The book structure on S"~!
with binding k, when restricted to (D", k), lifts to one on S” with binding
Ly(k) and leaf py '(F) = MKk).

COROLLARY 5.6. Let k C S"~ ! be a knot, g € Z — {0}. Then the iterated
twist spun knot L, (k) C S"*1 is a fibered knot; it is the binding of a book
structure on S"* with leaf M _ (k).

ProoF. Apply Theorem 5.5 to the fibered knot L (k) C S", which is the
binding of a book structure on S” with leaf M _ g(k)

THEOREM 5.7. Let k ¢ S"~! be a knot, g € Z — {0)}. The iterated twist spun
knots Ly (k) and L, (k) in S "+1 are fiber equivalent fibered knots, where the
fibration of their complement over S' is given by Zeeman’s theorem.

Proor. The proof is identical to that of Theorem 4.4.

COROLLARY 5.8 (FOX’S CONJECTURE). Let k ¢ S"~! be a knot, g EZ —
{0}. Then My (k) = M, (k).

ProoFr. See the remark at the end of §4.

6. A generalization of Zeeman’s theorem. Now let us suppose that k C S~
is not a sphere. In this section we will employ the notation developed in §1,
reinterpreting k as in 6.1:

DEFINITION 6.1. A knotted submanifold k ¢ S"~' is an oriented, connected,
codimension-2, locally flat submanifold of $"~'.

DEFINITION 6.2. A fibered knotted submanifold k c S"~' is a knotted
submanifold of S”~! which is the binding of some book structure on S~ .

DErFINITION 6.3. If k ¢ S”~! is a knotted submanifold and a € Z, the
a-twist spin L,(k) C S" of k is a knotted submanifold of §” which satisfies

[L.(k)] N Dy~" = igrag ().
(As before, the pair (D"~!, k) is obtained from (S"~, k) by removing a tiny
ball centered at a point of k.)
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Notation. Recall the definition of M from 1.10. Let N be obtained from M
by making the identifications B, ~ B, for all ¢, ¢’ € S'; thus N is the
compact complement in S"~! of a regular neighborhood of the knotted
submanifold with boundary, £ ¢ D"~' c §"~'. Denote by N,(k) - N the
a-fold cyclic branched covering of N branched along the complementary disc
Cl(k — k) C N. (See Figure 2.)

@ Cl(k - k)

regular neighborhood
of kK C §"-2

FIGURE 2

THEOREM 6.4. Let k C S"~! be a knotted submanifold and let a € Z — {0}.
Then the a-twist spin L,(k) of k is a fibered knotted submanifold of S"; it is the
binding of a book structure on S" with leaf N _ (k).

Proor. The entire proof of the Interchange Theorem 1.10 may be carried
over to our present context, excepting the construction of g, which no longer
exists. In particular, the map f: M X S'—>M X S' induces a map f:
N X S'— S$" such that for all @ € S, f(dN X 0) = L,(k). Thus, the 1-twist
spin L,(k) of k is a fibered knotted submanifold of S”, which is the binding
of a book with leaf f(N X 8) = N. By Lemma 2.3, and the property that the
branch set K"~2 is spun around L,(k) (see Definition 1.7), we may lift the
book structure f (N X ) to the total space of the branched covering p,:
S" — S". Since each leaf f(N X 6) intersects K"~2 in the disc B, C k"2,
and since f is orientation reversing, the leaf T f(N X 8)) of the lifted book
structure is N _a(lg). '

REMARK. Theorems 4.4 and 5.6 are true in the broader category of knotted
submanifolds, since their proofs did not require k to be a sphere.

7. Fox’s conjecture is generalized, and we prove a result about iterated
twist spinning. Recall (Definition 1.5) that two fibered knots K, K’ C S”
are fiber equivalent if there is a homeomorphism 4: (S”, K) = (S”, K’) which
preserves the fiber structure of their complements. In this section we prove:

THEOREM *. Let k C S"~! be a knot. Let (a,b) €Z X Z — {(0, 0)}, (a, b)
= (gr, gs) where g = g.c.d.(a, b), (r,s) EZ X Z — {(0, 0)} and g.c.d.(r, s) =
1. Then the b-fold cyclic branched cover M, (k) of the a-twist spin L,(k) C S"
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of k ¢ 8"~ is homeomorphic to My (k) if either r or s is even, and to M, (k)
if both r and s are odd.

THEOREM *+. Let k C S"~! be a knot. Let (a,b) €Z X Z - {(0, 0)},
(a, b) = (gr, gs) where g =gcd(a, b), (r,s) EZ XZ - {(0,0)} and
g.c.d.(r,s) = 1. Then the iterated twist spin L,,(k) C S"*' of k C "~ is
fiber equivalent to Ly (k) if either a or b is even, and to L, (k) if both a and b
are odd, where the fiber of the fibration of their complements over S' is given by
Zeeman’s theorem.

Since we cannot prove M, ,(k) = M, ((k), it is not clear to us that the knots
L, (k) and L, (k) (= Ly, (k)) are fiber equivalent. Cameron Gordon claims
that these knots are equivalent (not necessarily fiber equivalent) if n > 5. He
is also able to show that M, ,(k) =~ M, (k) if n > 5 (the manifold M, ,(k)-
ball is the leaf of the book structure on S"*! with binding L, ,(k)).

DEFINITION 7.1. Let Y"~2 X" be a codimension 2, properly embedded,
oriented submanifold of the oriented manifold X", let mC X — Y be a
positive meridian for Y in X on which there is a distinguished point p € m,
and suppose H,(X — Y, Z) = Z is generated by [m]. Then 7 is a positive
generator for the group Z/aZ of covering translations of the a-fold cyclic
branched covering 7: X, - X of X” branched along Y"~% a € Z — {0}, if
there is a lift /2 C X, of m such that

(i) 0 = 7(p) — p forsomej € =~ !(p),if a > 0,

(ii) 0 = p — 7(p) for some j € 7~ !(p),ifa < 0.

DEFINITION 7.2. Let K C S” be a knot, a € Z — {0}, and let M,(K) - D"
be the a-fold cyclic branched cover of D" branched along the associated
knotted disc K c D"; let 7,: M,(K) — Ma(IE' ) be a positive generator for the
group of covering translations of M,(K). Define T,: M, (K) - M,(K) to be
the following homeomorphism:

First note that dM, (K) is a sphere §"~! on which the restriction ,|0M,(K)
of the covering translation 7, is the rotation r,,,,: $"~'— §"~! with axis
(fixed point set) the unknotted sphere S"~3 =3K cIM,(K) = S"~'. Let
M, (K) X [0, 1]=> M,(K) be a collar of the boundary of M,(K) such that
dM,(K) X 0 is identified with M, (K) (by projection to the first factor). We
may assume that the restriction of 7, to this entire collar is the rotation
Fanja X id: 8771 X I — 8""! x I. Now define the homeomorphism 7, to
agree with 7, on the complement of the collar, and inside the collar to slow to
the identity on dM, (K). On the collar, define 7, by the equations:

(% 1) if x €0M,(K)and0 < £ <3,
Ta(x’ t) = (r(qu/a)(:%l—l)(x)’t) if x EaMa(k) and % <t <%’
(am/a(X)s 1) if x €dM,(K)and 2< < 1.
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DEFINITION 7.3. Suppose K C S” is a fibered knot, a € Z (we allow a = 0).
Let the associated book structure on S” with binding K be given by
(S", F, h), where 9F = K and A is a monodromy map for the book (see 1.1).
Define a fiber-preserving homeomorphism T,,: M,(K) — M, (K) as follows:

The a-fold cyclic branched covering M,(K) — S”" of S” branched along K
is easily seen to have the book structure (M,(K), F, h°), if a # 0; if a = 0,
this is the definition of M,(K) (see 5.3). Thus M, (K) = F X [0, 1]/(x, 1) ~
(h°(x), 0) for all x € F, (x, 0) ~ (x, ¢) for all x €EJF, t €[0, 1]; M,(K) has
the orientation induced by the product orientation on F X [0, 1]. Define T
M, (K) - M,(K) by T,(x, 1) = (h~\(x), 1) for (x,7) € F X [0, 1], and let T,:
M, (K)—)M (K) be the restriction of T,: M,(K)— M,(K) to M, (K)
M, (K)-ball.

LEMMA 74. Let K C S" be a knot, a € Z — {0}. Then the book structure on
S"*! whose _binding is the a-wwist spin LK) of K is given by
(8™, M_,(K), T_,).

PrOOF. Let (S"*!, L,(K)) be the pair (D" X [0, 1], K X [0, 1])/(+) with
identifications
(x,0) ~(x, 9 forallx €aD", ¢t €[0, 1],
(x, 1) ~(T,(x),0) forallx € D",

and let N =9D" c D" X [0, 1]/(+) be the standard unknotted (n — 1) =
sphere in S"*!. Let 5_,: S"*! > S"*! be the (—a)-fold cyclic branched
covering of S”*! branched along the 1-twist spin L,(K).

We have the following commutative diagram:

R x [0, 11/(xy L M_®) x [0, 1]/(s) ——> sn+1

lid l;—a l;-a

L&) =K x [0, 1]/(9)—— D" x [0, 1]/(¥) ———> §n+1

where the set of identifications (+)’ is the lift of (*), and hence
(oY (%, 0) ~ (x, 1) forall x eaM_,(K),t €[0, 1],
(x, 1) ~(T_,(x),0) forallx € M_,(K).

Now by Corollary 2.4, L,(K) is the inverse image 5-!(N) of the standard
(n — 1)-sphere N C S"*, under the branched covering j_,: §"*!— §"+!
of $”*! branched along L,(K). Hence

L(K) =5Z3(N) = p=i([0D"] x[0,1]/ () =[aM_,(K)] x[0, 1]/ (¥).

The lemma is immediate.
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LEMMA 7.5. Let K C S" be a fibered knot, and let (S”, F, h) give a book
structure on S" whose binding is K =F. Let a € Z — {0). Then T,: M,(K) -
M,(IZ) is isotopic, relative to aMa(IE' ), to the fiber preserving homeomorphism
T,: M,(K)— M,(K). Hence, the book structure (S"*', M_,(K), T_,) on
S"*! whose binding is the a-twist spin L,(K) of K is also given by
(8™, M_(K), T_,).

Proor. First, T,: (D", K) - (D", K) is isotopic to T,: (D", K)— (D", K)
relative to dD" and K, because K C S" is a fibered knot. Denote the isotopy
by Ty (D", K)—)(D" K), where T\o=T, and T}, = T, and let =:
M, (K), K)->(D" K) be the a-fold cyclic branched covering of D"
branched along K. Then, as shown in the following commutative diagram, the
isotopy T, lifts to an isotopy 7,,: (M,(K), K) > (M,(K), K) relative to
M, (K) and K, between T, w=T,and T, = T,:

M,®, B M,&). 5
4 b4
~ T, X ~

(Dn’ K) - (Dn’ K)

This automatically implies the second part of the lemma.

Recall that if k ¢ §"~!is a knot, a, b € Z and b # 0, then M, ,(k) > S"
denotes the b-fold cyclic branched covering of S”, branched along the a-twist
spin L,(k) ¢ S" of k c S"~L. If b = 0, the definition of M, (k) is given by
5.4. There is a natural identification of L, (k) C S” with its inverse image in
M, (k) given by the covering projection, and this is what we will mean by the
notation L,(k) C M, (k).

THEOREM 7.6. Let k C S"~! be a knot, a,b € Z — {0}. Then there is a
homeomorphism H: (M, (k) L,(k)) = (M, 4 . 5,(k), L,(k)).

ProoF. It is an easily proven property of the book structure (M, F, h) on a
manifold M, that the r-fold cyclic branched covering #: M, > M of M
branched along the binding dF of the book, r € Z — {0}, has a book
structure given by (M,, F, h").

Consequently, if » € Z, Lemma 7.4 and Definition 5.4 imply that the
manifold M, ,(k) has a book structure with leaf M, (k) and monodromy
(T_.): M_,,(k)—) M_,,(k) Next, we observe that the homeomorphlsms
(T_)Y and (T_,)'** agree outside of the collar [M_,(K)] X [1, 2].
Further, their difference

(7o) [M_o ()] x[ 1, 3] > [2M_a(®)] X[ 5. 3]
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on this_collar is isotopic to the identity, relative to the boundary
(M _ (k] % (5, 3):

Since oM _,,(Ig) =~ §"~' and the monodromy T_, is defined on the collar
S x |3, 3] by T_,(x,t) = (rz,,/ - (%), 1), we have that (7T_,)*%:
SV X [3, 31> S X [1, 2] defined by (T_,)**(x, 1) =
(7 + 4n(3—1)(%), 1) represents the trivial element of 7 (SO(n)).

Now we apply another property of book structures, that (M, F, h) is
equivalent to (M, F, k') if h and k' are isotopic relative to oF.

REMARK. In fact, it is clear from the proof that

(@) H carries a tubular neighborhood N of L, (k) C M,,(k) to a tubular
neighborhood N’ of L, (k) C M, .,,(k).

(b) the spaces M, , (k) — N and M, ,,(k) — N’ are fiber bundles over S
with the same fiber, and the same monodromy.

(©H: M, (k) — N—>M,,.,,(k) — N'is the identity.

THEOREM 7.7. Let k C S"~' be a knot, a,b € Z — {0}. Then the iterated
twist spun knots L, ,(k), Lop+24(k) C S"*'are fiber equivalent, fibered knots.
N

Proor. Let H: M_,(L,(k)) > M_,.,,(L,(k)) be the restriction H|:
M, _,(k)ball > M, _,.,,-ball of H, to the manifold M, _,(k) with an open
n-ball centered at a point of L,(k) C M, _,(k) removed from the interior of
the tubular neighborhood N of L (k). Now by Lemma 7.5 and Corollary 5.6,
the knot L, (k) C S"*", r € Z, is the binding of a book structure on §™*!
with leaf M _,(L (k)) = M, _,(k)-ball, and monodromy T_,: M_ (LK) -

M_,(L,(%)). It may be assumed that T_: M_y(L,() > M_,(L,(5) is the
identity on a tubular neighborhood of L% 2(k) which includes the collar
[0M_ (k)] X [3, 2] X S". Since H is the 1dent1ty off of thxs collar (see part
(c) of the Remark), it follows that T_y=H 'oT_,.,, 0o H: M_,(L,(R)~

-,,(L (%)). Thus H may be extended to a fiber-preserving homeomorphlsm

(S"“’ M—b(La(k))’ T—b) - (S"“, M_y.iz (La(k))’ T—b:Za)

of these book structures on S"*!, giving the desired fiber equivalence
(8™, Ly(k) = (8™, Ly g0 (K)).

COROLLARY 7.8. Theorems * and *x.

ProOF. We have objects, either M, ,(k) or L,,(k), indexed by pairs of
integers (a,b) €Z X Z — {(0, 0)}. Let us denote the object simply by the
pair (a, b). We also have an equivalence relation between. objects, namely
homeomorphism for the manifolds M, ,(k) and fiber equivalence for the
fibered knots L, ,(k); we will denote the equivalence by (a, b) ~ (a’, b").

Observe that we have proved these relations:

(D) (a, b) ~ (a, = b),
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2 (a, b) ~ (b, a).

) (a, b) ~ (a, b + 2a).

As a consequence of (a), (b), (c) we have:

@ (a,b)~(a, b - 2a).

By (1) and (2) we need only consider the pairs (a, b) with b > a > 0.
Suppose b # a and a # 0. If b > 2a then (a,b) ~(a,b — 2a). If b < 2a
then (a, b) ~(a, 2a — b). In either case we have (a, b) ~ (da’, b’) where
b’>a >0anda < a, b <b.

Repeating this procedure we finally arrive at (a, b) ~ (', b’); where either
ad=b=gorad=0b=gandg €Z*.

We now observe the following facts:

() If (a, b) ~ (@', b), then g.c.d.(a, b) = g.cd.(a, b').

®) If (a, b)) ~(a’, b) and (a, b) = (gr, 85), (@', &) = (gr’, gs") as in the
statement of Theorems * and #**, then r and s are both odd < »’ and s’ are
both odd.

It follows that if (a, b) ~ (0, g) or (a, b) ~ (g, g), then g = g.c.d.(a, b).
Also if (a, b) = (gr, gs), then (a, b) ~ (0, g) precisely when either » or s is
even, and (a, b) ~ (g, g) when both r and s are odd.

8. Spinning symmetric arc collections. We believe that the exposition of this
section will be clearest if we restrict ourselves to dimension 3. It is
understood, however, that dimensions 3 and 4 may be replaced by n — 1 and
n, respectively, in the statement of the definitions, Theorem 8.5 and Corollary
8.6, and that these two results will still be correct.

For a discussion of 2-symmetric arc collections, the reader is referred to
Dennis Roseman’s article [S].

DEFINITION 8.1. A collection C of @ embedded arcs in D3 with disjoint
interiors, whose common boundary is the poles K® c D3, is a-symmetric if it
is invariant under the rotation r,,/,: D*— D>,

DEFINITION 8.2. The quotient arc k(C) C D* of C is the image of C under
the projection to the space of orbits of the action r,, ,,: D*— D>,

DEFINITION 8.3. Let C be an a-symmetric collection of arcs in D3, The knot
associated with C is the union of the quotient arc k(C) and the unknotted arc
which is the fixed point set or axis, of the rotation r,,/,: D*>— D> (See
Figure 3.)

DErINITION 8.4. Let C be an a-symmetric collection of arcs in D>, A knot
L c S*is called the spin of C about the unknotted sphere K* C S* if

L ] D03 = igro/a(c).

We denote the spin of C about K by L(C).
REeMARK. The knot L(C) is locally flat at each pole, since the intersection
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2-symmetric C the associated knot
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3-symmetric C the associated knot

FIGURE 3

of a regular neighborhood of the pole with L(C) is an (a, 1)-torus knot
(which is trivial).

Notation. If C is an a-symmetric collection of arcs in D? with quotient arc
k(C), let L denote the spin of the 1-symmetric collection k(C) in S*. Let K
denote the spin in S* of the unknotted arc which is the fixed point set, or
axis, of the rotation ry,: D?* - D>, There is an obvious deformation of K to
the standard unknotted 2-sphere K.

Let p,: D®— D? be the a-fold cyclic branched covering of D3 branched
along the unknotted axis of the rotation ry,: D3* - D3, (This is just the
restriction to the unit ball D3 c §3, of the map p,: S3 — S3 defined in §2.)
Note that p,(C) = k(C).

Let the a-fold cyclic branched covering P,: S*— S* of S* branched along
K be induced by

P, Xid: D3x S'» D3 x S
Note that P,(L(C)) = L.
THEOREM 8.5. Let C be an a-symmetric collection of arcs in D3, and let
k C S> be the knot associated with C. Then L(C) = L,(k): the spin of the

collection C about the unknotted sphere K* C S* is ambient isotopic to the
a-twist spin of the knot k associated to C.

ProoF. We will use the characterization of L(C) given above; namely,
L(C) is the inverse image P,”!(L) of L under the branched covering map P,:
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S%— S* Then by Lemma 2.3, the theorem will be proved if we can exhibit
a homeomorphism h: §* — S* such that #(K) = K and h(L) = L(k).

Let A: S* — S* be the homeomorphism constructed in Theorem 1.10 which
interchanges K and K. Then k(L) = L (k):

As in the proof of 1.10 the 4-tuple (S* K, K, L) is homeomorphic to the
4-tuple (M X S',4 X S', B X §', k(C) X S') after the identifications (i)
and (ii). Therefore it is equivalent to check that A(k(C) X ) = kK X S, or,
for each # € S', A(k(C) X SN (M X 0) = k X 0, where k C D3 is the
knotted arc associated to k C S>. The reader should review the definitions of
the maps f, g, h: M X S' > M x S' and §: M - M in the proof of 1.10
before beginning what follows:

F(k(C) X S') N (M x 8)=F[(k(C)x §')n (7) (M x 0)]

if-(k(C) x $')n (h’)"( U F, x 0)

¢€S!

Il
=

(k(C)x $')n ( US F,x (-0 —¢))}
L oS!

U (K(C)x S') N (F, X (=0 —¢))

=
L € S!
=il U (k(C)nF¢)X(—0—¢)] |
L oS!
=52 U MO n F)x(-0-9)]
¢ES!

g[ U ((C)n F,) x

¢ES!
= g[k(C) x 8] = [k(C)] % 0 =k x8.

M i ® @
g b

2-symmetric C the associated knot

FIGURE 4
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(3) @ gA)

g(k(C))

)

L

the knotted arc ?corresponding to the knot k

FIGURE 4 (continued)

The final step, which asserts the equality g[k(C)] = k of g[k(C)] and the
knotted arc k corresponding to the knot k associated with the arc collection,
is left to the reader, with the aid of Figure 4.
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