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CLASSIFICATION OF CIRCLE ACTIONS ON 4-MANIFOLDS
BY

RONALD FINTUSHEL1

Abstract. This article studies locally smooth 5 '-actions on closed oriented

4-manifolds in terms of the orbit space, orbit type data, and the characteris-

tic class of the action which lies ia'H^M*, S*) where M* is the orbit space

and S* is the image of a certain collection of singular orbits. It is proved

that such actions are determined by their weighted orbit spaces and are in

1-1 correspondence with "legally-weigh ted" 3-manifolds. The information

contained in the weighted orbit space is used to give a presentation of the

fundamental group of the 4-manifold, and in certain cases the quadratic

form is computed.

The classification of actions of the circle on 3-manifolds due to Seifert,

Orlik, and Raymond [12], [11], [7] has been known for some years and has

been widely applied in the study of other transformation groups on 3-mani-

folds. More recently, several papers have brought into focus certain aspects of

actions of the circle on 4-manifolds. In particular there are the papers of

Hsiang [5] and Church and Lamotke [2] which treat various cases of semifree

circle actions on orientable 4-manifolds. Orlik and Wagreich [9] have studied

the problem from the point of view of algebraic geometry, and Pao [10] has

proved the existence of nonlinear circle actions on the 4-sphere.

This article is a continuation of [4] in which we studied locally smooth

actions of the circle group S ' on simply connected 4-manifolds. In that paper

an equivariant classification of these actions was given, and it was shown how

to compute the quadratic forms of these 4-manifolds in terms of the

classifying data. There resulted the theorem that any simply connected closed

4-manifold which carries a locally smooth S '-action is homotopy equivalent

to a connected sum of the manifolds S4, CP2, - CP2, and S2 X S2. We

improve this in §13.

The present article considers classification of locally smooth effective

S '-actions on closed oriented 4-manifolds in terms of the weighted orbit

space, which consists of the orbit space, orbit type data, and the characteristic

class of the action, which relates the Euler class of the principal orbit bundle

to certain equivariant gluing information. Oriented ¿''-manifolds are called
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equivalent if they are orientation-preserving equivariantly homeomorphic. We

show that two S '-actions on closed oriented 4-manifolds are equivalent iff

their weighted orbit spaces are isomorphic. Furthermore, any legally weighted

3-manifold is the weighted orbit space of some S '-action on a closed oriented

4-manifold. This gives a complete account of such actions.

We assume that the reader is familiar with [4]. In fact we need to refer to

[4] so often that we have continued the numbering of [4] in this paper. Thus

our first section is §9 and references to §§1-8 refer to sections of [4]. Rather

than review our notation here, we direct the reader to §§2 and 3.

The organization of the paper is as follows. In §9 we show how to extend

the classification theorem of [4] to the general case. In §§10 and 11 the

information contained in the weighted orbit space is used to give a

presentation of the fundamental group of the 4-manifold and, in certain

cases, a method for computing its quadratic form. In § 12 techniques due to

Church and Lamotke are employed to show that a condition which is weaker

than isomorphism of weighted orbit spaces is often sufficient to imply

equivalence.

9. Extension of the classification theorem. Let M be an oriented connected

closed 4-manifold carrying a locally smooth S '-action. The orbit space M* is

then an orientable 3-manifold which can be oriented according to (3.2). The

structure of E* u F* C M* is similar to that obtained in the simply connect-

ed case (3.1), with one essential difference, namely there may be circles

contained in the 1-manifold E* (and of course M* need not be simply

connected). It is easy to see that the slice representation must be constant

along such a circle C* in E*; so as in (3.3) we may orient C* and assign a

single pair of Seifert invariants (a, ß) to C*. We call such circles simply-

weighted. If a weighted circle contains points of F*, we call it multiply-weight-

ed.

Let C* be a simply weighted circle in M* and let Q* = D2 X C* be a

regular neighborhood of C*. Choose x* G C* and let V* = D2 X x*.

Consider the action of S ' on V X C* where S1 acts trivially on C*. Notice

that it also has orbit space Q*.

Proposition (9.1). Q is equivalent to V x C* by a homeomorphism inducing

the identity map on Q*.

Proof. Split Q* along V* to obtain V* X I. If Q' denotes the correspond-

ing splitting of Q, [1, II.7.1] provides an equivalence of Q' with V X / over

V* X /. The proposition now follows since any equivalence g: V-> V over

V* (in particular, the homeomorphism repairing the cut) is equivariantly

isotopic over V* to the identity of V. This may be seen as follows. Away from

the exceptional orbit set of V the action is free and we have a map $:
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V* - E* -> S1 such that g(x) = $(p(x)) ■ x (p is the orbit map). Actually $

extends over all of V* such that g(x) = $(p(x)) ■ x. This may be seen by an

argument which uses the fact that for x* G E* there are only finitely many

choices for $(x*) satisfying the defining formula. Now since V* at D2, $ is

nullhomotopic, and this gives rise to the desired equivariant isotopy.   □

(9.2). Let Lf, / = 1,..., n, be the weighted circles of M*, and let Qf be a
regular neighborhood of Lf (see (3.2)) and Q* = ö"=xQf- On each dQf

choose a meridional loop mf and a complementary loop If which together

with mf generates Hx(dQf). In dQ¡ there sits over mf a "canonical" section q¡

which is defined in §2 and which, according to (9.1) and the proof of (3.6),

defines an element of Hx(dQ¡) which is independent of the choice of meridian

on dQf. For each / arbitrarily choose a section l¡ over If. Finally, let N* be a

regular neighborhood of S* = E* u F* - U"=\L* and let x* = C1(M* -

(Q* U JV*)).
The restriction of the orbit map p is a principal S '-bundle projection

X-+X*> which is trivial over dQ* by (3.8) and (9.1). The bundle can be

extended by filling in Qf X Sx over each Qf using a bundle isomorphism

dQf X Sx ->3£?, = P~\dQf) for the gluing. Such bundle isomorphisms are
classified up to vertical equivariant isotopy by homotopy classes of maps

dQf-+Sx. That is, an equivariant homeomorphism <£,: dQf X Sx-^dQ¡

inducing ldQ. is classified by the integers (r, s) where in dQ¡, <t>¡(mf X 0) ~ q¡

+ rh and <j>¡(lf X 0) <— l¡, + jA, A an orbit. However, a bundle automorphism

$ of g* X 5' may be constructed as in (5.4) so that $(mf X 0) ~ mf X 0

and $(lf X 0) ~ (//■ X 0) + sh for any s G Z. Hence the resulting bundle

(of X 51) U^ X* depends only on the integer r. This fact will be used

several times. Thus we determine a principal S'-bundle it: Z -> X* U Q* =

C1(M* — A^*) by specifying that each bundle isomorphism <£, satisfy $¡(mf X

0) ~ q¡ in 3ß. (It is easy to see that such bundle isomorphisms actually exist.)

Let x' G H2(Cl(M* - N*)) be the Euler class of the bundle it: Z -> C1(M*
- A/*). By Poincaré duality we have

H2(C\(M* - N*)) « Hx (C1(M* - N*), dCl(M* - N*)) « Hx (M*, S*).

The characteristic class of the S '-action on M, x G HX(M*, S*), is defined to

be the Poincaré dual to x\

(9.3). The weighted orbit space of the S '-action on M consists of the

oriented orbit space M*, the characteristic class x G HX(M*, S*), the weight-

ed circles and arcs ((3.3)(c), (d)), the simply-weighted circles, and the finite

collection of points in F* — dM*. In this formulation it is not necessary to

assign Euler numbers to the components of F* as in (3.3), for this information

is obviously carried by x-

An isomorphism f: Mx* -» M% of weighted orbit spaces is an orientation-

preserving homeomorphism which preserves weights and satisfies /»(xi) = X2
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where x G Hx(Mf, Sf) is the characteristic class.

Proposition (9.4). Let h: Mx -> M2 be an equivalence of closed oriented

4-dimensional Sx-manifolds. Then h*: Mf -> M* is an isomorphism.

Proof. By (3.6) and (9.1) h* preserves weights; so it suffices to show that

(A"%(Xi) = X2- But this follows because h(X) -» h*(X*) is bundle equivalent

to X^>X*, h*(mf) are meridians on h*(dQf), and h(q¡) are canonical

sections over h*(mf).   □

(9.5). The components of Q* u N* correspond in a 1-1 fashion with the

components of E* u F*. Suppose the component C* of E* U F* has the

component K* oî Q* U N* as regular neighborhood. The Euler number of

the restriction of the principal S '-bundle over dK* (oriented as a boundary

component of X*) will be called the index of C*. For example, a weighted arc

[V; (ax, ßx),..., (ak, ßk); b"] has index b" - b' = ± 1 or 0 (2.7), an isolated

fixed point has index ± 1, and a weighted circle has index 0. Also we have

shown in (5.1) that if S* has m components with indices e¡, / = 1,..., m,

then 3X = (e„ ...,ej£ H0(S*) = 0mZ and 2? e, = 0.

Define 2 to be the subset of elements a G HX(M*, S*) such that if

da = (f „ ..., fm) G H0(S*), then for each isolated fixed point Cf, ?, = ± 1,

and for each weighted arc [b'\ (ax, ßx),..., (ak, ßk); b"] = Cf, $ = b" - b'.

Thus 2 contains the characteristic class x of the action. It is clear that in

general 2 need not be a subgroup.

A legally weighted 3-manifold Y* is an oriented compact connected 3-

manifold along with the data:

(i) A finite collection of weighted arcs and circles in int Y* as in (3.3) and

(9.1) satisfying the criteria of (3.3).

(ii) A finite set of distinguished points in int Y* disjoint from the sets of (i).

(iii) A class x G 2 Q HX(Y*, S*) where S* is the union of dY*, the points

of (ii) and the weighted arcs of (i).

The concept of isomorphism carries over in an obvious way to legally

weighted 3-manifolds.

Theorem (9.6). To each legally weighted 3-manifold Y* there corresponds a

closed oriented 4-manifold with Sx-action and weighted orbit space isomorphic

to Y*.

Proof. Let N* be a regular neighborhood of S* and Q* a regular

neighborhood of the weighted circles of Y*. As in (9.2) there is a /£

H2(Cl(Y* - A"*)) which is Poincaré dual to x- Let tt: Z-»C1(7* - N*) be

the principal S '-bundle with Euler class x'- The bundle projection tt is trivial

over Q*.

Next use (4.4) and (9.1) to construct a 4-manifold Q with S '-action and

orbit space Q* with weights induced from Y*. Remove 7r_'(int Q*) from Z
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and replace it with Q by gluing each component Q¡ of Q to 7r~'(Cl(y* — (N*

U Q*))) with an equivariant homeomorphism </>,: dQ¡ -> Tr~x(dQf) over dQf

which takes the loop q¡ to a loop <>,(#,) ~ 0 in •n~1(Qf). An argument similar

to that used in (9.2) shows that the resulting S '-manifold W over C1(F* —

N*) is well defined up to equivalence.

The required 4-dimensional S '-manifold M is obtained from IF in a

straightforward fashion. For each component of N*, Nf, which is the regular

neighborhood of a weighted arc, use (5.3)(b) to construct the 4-manifold Ay

with 5 '-action and orbit space Nf with weights induced from Y*. By (2.7) the

orbit map dfy ->3A,* is the S '-bundle projection S3 -* S2 or S2 X S1 -» S2,

and by definition of 2 this bundle is equivalent to the restriction over dNf of

p: X->X*. These bundles admit a unique automorphism up to vertical

equivariant isotopy. Thus up to equivalence there is a unique way to

equivariantly attach Nj to W over dNf.

If the component N* of N* is a regular neighborhood of a point x* of

(9.5)(ii) the action extends over Nj* by coning the action on dNk so that the

cone point is fixed by the action and is sent by the orbit map to x*. Finally,

spread out the principal orbit bundle over the collar on 3y* and collapse

orbits over dY* to points.   □

Theorem (9.7). Closed oriented 4-dimensional S1-manifolds are equivalent if

and only if their weighted orbit spaces are isomorphic.

Proof. If Mx and M2 are equivalent, (9.4) shows that Mf and M* are

isomorphic. If Mf and M* are isomorphic, we may identify Mf = M* = Q*

U N* u X*. By (3.6) and (9.1) Q and N are well defined up to equivalence

by the orbit data, and clearly X is specified by x-

Now suppose that we choose sections sx and s2 over dQ* and let tt/.

Zj-*Z* = Q* u X*, j =1,2, be the extension of the bundle X^X*
obtained by equivariantly attaching Q* X Sx with a bundle isomorphism ty

so that dQ* X 0 is attached to 5,(30*). In (9-2) we saw that the resulting

bundles depend only on the class 2* Sj(mf) G Hx(dQ). Let tj, be the Euler

class of Zj. We have the following commutative diagram with exact top row

and left-hand column.

HX(Q*) ——> H2(Z*, Q*) —Í-* H2(Z*)

i*[           5 Xj-

Hx(dQ*)-^ tfiX*, dQ*)

H2(Q*, dQ*) «^

Let 0j E H2(X*, dQ*) be the obstruction to extending the section Sj to a
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global section for the bundle X -» X*. Certainly s¡ extends to a section sj over

Q* for the bundle -try. Z¡^> Z*. If 9j is the obstruction to extending s'j to a

global section for j$ then X(9J) = 0, andy*(0/) = t\y So if d G i/'(3ß*) is the

primary difference of sx and s2 theny'*A-'S2(i/) = tj, — t\2. Thus if r\x = tj2

there is a ¿' G HX(Q*) such that 5,i/' = X~x82d, and S3(¿ - /V) = 0. It

follows that d G i*(Hx(Q*)), so the Kronecker product (d, m*} = 0 for each

meridian m* on dQ*. Hence sx(mf) <— s2(mf) in 3g, for each i.

It is easily seen that there is a section i, of X -» A!"* over 3ß* such that

sx(mf)~q¡ for each /, and so the Euler class x' of irx: ZX^>Z* is the

Poincaré dual to the characteristic class x- If s2 is any other section over 3g*

such that the Euler class of tr2: Z2 -» Z* is x', the above paragraph shows that

also s2(mf) ~ q¡ for each i. Thus again an argument as in (9.2) shows that as

S '-manifolds Q KJ $tX and Q U $ X are equivalent. I.e. there is essentially

one way to sew the pieces together to obtain the characteristic class x-   D

(9.8). Suppose Hx(M*) = 0, then 3: HX(M*, S*)-* H0(S*) is injective.

Since by (9.5) 3x ■ («i».. •, em)> X iS determined by the indices, and the

present context yields an easier proof of (5.6).

10. Fundamental groups. Let S ' act on the closed oriented 4-manifold M;

fix a regular neighborhood R* in M* of E* u F*, and let X* be the closure

of the complement. Triangulate X* and for each component Qf of R* which

is a regular neighborhood of a weighted circle fix a meridian mf and a

complementary curve If in the 1-skeleton of dQf. Thus mf and If generate

TTx(dQf). Let M*_ denote the closure in M* of the complement of the

components oí R* which are regular neighborhoods of simply-weighted

circles.

From a maximal tree in the 1-skeleton of X* we obtain a presentation of

ttx(X*), (af,..., af\rf,..., r*), where loops af arise from edges not lying in

the maximal tree, and there is one relation rf corresponding to each 2-simplex

TJ-

Theorem (10.1). If F=£0 then irx(M) is obtained from irx(M*_) by adding

generators c„, n = 1,..., t, one for each simply-weighted circle of M*, and

relations c%", [c„, If], and mfc%" where the nth simply-weighted circle has weight

(«„, Ä).
Proof. There is a section s to the free action over the 1-skeleton of X*, and

if c is the obstruction cocycle obtained from 5 then c represents the Euler

class of p: X -» X*. Let b} = c(rj), h an oriented orbit, and a¡ = s(af). It then

follows from Van Kampen's Theorem that

irx(X) = (a,., h\rjhbJ, [a¡, h]: i - 1,..., k;j » 1.g).

If there is a component Qf of R* corresponding to a multiply-weighted
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circle kf then wx(dQf) = (qf) X (If) X (h) and trx(Qf) = (kf), where kj is a
section over &,* and lj = s(lf). In n,1(Ar u Qf) one has the relations h = 1,

A,- = £, ^ — 1 (see [3, §3]) and ^ = m, = s(mf). These correspond to the

obvious relations kf = If and /nj* = 1 in ttx(X* u ßj*). Hence ttx(X u ßy) =

^i(^* U Qf). Similar arguments show that if F =£0, ttx(M_) = ttx(M*_).

It remains to consider a component Qf of R* corresponding to the

simply-weighted circle kf. Let c„ be an exceptional orbit in Qn. Then with

notation as before, <rrx(Qn) = (c„) X (A:„) and >nx(dQn) = (qn) X (/„) X (h). In

7r,(Af_ u Qn) there are the relations h = c,^, /„ = kn, cn ßn = q„ = mnh"- for

some integer u„, and [c„, k„] = 1. Thus if F ^ 0, A = 1, and ^(Af _ u ß„) is

obtained from 7r,(M_) by adding the generator c„ and the relations cjf", /«„c^,

and [c„, /„]. Since we have the isomorphism ttx(M_) ?» ^(Mt) when F =^0,

this proves the theorem.   □

Corollary (10.2). If F j= 0 an¿ Af * Aas no simply-weighted circles then

mx(M) = TTx(M*).   U

Corollary (10.3). IfF¥^0 then H\M) « HX(M*).

Proof. It suffices to show that //"1(Af)/Torsion is isomorphic to

i/,(M*)/Torsion. Let mf, n = 1,..., t, be meridians on the boundaries of

regular nieghborhoods of the simply-weighted circles. Note that HX(M*) is

HX(M*_) modulo the subgroup generated by the mf. By (10.1) HX(M) is

HX(M*_) © (0J,_i Z^) modulo the subgroup generated by the elements mf

+ ßncn where cn generates Z^. In HX(M), mf = — ßncn is a torsion element,

so /f,(A/")/Torsion is isomorphic to HX(M*_) modulo the subgroup generated

by the torsion subgroup of HX(M*_) and the mf. By our previous remarks this

is also isomorphic to H\(M*)/Torsion.   □

In case F = 0 our formulation of ttx(M) is not as satisfactory since it

involves the choice of the section s over the 1-skeleton of X*. For

convenience we choose s so that mn = s(mf) = qn for each n = 1,..., r.

Theorem (10.4). If F =0 then

ttx(M) = (a,, cn, h\[at, h], rjh\ [c„, /„], Ch~x, ctmn:

i = 1,..., k;j = 1,..., g; « = 1,..., t).   □

Example (10.5). Let M have weighted orbit space M* = S2 X Sx with

simply-weighted circle, (pt) X Sx, with weight (a, ß). Using notation estab-

lished in §9 we have X* ^ D2 X Sx, ß* = Z)2 X S', 3** = 3ß*, and S* -

0; so 2 = HX(M*) « Z. The principal bundle X-* X* is trivial so we may

choose a section s over X*. The meridian m* on 3ß* bounds a disk Z) in A!"*.

If tx = /(w*) then x'=n£ //2(C1(M* - A*)) = H2(M*) = Z means that

in irx(dQ) we have ? = txh" = h" since tx bounds the disk t(D). So using
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(10.4) we obtain

ttx(M) = (a, c, h\[a, c], caA-', c"A")   if x' = n.

I.e.

<ttx(M) = (a, c\[a, c], cm+P)^ Z 0 Zm+iS.

In fact it is not difficult to see that M s L(an + ß, a) X Sx. Note that

different choices of x (up to sign) give nonhomeomorphic manifolds M.

11. Quadratic forms. Let Af be a closed oriented 4-manifold carrying an

S '-action and suppose:

(i) The fixed point set is nonempty.

(ii) Each simply-weighted circle is Z2-nullhomologous in Af*.

In this section we shall indicate a procedure for computing a matrix repre-

senting the quadratic form determined by the intersection pairing on

/f2(Af)/Torsion.

(11.1). In §8 we showed that when Af is simply connected there are

x(F) — 2 "equivariant" 2-cycles in Af whose intersection matrix C represents

the quadratic form of Af. (x(F) denotes the Euler characteristic of F.) Also

we showed that C is congruent to a matrix N which is a direct sum of

matrices of the form (1), (— 1), and (? ¿).

The argument of §8 involves a neighborhood of E u F which is obtained

by plumbing 2-disk bundles over S2. In the present situation a similar

neighborhood of E u F may be obtained by plumbing 2-disk bundles over

S2 and over the boundary components of Af* which need not be 2-spheres.

Since the arguments of §8 involve only the matrix of the plumbing, the results

carry over. If Af * has m boundary components and « points in F* — 3Af * this

technique yields 2m + n — 2 2-cycles in Af with homology classes in

H2(M)/Toision and intersection matrix C as above.

(11.2). Let ßj and ßf denote the Betti numbers of Af and Af *. Using Smith

Theory, duality, and (10.3) we obtain ß2 = x(F) - 2 + 2ßf. Let b = {(ß2 -

(2m + n- 2)). If 3Af * = 0, i.e., if m = 0, then x(F) = n and b = ßf = ß$.
By duality we may choose 1-cycles ¡u ..., jjb and 2-cycles n„ ..., tj6 of Af*

whose homology classes generate HX(M*)/Torsion and Zf2(Af*)/Torsion and

whose intersection numbers are t\¡ • Çj = 6^- for all i,j.

If 3Af* =£ 0 let g¡ be the genus of the ith component of 3Af*, and let

G » 2f_i g¡. Then x(F) = 2m + n - 2G so b = ßf - G. Examination of
the exact sequence

0-+H3(M*, 3Af*) -^if2(3Af*) '^H2(M*) Ch2(M*, 3Af*)

shows    that   j*(H2(M*))   has    rank    ß*   —  m +  1.    However,

1- ßi+ ß* = X(M*) = ¿x(dM*) - m - G; so /?2* - m + 1 = ßf - G =
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b. Choose 2-cycles 77,,..., t]b of Af* whose corresponding homology classes

generate j*(H2(M*)). As above we can find 1-cycles ?t,..., £¿ with

homology classes in H,(M*)/Torsion such that r¡¡ • § = S0 for all i,j.

In either case each Ç,- may be represented by a loop Zf and each 77,* by an

embedded closed surface Sf in the interior of M*. After shifting into general

position we may assume that the Zf are disjoint from each other and also

from E* u F* and that the surfaces Sf meet the Zf and E* u F* in a finite

number of points in int Af *.

We shall now replace the surfaces Sf by (perhaps singular) surfaces Tf

over which there is a section to the orbit map p: M-> M*. First of all, we

remove intersections with the simply-weighted circles. Since simply-weighted

circles are assumed to be Z2-nullhomologous in Af *, an Sf which intersects

such a circle does so at an even number of points. Take a small regular

neighborhood R* of the given weighted circle and remove intersections with

5** in pairs, replacing a pair of disks in Sf with an annulus on dR*. Since this

procedure leaves the homology class of Sf unchanged, we may suppose that

no Sf meets a simply-weighted circle.

If Sf n (E* u F*) = 0 choose an arc whose interior is disjoint from

(U Zf) u E* u F* and which runs from a point in Sf to a point xf G F*.

Thicken the arc to a 3-disk D* and replace Sf n dD* by C1(3Z>* - Sf) to

obtain Tf, a surface homologous to Sf, such that Tf n (E* u F*) = xf.

If Sf intersects a weighted arc or circle A* use a similar procedure, i.e. if

Sf (~) (A* — F*) ¥= 0 choose an x* in this intersection such that there is an

arc from x* to F* whose interior lies in E* — Sf; thicken the arc to a 3-disk

and interchange boundary components as before. If we proceed carefully,

dealing with one intersection at a time, we obtain a (perhaps singular) surface

Tf homologous to Sf such that Tf n (E* u F*) C F*, and the singular
points of 77 he in F*. In all other cases let Tf = Sf.

There is a section to the orbit map over each Tf ; let T¡ be the image of

such a section. For eachy let Zj = p~x(Zf). The T¡ and Zj, i,j = 1,..., b,

are 2-cycles in M which represent elements of Zf2(M)/Torsion since the

classes of tj, and ¿} lie in /f„(M*)/Torsion. There is exactly one point of

T¡ n Zj over each point of Tf n Zf, and according to our orientation

conventions (3.2) the intersection number in M is the same as the intersection

number in Af *. Hence T¡- Zj = S». Furthermore, Zj n Zk = 0 if j =£ k, so

the intersection matrix of the 2-cycles Zj and T¡, i, j = I,..., b, is the

26 X 2b matrix (* ¿) where I is the b X b identity matrix and X is the

intersection matrix of the T¡.

Theorem (11.3). Let Sx act with nonempty fixed point set on the closed

oriented 4-manifold M, and suppose that each simply-weighted circle in Af * is

Z2-nullhomologous. Then the quadratic form of M is represented by the matrix
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where E is the diagonal b X b matrix with Eu = 0 or 1 according to the parity

of T¡ • T¡ (and N is the matrix described in (11.1)).

Proof. The matrix C of (8.5) is the intersection matrix of ß2 — 26 2-cycles

whose image in M * is a union of arcs and boundary components; so we may

as well have chosen the Zf to avoid these. The intersection matrix of these

ß2 - 26 2-cycles along with the T¡ and Z, thus has the form

Q' =
C Y 0
Y X I
0/0

Since N is congruent to C over Z, we may replace C by N in Q' (also

changing Y).

The operation of adding an integral constant times row i to row y and then

that constant times column / to column y preserves the congruence class over

Z of an integral matrix. Such operations on the first ß2 — b rows and columns

of ß' by the last 6 rows and columns yield a congruent matrix ß in the

required form. Since the determinant of ß is — det N = ± 1, Zf2(Af)/Torsion

is indeed generated by the classes of the above ß2 2-cycles, and ß represents

the quadratic form of M.   □

Corollary (11.4). Assume the hypothesis o/(11.3). Then the signature of M

is the signature of the matrix N (which is easily computed from the weighted

orbit space M*).   fj

Example (11.5). Let N and S denote the hemispheres of S2 with poles n

and s respectively. Suppose Af is a closed oriented 4-manifold carrying an

S'-action with orbit space Af* = S2 X Sx with E* U F* = n X Sx =

{(3, 2), (2, 1)} a weighted circle. If p: M-*M* is the orbit map then p~X(S

X SX) = (S X SX)X Sx. Now 9 is a section over 3A X 1, and if the

characteristic class of the action x = b G Z = HX(M*) (S* = 0), then 6 is

the obstruction to extending q to a section over 5x1. Hence q is

homologous to - m + bh onp ~ x(dN) = p~ x(dS), where m = dS X 1 X 1.

Suppose n X 1 G F* and let T* - S2 X 1 and Z* = s X S\ Then ß2 =

X(F) — 2 + 2/?f = 2, so as above T and Z generate H2(M)/Torsion. Let B

be a small 4-disk slice about the point p~x(ri X 1). View dB as S3 as the

union of solid tori V and V" with S '-actions with Seifert invariants (2, 1)

and (3, 1) and core orbits O' and O". On dV =dV" we have q'-q" -
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A" and A' ~ A". We may assume that C = T n dB lies on dV; then in dV

we have C-q' + 6A'. Let K' C F' be a smaller invariant solid torus with

core orbit O' and let C ~ 9' + 6A' on 3F'. Then F- T is the linking number

of C and C in dB. In F' we have C~(26 + 1)0' and in F" we have

C ~ (36 + 2)0" (cf. [6, p. 12]). It follows that T-T=(2b+ 1)(36 + 2) = 6
(mod 2). The matrix of the quadratic form of Af is thus (¡ ¿) if 6 is even and

(¡ IHl -°.)
if 6 is odd. Hence topologically, at least two distinct manifolds M are

involved in this example. Of course by (10.2) each has ttx(M) « Z.

12. Weak isomorphisms. In this section a technique due to Church and

Lamotke [2] is employed to show that weighted orbit spaces are often

isomorphic under conditions seemingly less stringent than those of (9.3). We

say that legally weighted 3-manifolds Af * and Af * are weakly isomorphic if

there is a homeomorphism of Aff onto Af* preserving orientation, indices

(9.5), and the orbit data of (9.5)(i), and (ii). Examples (10.5) and (11.5)

demonstrate that weakly isomorphic orbit spaces need not be isomorphic.

Theorem (12.1). Let Sx act on the closed oriented 4-manifolds Mx and M2,

and suppose that there is a component of E* u F* in Mf with nonzero index.

Then Mf and M% are weakly isomorphic if and only if they are isomorphic (so

Mx and M2 are equivalent).

Proof. According to (9.5) the sum of the indices in Af* is 0 so we can find

a collection of disjoint oriented polyhedral embedded arcs {l¡) with endpoints

in F* such that a component of E* U F* with index e contains e terminal

points if e > 0, — e initial points if e < 0, and meets U l¡ in no other points. If

there is a nonzero index in int Mf we may number the l¡ so that lx has its

initial point x0 or terminal point xx lying on a weighted arc or point. Suppose

for convenience that it is x0.

Let A: Af* -» Af* be a weak isomorphism which we may assume to be PL.

The sums 2// and 2A(^) define relative 1-cycles with homology classes

£ E Hx(Mf, Sf) and A„(£) G HX(M^, 52*), and by (9.5) 3£ = 3Xl and 3A,(£)
= 8X2 where x* is the characteristic class of the action on Mk. Thus there are

Ife G Hx(Mf) such that under jk.: Hx(Mf)->Hx(Mf, Sf), jx,(^x) - x, - S
andy^O/^ = Xz ~ n*($)- Represent ypx and ip2 by loops l0 and k0 based at x0

and A(x0). The product paths l0-lx and k0-h(lx) are homotopic keeping

endpoints fixed to embedded polyhedral arcs /( and k'x which are disjoint

from U ¡>2 l¡ and U i>2 h(l¡). For / > 1 let l[ = l¡, and choose disjoint regular

neighborhoods B¡ of // meeting dMf regularly. We may suppose that each B¡

meets only the components of E* u F* met by // and that B¡ contains each
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weighted arc that it meets. Let D¡ = h (B,) for i > 2 and let Dx be an

analogous regular neighborhood of k\. Then 2// and k'x + 2I>2 b(lj) are

relative 1-cycles with homology classes ux G HX(\J B¡, U B¡ n Sf) and w2 G

HX(\JD¡, U D, n Sf). If /,: (UB¡, U 5, n Sf)->(Aff, Sf) is the inclusion
then /,.(«,) =y',.(»/'i) + íi = Xi> and similarly, ^.(co^) = x2-

Taking advantage of the fact that h(x0) lies on a weighted arc or point, we

can find an ambient isotopy of Mf which fixes U ¡>2 D¡ and whose finishing

homeomorphism / preserves orbit data, fixes h(xQ) and h(xx), and takes the

pair (h(Bx), h(Bx) n S2*) to (Dx, Dx n S*). Now let g =/° A and g' = g\
U 5,-. Since g'*(w,) is represented by g'(/,') + 2(>2 h(l¡), we have dg+(cox)

= 3co2. But 3 on HX(\J D¡, U A n Sf) is injective so g'*(ux) = w2. Hence

g*(Xi) = S*i'i.("i) = i2'g'*(^i) = h'fa) = X2-

Thus g is an isomorphism.

The converse follows from (9.7).   □

13. Addendum to §8. Recent work of Peter Sie Pao has pointed the way

towards sharpening some of the results of §8. Pao has shown [10] that if Af4 is

a homotopy 4-sphere with S'-action and orbit space Af* s¡ S3 then M = S4.

We shall use his ingenious "replacement trick" to prove that modulo the

3-dimensional Poincaré conjecture, a simply connected 4-manifold carrying a

locally smooth S'-action must be a connected sum of copies of S4, CP2,

— CP2, and S2 X S2. This gives rise to many interesting examples of

nonstandard S'-actions. The result of Pao's replacement trick is described in

the next proposition.

Proposition (13.1) (Pao [10]). Let M be a 4-manifold with an Sx-action

whose weighted orbit space contains a weighted circle C* with exactly two fixed

points. Then M admits a different S x-action whose weighted orbit space is either

M* with C* replaced by a pair of fixed points or Af*-int D3 with C* removed.

D

Theorem (13.2). Let S' act locally smoothly on the simply connected 4-

manifold M, and suppose that M* is not a counterexample to the 3-dimensional

Poincaré conjecture. Then M is a connected sum of copies of S4, CP2, — CP2,

and S2 X S2.

Proof. It follows from the equivariant classification theorem (6.2) that Af

is the equivariant connected sum Mx # Nx # • • • # Nk of simply connect-

ed 4-manifolds where each Nf s S3 and has one unknotted multiply-weight-

ed circle as E* u F*, and Af f = Af * with the same E* u F* (as sets) except

that each weighted circle in Af f contains exactly 2 fixed points. For example,

if M* contains the weighted circle
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(3,1)

(5,2)

then Af is the equivariant connected sum of Nx whose weighted orbit space is

S3 with

(8,3)

(3,1)

(5,2)

and M' where M'* = M* except that the previous weighted circle has been

replaced by

(3,1)

(5,2)

The S'-actions on the manifolds N¡ all extend to actions of T2 (7.1). Hence

by [8] these manifolds are connected sums of copies of S4, CP2,

— CP2, and S2 X S2. The proof is completed by showing that Mx also

admits a Fraction. Since each weighted circle in Aff has exactly two fixed

points, (13.1) implies that Mx admits another S'-action whose weighted orbit

space is M * or Af * with some disks removed and in which E* U F* contains

no weighted circles. So by (7.1) Af, admits a Fraction.   □
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