Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Projective modules over subrings of $k[X, Y]$
HTML articles powered by AMS MathViewer

by David F. Anderson PDF
Trans. Amer. Math. Soc. 240 (1978), 317-328 Request permission

Abstract:

In this paper we study projective modules over subrings of $k[X,Y]$. Conditions are given for projective modules to decompose into free $\oplus$ rank 1 modules. Our main result is that if k is an algebraically closed field and A a subring of $B = k[X,Y]$ with $A \subset B$ integral and ${\text {sing}}(A)$ finite, then all f.g. projective A-modules have the form free $\oplus$ rank 1. We also give several examples of subrings of $k[X,Y]$ which have indecomposable projective modules of rank 2.
References
    D. F. Anderson, Projective modules over subrings of $k[X,Y]$, Dissertation, Univ. of Chicago, Chicago, Ill., 1976. —, Projective modules over subrings of $k[X,Y]$ generated by monomials (submitted).
  • Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
  • Mark I. Krusemeyer, Fundamental groups, algebraic $K$-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15–47. MR 335522, DOI 10.1007/BF01418849
  • Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
  • John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
  • M. Pavaman Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Ann. of Math. (2) 89 (1969), 242–253. MR 241434, DOI 10.2307/1970667
  • M. Pavaman Murthy and Claudio Pedrini, $K_{0}$ and $K_{1}$ of polynomial rings, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 109–121. MR 0376654
  • M. Pavaman Murthy and Richard G. Swan, Vector bundles over affine surfaces, Invent. Math. 36 (1976), 125–165. MR 439842, DOI 10.1007/BF01390007
  • M. Nagata, On the closedness of singular loci, Inst. Hautes Études Sci. Publ. No. 2, (1952), 5-12.
  • Claudio Pedrini, On the $K_{o}$ of certain polynomial extensions, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 92–108. MR 0371882
  • P. Samuel, Lectures on unique factorization domains, Tata Institute of Fundamental Research Lectures on Mathematics, No. 30, Tata Institute of Fundamental Research, Bombay, 1964. Notes by M. Pavman Murthy. MR 0214579
  • J. P. Serre, Sur les modules projectifs, Séminaire Dubriel-Pisot 14 (1960-61), No. 2.
  • C. S. Seshadri, Triviality of vector bundles over the affine space $K^{2}$, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 456–458. MR 102527, DOI 10.1073/pnas.44.5.456
  • R. G. Swan, Serre’s problem, Conference on Commutative Algebra, Queen’s Papers in Pure and Appl. Math., No. 42, Kingston, Ont., 1975.
  • Wilberd van der Kallen, Le $K_{2}$ des nombres duaux, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A1204–A1207 (French). MR 291158
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 13C10, 13F20, 14F05
  • Retrieve articles in all journals with MSC: 13C10, 13F20, 14F05
Additional Information
  • © Copyright 1978 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 240 (1978), 317-328
  • MSC: Primary 13C10; Secondary 13F20, 14F05
  • DOI: https://doi.org/10.1090/S0002-9947-1978-0485827-5
  • MathSciNet review: 0485827