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TWO DIMENSIONAL e-ISOMETRIES
BY

D. G. BOURGIN

Abstract. An affirmative answer to the antipodal e-isometry conjecture is

established for 2-dimensional Banach spaces.

1. The e-isometry problem is concerned with a Banach space E and a

surjective transformation A, /1(0) = 0, for which

\\\Ax - Ay\\-\\x - y\\\< e. (1.1)

The question is whether there is a constant k depending only on E (indepen-

dent of A and e) such that for each A there is a linear isometry U satisfying

\\Ax- Ux\\< ke. (1.11)

The question has been answered in the affirmative for Lp, 1 < p < co, and

C(0, 1) [l]-[5]- It seems likely that an affirmative answer attaches to all finite

dimensional Banach spaces and not only to finite dimensional sections,

though in [6] this is established, among other things, solely for /,", the Banach

space of «-sequences with an /, norm. Our main purpose is to close the gap

for the 2-dimensional case. Other aspects of the general problem for n >2 are

considered also.

We list nomenclature meriting special attention. We shall write E2 for a

2-dimensional Banach space with unit sphere S = S(0). Assume an angle

parameter, s, locates points on S with 0 < j < 2m. Points on S are denoted

either by their parameter value or by x, y or p, q etc. The set of extreme

points of S is denoted by Ex. A line of support l(Po) at p0 £ S is a straight line

passing through p0 (and possibly through other points of S) such that S lies

entirely in one of the half planes into which /(Po) divides E2. If a line of

support intersects S in a line segment L, then L is an edge and the end points

of L are extreme points referred to as edge points (nonexposed points in the

standard terminology). Let t(s) be the angle measured from a support line at

xis) £ S to a fixed line. The support function t defined by {t(j)|0 < s <

2ir} is an upper semicontinuous possibly multiple valued function. A corner

point is a point for which there are several lines of support. A short arc is a
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connected piece of S which does not include two antipodal points. We use P2

when S contains an edge bounded by corner points. Write N for the positive

integers. Let F2 invariably denote a section of l{ by a 2-dimensional plane.

Let ü0, o„ — ü0, — u, be extreme points of S. We often write v2 = — %

u3 = - 17, and call {ü,|0 < 1 < 3} base points. We shall be particularly

interested in the case that the base points are edge points with t70, t?, the end

points of L (and -v0, — t), end points of — L). Denote by 5(w, /) or

w + 5(0, t) the sphere of radius t about w. For arbitrary points p, q on S

write

Write

d¡ÍP, q) =\r¡ - s\,       dip,q)=   sup   d,(p,q).
0</<3

In Example 3, this notation is extended to the case of 2« base points in /".

2. Preliminary results. A crucial test of the universal validity of a result like

(1.11) would be /,. It is therefore of particular interest that extremely general

types of unit spheres, S, are obtained as sections of /, by skewed 2-hyper-

planes. These comprise cases not included in the class S of [6]. In our first

example a simple criterion is used to locate discrete extreme points and so

produce an S with a finite set for the limit points of the extreme points. The

second example is convincing evidence that no obvious qualitative restriction

on the extreme points of S will discriminate against the 2-sections of lx.

Example 1. The unit sphere of F2 iwith the /, induced norm) with a discrete

nonfinite set of extreme points. Let a¡ and b¡, i > 2, be nonnegative with

a¡ > b¡, i > 2. Suppose a0 = 0, a, = 1 - 2fa¡ > 0, b0 = 1 - "2fb, > 0, 6, =
0. Evidently the points x = {a¡}, y = {b¡} are on S £ P2. Moreover the

segment [x,y] is on S. To see that x mdy are extreme points, note that for

f >0

\-tx + il + t)y\= \+2t- /fa,. - (1 + 02*,-
2 2

+ 2|-tai + 0 + 0*,.|-
2

Evidently

2(i + t)b( < /2>,. + 2\-ta, + (1 + t)b\.
Hence

|-/x + (l + t)y\> 1 +2/fli > 1.

This shows v is an extreme point. Similarly x is an extreme point.

Suppose in fact that
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a, = r3,     b¡ - i'6,     i > 2.

To locate other extreme points, let

zm-(x-m3y)ßx-miyl-{cl(m)}

where

Cjim) < 0,      j < m,

cj(j) = 0,

Cjim) > 0,      j > m.

Since Cjim), Cjim + 1) > 0, the segment [zm, zm+i] is on S. By the type of

argument used above for x and v, zm and zm+I are extreme points of S. By

symmetry — zm is an extreme point also and as m -» co, zm -*• — y.

Example 2. A 2-dimensional section of /, whose unit sphere consists entirely

of extreme points. The construction involves extraction of four disjunct

nonfinite sequences of the integers. For convenience we take these as follows:

N0 denotes the odd positive integers, Ne the even integers, A^1 the odd

primes, Nel the multiples of 4 and N2 = N0 - N¿, N2 - Ne - Nel. We

denote by zx and z2 certain sequences [a¡\i = 0, 1,... } and [b¡\i = 0,

1,... } which will be defined in successive stages below, over the ranges, N¿,

N2, N1, N2. Pick a positive sequence a¡, i £ A^2, so that 2a,- < \. Pick a

sequence of negative numbers b¡, i £ N1, so that 2|¿>,| < \. Choose positive

numbers a,, i £ A^2, so that Sa,- < \ and positive numbers b¡, i £ N¿, so that

26,- < i-

Use Q for the rationals between 0 and 1. Let H denote the usual order

correspondence of the rationals, that is to say

Hn = r„E Q.

Consider the order preserving epimorphisms

A^o1     ^    N,    Nel     ^    N,

N2    ^    #,    N2     B-X    N. (2.1)

Define

D1 - HA\    El = HB\

D2 - HA2,    E2 = HB2. (2.2)

Let

w3 = Ä:(s)((l - i)z, + sz2),    0 < s < I,

= *f»(l - 5)(z, + ffz2),    s<l, (2.3)

where
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kis)=\\il-s)zl + sz2fl.

If ws were not an extreme point, then for some A, the segment [ws, w>i+A]

would be on the unit sphere. Write

",-{*,},       wi+A~{v,.}. C2-4)

A point on the segment joining them would have norm 1 iff

i = 2 |ft» + (i - t)y\= /2N+ (i - 02M.    o < í < i,
or equivalently

xp, > 0,       i = 0, 1. (2.5)

We fill out the definition of zx and z2 by assigning values to a, for

/ £ N - iN2 u A7/) and to b¡ for i £ N - (W1 u AT,1). Specifically for i £

N¿ write r(/) = Z> '/ (note r(/) is not the ith rational in the ordering #).

Define a, as rii)\b¡\.
If i £ A7,,2 write p(/) = Z)2/ and define b¡ as -pii)a¡.

Define

<-(/) = £'(/),     /eAtf,

/(/) = £2(0,       /£ATe2.

Then define

Finally take

a,. = e(/)6,.,       f £ AT,1,

6,=/(/)a,,      /£Are2.

a0=l-2ß/.       *o"1_2|M-
/^o iVO

We now show that with x¡ = a, + ró,-,j>,- = a, + (a + 5)6„ (2.5) cannot be

satisfied for any 5. Suppose first a is irrational and inferior to 1. Then a

determines a Dedekind cut on Q. Since {r(t)\i £ A^1} = Q,

a = inf /•(/)   for {/|r(0 > <*}>

= inf a,./|è,|   for{/k/|¿,.|>a}. (2.6)

Thus (2.5) in our present notation, would require for 5 > 0

(a,- - a|ft,|)(a,- - a\bt\ - 8\b,\) > 0,       i £ N0\ (2.7)

Since a is irrational

a,.-a|è,|^0,   feift

and from (2.6) for assigned positive 5, and some i £ A^1

a < a,/\b,\ <o + ô (2.8)
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in contradiction to (2.7). If A and, hence 5, is negative, then the contradiction

o - 8 < a,/\bt\< o,       iENj, (2.9)

arises from

a = sup /•(/)   for {i\r(i) < a] n JV,1

= sup VN   for {WH < °) n Atf.

If now o is irrational and greater than 1, the contradictions of the type of

(2.8) and (2.9) arise from restriction of / to N2

a = inf{p(/r1|p(0<a-1}

= inf{|Z7|.|/a,[|¿7y|/aI. > a}"1. (2.10)

Therefore the extreme points on the part of S between z, and z2 are dense.

Similar reasoning applies, using A^1 and AT,2, to the portion of S between z,

and — z2. By symmetry we conclude the extreme points are dense on S.

Though density of extreme points on S", n > 1, does not guarantee every

point of S" is an extreme point, this latter conclusion does follow for n = 1

by an easy argument.

3. Geometry of the unît sphere. In the case of /", the symmetric distribution

of the 2« extreme points results in elegant algorithms. For instance if

t70,..., vn, «„+,,..., ü2n-i where vi+n » - «,_„ / > 1, are the base points

of /," and the definitions of d¡ip, q) and dip, q) are extended in the obvious

way to the case of 2n base points instead of 4, then d¡ip, q) < M uniformly

in / implies \\p — q\\ < cM, c = n [6]. Our next example shows that even for

n = 2 no such universal bound c exists for E„.

Example 3. An S for which \\p — q\\ > ik — l)dip, q), where k is arbi-
trarily assigned. We define a polygonal unit sphere S about (1,0). To help in

visualization we use e for edge, r for radius or ray from the origin to S, and /

for line. 5 contains the edge {(0,y)\ \y\ < a) and the edge points p = (0, a)

and q = (0, 0) and also the edge points ü0 = (1 — X, ka), vx = (1 + X, ka).

Let pa be the slope of the edge e(l) starting at (0, a). (The vector o(3) from

-t), to p has slope -(k + 1)/(1 -X).) Let r(2) be the parallel radius

(through the origin (1,0)) and let /(5) be the line of the same slope, pa,

through (0, 0). The intersection of e(7) and r(2), that is to say the end point

of r(2), is at

x, y = {k + \/ (p(l -X) + k+l),

pa(ik + A)/ (p(l - X) + k + 1)) + a).        (3.1)

The intersection coordinates of /(5) and t>(3) are

X, Y = ((1 - X)(l + k\)/ ik + l)'k + X), ik - 1)(1 - X)a/ik + X)).
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The vector i>(7) along o (3) to X, Y has the same length as the vector u(4)

from - vx to 0,0. The radius r(2) from 1,0 to x, y has length 1 of course, and

is used as a gauge for the lengths of «(3), o (7) and u(4). Thus

¡IK3)||-H4)|||=
K3)HK7)||

IK2)|
Since r(2), r(3) and t>(7) are parallel the ratio above is the same as that of the

x or the y coordinates, i.e. d3ip, q) = iX - 0)/(x — 1).

Choose

p < ik2 - 1)/ (1 + kX).

This assures .y < ka. The value of d3ip, q) is then

d3ÍP, q) = 0 + kX)/kik + X).

Since the radius to (1, ka) from (1,0) has unit length,

II* - «8-*-f.

Thus for small X

\\p-q\\>ik-\)d3ip,q).

Assume S is symmetric with respect to v = 0. Evidently o*2(/7, q) < o*3(p, q)

and d0ip, q) and a*,(p, a) are of the order of d3ip, q) whence

||/>-a||>(A:-l)a-(/>,a).

Although no universal c exists according to Example 3, it is essential to our

developments that for each E2 there is an associated bound c. The validity of

the assertion depends on the convexity of S. The germane consequence of this

convexity requirement may be formulated succinctly as

Co: Let t'(í) be an arbitrary angle in the set {ris)} for fixed s. That is to

say, t dominates the single valued function t' = {t'(j)|0 < s < 27r}. Then t'

is monotonie in i.

4. Metric relations. We shall make use of the following simple lemma:

Lemma 4.1. If 5(o, t) passes through z £ S, z =£ cv, the lines of support at z

one to each l-sphere, coincide iff S iv, t) n S (0) includes an edge containing z.

The hypothesis implies the angle of support is the same at two points on S,

one of which is z, since z, 0, v are not collinear. Moreover these points are

joined by a short arc. By monotoneity (cf. Co) this angle remains constant on

this short arc. That is to say this short arc is a line segment.

The relevant theorem is

Theorem 4.2. For each E2 and choice of base points, there is a positive bound
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M such that for every positive 8 and dip, q) < 8 where p and q are on S,

||p - a|| < MS.

Suppose the assertion false. Then for each 8n in a sequence converging

monotonically to 0, there is a positive Mn, monotonically increasing to co

with n, for a pair/7,,, qn on S with

dip„,qn)<8„,       \\p„-qn\\>Mn8n.

No generality is lost by the assumption that pn and q„ are on the short arc

from -1), to v0. Suppose first that Mn8„ > 8 > 0 for all n. By compactness of

S, p and q exist with

\\p-q\\>8,        dip,q) = 0.
It is easy to see [p, q] must he on S. Take as base unit vector, /, the line

from 0 through the midpoint of [p, q] and let the other base vector j be

parallel to [p, q]. Then with X! < 1,

v0 = X0/ + k0aj,    p = - i + aj,

t?, = Xxi + kxaj,    q = —i — aj.

That [p, q] is on S(v3, ||ü3 — p\\) implies a parallel line segment is on S,

but since p, q is on S, also, this parallel line segment is an extension E of

[p, q\. Hence the extension of p + t?, (=/7 — v3) meets £ in a point whose

ordinate is

Kxa = (*, + l)a/ (1 -X,).

Similarly the extension of v0 — q meets E in a point with ordinate

-tf0a=-(l + A:0)a/(l+X0).

Hence the line segment [(-1, - K0a), (-1, Kxa)] is part of the line segment

E and is on S.

Define the two unit vectors u, v

u = —i + Kxaj,       v = — / — K0aj.

The line through the upper end point of E and t70 and that through the

lower end point of E and V2 must intersect according to Co to the left of E,

that is to say the vector to the intersection point must have a negative i

component (and a fortiori, this must be true when other points on E are

used). Specifically then the vector to the intersection of the lines of the

vectors

u + tiv0-u),      [r|< oo,

w + j(-t>3 - w),       \s\< co,

must have a negative / component. This component is A^/(2 - a) where

N = ikx + k0) + Xo(l + 2kx) - X,(l+ 2k0)
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and a = XqA:, — Xxk0 so

M        X0 — X, + 2a + kQ + kx
(4.21)

2 — a 2 — a

Assume X, > Xq > 0. The requirement that (4.21) be negative can then be

met only if

(a) a > 2,

(b) 2a + k0+ kx>Xx-Xo (4.22)

or

or

(a) X, - Xq > 2a + k0 + kx,

(b) 2 > a > 0 (4.23)

a < 0. (4-24)

Since X, - Xq < 2, (4.22a) implies (4.22b). They coordinate, labelled /, of the

intersection of the line through v0 and vx and the line through E is

i~a + k0- kx)a
J = ^-      ° . (4.25)

A, - A0

According to (4.22), kx > 2 + X,fc0/Xo (where X0 > 0) whence J < 0 and so

J < Kxa. This would flout the required convexity of S.

For (4.23) the convexity requirement on S in view of (4.25) is

J > Kxa,       X, - X0 + kx - k0 < Xxa. (4-26)

The numerator N of (4.21) is negative and so (4.26) implies

22/c, + 2a < Xxa (4.27)

a contradiction since X, < 1.

For (4.24) the intersection of the line through -vx, —v0 and that through

p, q hasy component J'

J' = a + ik0- kx)/ (X, - Xo). (4-28)

The convexity condition is J' < — K0a or

k0 - kx + X, - X0 < -X0a. (4.29)

Combine this with (4.23a) to get -(X„ + 2)a > 2k0 in contradiction with

(4.23b).
We now consider the case that Xq < 0 < X! so a < 0, cf. (4.24). Then (4.26)

and (4.29) yield

X, — X0 + Xqö < kx — k0 < X,a — (X, — Xq).

Since a < 0, this implies the contradiction

0 < (X, - Xq)(2 - a) < 0.
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Suppose now that/7 = q. Evidently a line of support LaXp has the slope of

a line of support at (-1, — K¿ = -(u0 + t)/\\v0 + i\\) and at (-1, K[ = (ü,

— 0/ll°i "" 'ID- By convexity this implies that S includes the part of L
between K[ and —K¿ at least. The type of argument used for/, q; Kxa, KqO

carries over with/ = q, K¿, K{ since only the relative values of K0, Kx, A:0, kx,

Xq and X, were used to get our contradictions.

5. Restrictions and limits. It is convenient to modify A somewhat. Observe

first that A is within 2e of a continuous 4e transformation and hence we may

as well assume that A is continuous and A (0) = 0. Next in order to minimize

computational complexities we require that A be antisymmetric within e, that

is to say

lAx + A(-x)\ <2e

but then we may as well assume exact antisymmetry since with the antisym-

metric transformation

Bx = iAx-Ai-x))/2,

2\\Bx - Ax\\ = \\Ax + Ai-x)\\ < 2e.

Define

7* =||x|| \\BxflBx.

We summarize the relevant properties in a lemma, but in applications we

replace both e' and e" by the notation e.

Lemma 5.1. (a) \\Tx - Bx\\ < e'.

(b)||7*n = ||*||, ro = o.
(c)|||r*-7>||-||x-v|||<£".

(d) T is an epimorphism.

For (a) note

||||*|| \\Bx\\--Bx - 2fc|| = |||*||-||S*||| <|W-|Mx||| + |M* - Bx\\<3e.

Relation (c) is a consequence of

\\Tx - Ty\\<\\Tx - Bx\\ + \\Ty - By\\ + \\Bx - By\\ <\\x - v|| + lle,

lie = £".

Finally (d) is a consequence of the Borsuk-Ulam theorem [6].

Subsequences of R, denoted by R' = {/•'}, R", Rx, etc., are understood to

admit no finite limit point. The associated set of cluster points of [Tr'x/r'\r'

ER'} is denoted by C\x). We may view C as a possibly multivalued

transformation on rS to rS represented by C: x -» Cx.

For convenience we collect some useful known results in

Lemma 5.2. (a) C takes Ex into Ex.
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(b) C is closed and connected.

(c) Extended Mazur-Ulam theorem: Ifxx andx2 are distinct points, and C is

single valued on xx and x2, then

x\ + x2       1 ,
C      2      - ¿ (C'x, + C'x2).

These assertions are established in [6].

Lemma 5.3. If C' is single valued it is continuous.

Let x„ -> x and let^ = C'x,y„ = C'xn. For any r" £ R" C Ä'

7>"x ||
J>-Ä <

17V" je
V-Sn             -ii

Tr"x„      Trii v H

For arbitrary positive 5, choose n so that x„ is within 5/4 of * in norm. Next

choose r" so that the first and the second norms on the right are inferior to

5/4 for this n and so that e/r" is less than 5/4. The left-hand side of (5.31) is

therefore dominated by 5 which establishes the assertion of the lemma.

Lemma 5.4. If C'xx is a singleton for some R' then C'x is a singleton for all

x £ S and hence U'x = C'(*) defines a linear isometry.

Assume then that v, = C'(xx) and that C'(*0) IS not a singleton with x0

chosen as an extreme point. Assume (A): both y0 and y'0 are in C(*o) and

precede yx (or both follow yx) in clockwise order on S. (Note that if C'(x)

contains more than -two points, then (A) is certainly satisfied.) Suppose

x — Xx0 + pxx, n > 0, X > 0, is an arbitrary point on the short arc Xq, xx. It

follows trivially from (5.2c) that Xv0 + pyx = C'(Xx0 + jtix,) £ S. Clearly

[y0,y'0] is parallel to [Xy0 + ¡iyx, Xy'0 + nyx] where v0, y'Q are in Ex S. This is

possible only if the arc from>>0 to y'0 contains (or is contained in) the arc from

XXo + ay ito Xvó + MVi> an(i Üús possibihty is ruled out by (A). That yQ = yx is

ruled out since then for R" c R', C"x0 = yx in contradiction with \\x0 — xx\\

= \\C"x0-C"xx\\.
Suppose (B) : y0 and y'0 box v, in between, with ||v, -^oH = ||v, - y0\\.

Let the subsequence R" give C"(*0) = yx and let R'" yield C'"(*o) = )>o- Let

R' = Ä" u R'". The generic point 3c on the short arc [-xx, xQ] has the

representation x = Xx0 + ft(—xx), X, /x > 0. Hence

C'"(3c") = XC'"(*o) + mC'"(-*i)

= Xy¿ + ft(-^i);

Accordingly as x traverses the arc -xx to xx clockwise, C'"(*) moves from

- v, to yx counterclockwise. Similarly C"(*) moves from -yx to v, clock-

wise.
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In view of (5.2b) and (5.3) and since the connectivity of R guarantees the

connectivity of the graph of Trx/r for fixed x there is a sequence Rx for

which LRtTrxz/rx = v and a sequence R2 for which LR Tr2zjr2 ■» — y. Then

h -r2\ + e> \\Trxz - Tr2z\\ > rx + r2-8,      rx, r2 > M.

Such an inequality is impossible. The Mazur-Ulam theorem implies the

second conclusion in the lemma. (Of course this does not rule out the

possibility that C(x) is not a singleton. We shall show, however, that in the

cases we are concerned with, this is indeed the fact.)

Lemma 5.5. If x0 is a corner point ior an edge point) so is C(*o) and C(xo) is

a singleton.

The previous lemma asserts that for suitable R', C — U' is a linear

isometry. This implies that distinct support lines (or support lines on S)

through x0 go into distinct support lines (or support lines on S) through

y0 = U'ÍXq). The first assertion of the lemma is then immediate. Suppose x0 is

a corner point. Then C(x0) is a connected set consisting exclusively of corner

points. The set of corner and edge points is patently denumerable. Since

C(x0) is connected, C(xq) is a singleton.

Corollary 5.6. If S contains a corner point or an edge point C(x) is a

singleton for all x and i/(x) = LRTrx/r defines a linear isometry.

The result is a direct consequence of the preceding two lemmas and the

Mazur-Ulam theorem [7].

A consequence is, for instance, that if S is a lens i.e. has two antipodal

corner points x0, —x0 and all other extreme points are exposed points with

unique tangents, then Cx0 is either x0 or — x0 and the only isometries possible

are the identity or the obvious involutions. (In connection with (5.5) and (5.6)

the plausible extension to curvature preservation at a point under U is

without interest, since curvature is geometrically defined in terms of osculat-

ing spheres, so the curvature at every point of S is 1.)

The corollary is a substantial advance on the results available in [6] where

the requirement S is imposed that all the components in Ex be singletons.

6. Validation for P2. To simplify the statement of the central results in this

section we observe that where (5.6) obtains, we can define 7" « U~ lT so that

the associated U' is now the identity isometry. We assume this has been done

but drop the prime on T in Theorem 6.1.

Theorem 6.1. In P2 let v0 and vx be base corner points for the edge L on S.

Then for some m and all large r.

\\Trv, - rv¡\\ < me,      t - 0,1,2,3.
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Since U' is the identity isometry, for r > r the Une of the vector T'rvjr +

T'rvx/r cuts both L and -L. Write T for r~xT'r. All segments with

endpoints on L and — L respectively are of length 2. Let a be the length of L.

Denote the line segment joining Tvx and T — t?0 by M.

Several cases need consideration:

(6.1a) Tv0 lies to the left of v0 and Tvx is on L.

(6.1b) 7t70 lies to the left of v0 and 7t7j lies to the right of L.

(6.1c) Tv0 and Tvx lie on L.

Denote ||ü,- - Tv¡\\ by A,-, i = 0, 1. Then for (6.1a)

a - e <\\Tvx - Tv0\\ < a + Aq - A,

or

e > A, - Aq.

Let XAq be the length of the projection parallel to L of the short arc from

Tv0 to v0, on M. Then it is easily seen that

2-XAq > 2- e

or

e/X > Ao,       e(l + 1/X) > A,.

The lines of support at v0 and the diagonal through [v0, — v0] intersect at

angles greater than some positive number r0. This is then certainly still true

when [t)0, — ü0] is replaced by M. Hence there is positive lower bound X0 for

X as one approaches — v0 in the clockwise direction.

For (6.1b)

2-/iA,-XA0>2-e

where /iA, is the length of the projection of the short arc from vx to Tvx on M.

Then

e/n > A„       e/X > A0.

Again the fact that vx is a corner point implies jti > /¿0 > 0.

In the case of (6.1c)

a — e<a — Aq — A,

whence

e > Aq,       e > A,.

In all cases, then,

|| ro, - 0,11 < we (6.11)

where m = sup((l + V')> MtT1» 0-

If v¡ and 7u, are replaced by rv¡ and Trv¡ then a, Aq, A, are replaced by ra,

Ao(r), A,(r) but Xq, p.0 and e are unaffected. Hence (6.11) is independent of r.

Theorem 6.2. For P2 restricted as in (6.1), \\Tx - Ux\\ < Kefor all x.
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We assume as above that T is really U~XT so that U is the identity

isometry. For x inside the unit disk compactness assures a bound of the form

asserted. Denote it by ke.

For ||*|| > 1 the asserted bound is a consequence of (4.2) and (5.6).

Specifically

\\\Tx - TtVjW- \\Tx - rv,\]\ <\\Trvj - rv][\,     j = 0, 1, 2, 3.

By (5.1c)

\\\Tx - TrvjW-Wx - rVj\\\< e.

Hence

III7* - "*Hl* - "ill < £ +WTrvj - rvjl
In view of (6.1) the right-hand side is inferior to (m + l)e. The hypothesis of

(4.2) is satisfied with the assignment 5 = (m + l)e. The conclusion of (4.2) is

then

||7*jc-je||< Mim+ l)e.

Let K = max(A:, M(m + 1)).

7. Extensions. Besides expecting (1.11) to be valid for finite dimensional

Banach spaces, one may conjecture its validity for finite field e isometries

(that is to say for

/= I - F:E-+E

where F takes E into a finite dimensional subspace) since EN associates a

complementary space EN, i.e. E = EN © EN. Even the case of the general E2

is open. We present some results in the spirit of the earlier developments of

this paper.

Theorem 7.1. Let f — I — F, where I is the identity transformation and F is

continuous and closed on E to EN, N < co, be an e isometry with .F(O) = 0.

Then

(a) C(x) = LRFrx/r is compact and connected.

(b)/i'j surjective.

(c)/ = / — C is upper semicontinuous.

ForN = 2

id) fis surjective.

(e)deg/= deg/= 1.

To establish (7.1a) suppose y„ -> v, where v„ £ Cx. Let SN{ 0 be a sequence

of positive constants. For 5^, select y„ and /•(/?) depending on A'' so that

7>(n)x
\\yn-y\\<8N/2   and yn-

rin) < 8N/2.
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Tr{n)x II
y —7?~x- II < °n>r(n)

Define the sequence R' = {r(n)}. Then

*-r' ri     y-

That C(x) is connected is a reflection of the preservation of connectedness by

a map (of the connected set R).

To establish (7.1b), suppose

/(*) = * - Fx = v

has no solution, x, for some v. Write

x<*xN®xN,     y=yN®yN.

Then

xN=yN,      xN - F(xN © xN) = yN

has no solution xN £ EN, that is to say the map of EN to EN defined by

fxsixN) = xN-F(xN@xN)

does not cover EN. According to [6] this implies the existence for arbitrary

M > 0 of a pair x'N, x'ú with

A»tor)--A*tafr).       |K-*;||>M
in contradiction to

IK - *£!-■ <l|/(** © **) -/(** © *")i
-|A»«r)-A»W)|-a

We establish (7.1c) by showing C is upper semicontinuous. Thus let x„ -* x

zndy„ -> v, v„ £ Cx„. To see that v £ Cx, pick a positive 5. Choose n so that

||*-*„||<5/4,      \\y-yn\\<8/4.

Pick r(/2) so that

\\yn - Trin)xjrin)\\ < 5/4,       e < /-(«)5/4.

Then

Tr{n)x
<\\y-y»\\+\yn-

Trjn)x„

r(n)

+ rin)-i\\Trin)x„-Trin)x\\

<8.
Hence with R' the sequence with elements {rin)},y = LR. Triri)x/rin).
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We turn now to (7.Id). Suppose for some v £ E that

f(x)Dy

has no solution. Since from

E = E2 © E ,

x £ E has the representation x = x2 © x2, we are supposing in particular

that

/2(x2) = *2- Cix2)-Dy2

admits no solution x2. However, by an immediate inference from (5.3) and

(5.4), for some subsequence R', C\x2) is a singleton for all x2 £ E2 and C is

continuous. Thus f2 is a homogeneous isometry of E2 into E2 and /2(0) = 0

whence f2 is surjective as a consequence of the Mazur-Ulam theorem [6].

Let D be the unit open ball about 0 in £ with boundary D' and let e < 1.

In view of (7.1a) and (7.1b),

fix) = x-Cix)

is an acyclic subset of x + S so Cx =£ x on D'. Accordingly a degree is

defined [8]. Suppose

Â = I -XC,      0 < X < 1.
This defines an admissible multivalued homotopy [8] wherefore since /, = /,

deg/= deg/0 = 1 [8, Lemma 4.3]. The multivalued homotopy, h, between/

and/is defined by

hit, x) = x - tFirxx),      0 < t < 1,

= x - C(x),       t = 0.

Thus A is an upper semicontinuous admissible homotopy. Accordingly

deg/ = deg A(l) = deg A(0) = deg/ - 1.

(We note that (7.Id) may be used to give an immediate alternative proof of

(7.1b) at least in the case N = 2. If y g Im/, || v|| =*1_ > e for instance, then,

since deg/is defined by degfN where/^ = f\EN n D, for v £ END E2, one

is led to the contradiction that fN takes SN_1 into the punctured sphere

SN~l - y and yet dsgfN = 1.)

In order to gain immediate access to the results of §6 it is natural to restrict

the e-isometry / to be a sort of layer map. Thus

Theorem 7.2. Let S c E2 contain an edge. Let E = E2@ E2 and let m be

the projection of E onto E2. Suppose F is a icontinuous) map defined by

Fx = Fmx = — Fi~x). Then there is a true isometry U defined by

Ux = x — LRFrx/r
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with || Ux — x + Fx\\ < me for some positive m and all x.

Evidently fmx = mfx. Since E2 is a P2, §§5 and 6 can be applied. Thus the

limits exist in

Umx = Ljfrmx/r — mx — LR Frmx/r.

For x = mx © x2 define Ux = Umx + x2. Then

\\Ux - fx\\ = \\Umx + x2 - mx - x2 + Fmx\\

—1| Umx — fmx\\ < me

by (6.2).

Added in proof (January 27, 1978). We are indebted to Professor R. D.

Bourgin for (a) a reference to A. J. Lazar, Pacific J. Math. 33 (1970), 337-344,

which bears on our Examples 1 and 2, and (b) for questions on the relevance

of the last section of our paper [3].

Indeed by combining certain natural modifications of [3] with results in the

earlier sections of this paper, we are able to completely settle the 2-

dimensional case. (Advances in the general finite dimensional situation seem

likely also in this way.) Though knowledge of [3] is not required below,

comparison with somewhat similar developments in that paper is facilitated

by largely taking over the notation.

Theorem 8. For each E2 and some K, \\ Tx — Ux\\ < Ke uniformly in x.

In view of this result, the words "contain an edge" may be elided in

Theorem 7.2.

The results in §6 required the presence of corner points. When there are no

corner points, we need to establish the existence of a pair of exposed points.

The question is moot only if no edge point e is a corner point. Consider, then,

a connected neighborhood Nie) on S. Then the curve Nie) admits second

derivatives except for a countable set of points. Indeed, convexity ensures the

existence of a first derivative except on a countable subset. This first deriva-

tive is, however, a monotone nonincreasing function and so admits a deriva-

tive except at a countable subset. Since e is not a corner point, Nie) contains

a pair, y0, yQ of disjunct points at which the second derivative exists and is not

0> so.y0, y0 are exposed points.

In view of 5.4, R' = {/•„} exists for which C\x) is single valued for all

x £ S and U' is a linear isometry. By compactness

U'x = LR.Tr„xr~l

and so for some bounded ultimately monotone nonincreasing function kir)

which approaches 0 as r -» co

\\Tx - U'x\\ < ki\\x\\)\\x\\. (8.11)
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Let L be the tangent line to S at v0. The ray from the origin parallel to L

intersects Sir) inyx. Let U'~yx = xx, U'~y0 = x0, Txx = v2, where ||^0|| =

ll*oll " h lililí " ll-^ll = r- Evidently then for r largey2 = Txx = uyx + wy0
where w > 0. We make tacit use of (5.1) and (5.2), particularly (5.2c).

It is easy to see from (5.1b) and (5.1c) that

\\Tr„x0\\ - \\Trnx0 - Txx\\ - e < rn(||/o|| - || v0 -yxr~%    (8.12)

As r„ -» co, the right-hand side of (8.12) defines the derivative taken in the

direction of the tangent line at v0. Since the second derivative exists at y0,

Taylor's formula implies that

rn(\\y0\\ - \\y9 - r-Vitt) - o(l). (8.13)

Write

7>„*o = a„y0 + Z„yx

where a„ = rn + /„. (/„ is negative, though this fact plays no role.) Then (8.11),

with x taken as rnx0 becomes

r-'Ufl^o + Z„yx - r„y0\\ - r~l\\ljQ + Z„yx\\ < k(rB).        (8.14)

Since this measures the approach to v0 by r~lTrnx0 along the convex S with

the components taken along the fixed direction of y0 and of v„ (8.13) implies

rt - 0(1),   r-'Z„ = 0(l). (8.15)

In particular a„ -* co.

Next the left-hand side of (8.12) can be written

{««(ll-Ko + «7'Z^ili - ll-Vo + (Z„ - u)yxian - w)-l\\)}

+ w\\y0 + iZ„ - u)yxian - w)-'||-e. (8.16)

The curly bracket in (8.16) is o(l) as a consequence of (8.13). Because of

(8.15), (8.16) is

w + oil) — e

whence

w < e. (8.17)

Two immediate consequences ensue: the first is

117*, - Uxx\\ < \u - 1| || v,|| + wH^oll < |« - 1| || v,|| + e

and the second results from

l«l ll^ill - « < ll«Fi + ̂ oll < M lililí + e
in combination with ||_y2|| ■» ||v,|| to give

IM-1IW<«-
Accordingly for u > 0
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||v2-v1||<2e. (8.18)

On the other hand, (8.11) implies

\\ir-lu - \)yx + r" Voll < Kr).

The type of justification given for (8.15) establishes that r~lu-> 1, r~\v-*0,

but then u must be positive for large r, say r > N and (8.18) applies. Similar

results hold fory~o,yx,y2, xx, x0. Specifically, for r > N

ll/2-y.ll<2e. (8.19)

Evidently xx and xx are the counterparts of rv0 and rvx in (6.1). For

||x|| < N + Ñ

\\Tx- U'x\\ <2(AT+A7) < ke.

For ||;c|| > N + N we again replace T by U'~XT and invoke (4.2) in

conjunction with (8.18) and (8.19), just as in the proof of (6.2) to conclude the

demonstration of Theorem 8.
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