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ANALYTICALLY DECOMPOSABLE OPERATORS1
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RIDGLEY LANGE

Abstract. The author introduces the notion of an analytically decompos-

able operator which generalizes the decomposable operator due to C. Foias

in that the spectral decompositions of the underlying Banach space (1)

admit a wider class of invariant subspaces called "analytically invariant"

and (2) span the space only densely. It is shown that analytic decompos-

ability is stable under the functional calculus, direct sums and restrictions to

certain kinds of invariant subspaces, as well as perturbation by commuting

scalar operators. It is fundamental for many of these results that every

analytically decomposable operator has the single-valued extension

property. An extensive investigation of analytically invariant subspaces is

given. The author shows by example that this class is distinct from those of

spectral maximal and hyperinvariant subspaces, but he further shows that
analytically invariant subspaces have many useful spectral properties. Some

applications of the general theory are made. For example, it is shown that

under certain restrictions an analytically decomposable operator is
decomposable.

Introduction. In their monograph on generalized spectral operators, Colo-

jorara and Foia§ [4] begin with a development of the general theory of

decomposable operators. Such operators may be defined as follows. Let T be

a bounded linear operator on the complex Banach space X. A (closed)

r-invariant subspace Y is called spectral maximal if for every other invariant

subspace Z the spectral inclusion o(T\Z) c <¡{T\Y) implies the subspace

inclusion Z cz Y. The operator T is said to be decomposable if for each finite

open cover {(7,, G2,..., G„) of a(T) there are invariant subspaces

r„ Y2,...,Y„ such that

(i) each Y¡ is spectral maximal;

(ii)*- Yx + Y2 + ■ • - + r„;
(iii) a(T\ Y¡) c G¡ for each /.

We stress here that the sum in (ii) is a linear sum which is to be contrasted

with the more general notion considered below.

In the present paper, we generalize the theory of decomposable operators

in two directions by relaxing conditions (i) and (ii). First, we broaden the
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class of admissible invariant subspaces in (i). This new type of subspace was

introduced by Frunza [5], who called it "analytically invariant." The T-

invariant subspace Y is called analytically invariant if for each A'-valued

analytic function / defined on a region Vf in the complex plane such that

(A - T)f(\) e y for A e Vj, then it follows that f(X) E Y for A E Vf.
Frunza has shown [5] that for a wide class of operators "spectral maximal"

implies "analytically invariant." In §1 below we give several examples (in

varying contexts) which show that the converse is false.

Second, we shall weaken condition (ii) to read "X is the closed linear span

of y„ y2,..., y„." We now formally define our principal object of study in

the present paper.

Definition. A bounded linear operator T on X is said to be analytically

decomposable if, given any finite open cover {G¡} of o(T), there are corre-

sponding invariant subspaces Y¡ such that

(i') each Y¡ is analytically invariant;

(ü')* = cim{y„ y2,...,y„};

(iii') a(T\ Y¡) c G¡ for each t.
§1 is devoted to a systematic study of analytically invariant subspaces.

Some of these results are important in later sections.

The main results concerning analytically decomposable operators are to be

found in §2 of this paper where we prove that these operators share many

properties with decomposable operators, especially the single-valued

extension property (see §1). It will also be shown (through an example of E.

Albrecht) that there are analytically decomposable operators that are not

decomposable. Moreover, analytically decomposable operators have certain

properties peculiar unto themselves (e.g., Theorem 2.9).

In §3 we give some applications of the general theory developed in §2. For

example, we shall prove that an operator satisfying conditions (i'), (ii) and (iii)

is decomposable. Theorem 3.3 states that analytic decomposability is stable

under perturbation by commuting scalar-type operators.

1. Analytically invariant subspaces. Analytically invariant subspaces were

first studied by Frunza [5] who characterized them in the following

proposition. To state this result we must introduce some notation. An

operator T has the single-valued extension property (s.v.e.p.) if the zero

subspace (0) is analytically invariant under T. For an arbitrary T-invariant

subspace Y we let TY denote the coinduced operator on the quotient Banach

space X/Y (i.e., TY(x + Y) - (Tx) + Y for x G X).

1.1 Proposition. Let T be an operator with invariant subspace Y. Then Y is

analytically invariant if and only if Tr has the s.v.e.p.

A natural question to ask about analytically invariant subspaces is how
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they are related to better known ones like spectral maximal or hyperinvariant

subspaces. As a consequence of Proposition 1.1, Frunza showed that if T

itself has the s.v.e.p. then all its spectral maximal subspaces are analytically

invariant. Various examples below show that the converse is not true. We

shall also see that there are analytically invariant subspaces which are not

hyperinvariant, and vice-versa. On the other hand, our first theorem gives a

sufficient condition under which an analytically invariant subspace is spectral

maximal. For this we recall that if T has the s.v.e.p., then for each x E X, the

analytic function A -» (A — T)~lx, defined for X E p(T), has a unique (hence

"single-valued") analytic extension into a maximal open set p(x) in the plane.

We set o(x) to be the complement of p(x) in the (finite) plane. Since a(x) thus

depends on T as well as x, in case of ambiguity we write o(x, T) for o(x).

1.2 Theorem. Let Y be analytically invariant under T, and suppose that for

each x E X, we have

o(x', TY) = a(x,T)\a(T\Y),

where x' is the coset of x in X/Y. Then Y is spectral maximal.

Proof. Let Z be a ^-invariant subspace with a{T\Z) c o{T\Y). Since

y EZ implies that o(y, T) c o(T\Z), we have o(/, TY) -0. Hence y' = 0
and it follows that Z c Y. Thus Y is spectral maximal.

The main property of an analytically invariant subspace Y that makes it

suitable for spectral decompositions is the spectral inclusion o(T\ Y) c a(T).

This result is a corollary to

1.3 Proposition. Let Y be T-invariant. Then a{T\ Y) c a(T) if and only if
Y is invariant under R(X; T)for each X E p(T).

Proof. Suppose that the spectral inclusion holds, and X E p(T) c p(T\ Y).

Then X — T is clearly injective on Y, and this implies that for y £ Y the

equation y = (X - T)u has a unique solution u E Y. Thus Y is invariant

under R(X; T). Conversely, if R(X; T)Y c Y for all X E p(r), then

R(X; T)\Y= R(X; T\Y). Hence o(T\Y) c o(T).

1.4 Corollary. If Y is analytically invariant under T, then o(T\ Y) c o(T).

Proof. It suffices to note that if y E Y, then R(X; T)y is analytic on p(T)

and that (X - J)Ä(A; T)y -v. Hence R(X; T)y lies in y by analytic
invariance, and thus Y is invariant under R (• ; T). By Proposition 1.3 we have

a(T\Y)co(T).
By the usual methods of "vector chasing" one can prove still more.

1.5 Proposition. Let Y be a T-invariant subspace. If Y is analytically

invariant, then o(T) = o(T\Y) U a(TY).
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Thus, analytically invariant subspaces share with hyperinvariant (and, in

particular, with spectral maximal) subspaces the property of having well-

behaved associated spectra. To see that Proposition 1.5 is a nontrivial

extension, we now give an example of an analytically invariant subspace

which is not spectral maximal; in fact, the following is an analytically

invariant subspace which is not even hyperinvariant.

1.6 Example. Let T be any operator with the s.v.e.p. and having an

eigenspace M of dimension greater than 1. Let N be a one-dimensional

subspace of M. Clearly N is not hyperinvariant but the following argument

shows that it is analytically invariant.

Let/: Vf-*XbQ analytic and such that (\ - T)f(X) ENifXE Vf. Then
any nonzero x E N must satisfy an identity of the form

(X-T)f(X) = g(X)x   onF/(

where g is a scalar-valued analytic function on Vf. Let a be the eigenvalue for

N so that on V} we have

(a - T)(X - T)f(X) - g(X)(a - T)x = 0.

It follows that (a - T)f(X) = 0 on Vf. So, for X i- a, then (X - a)/(X) =
g(X)x and one sees that/(A) E N for all X E Vf.

The next example shows that a hyperinvariant subspace need not be

analytically invariant.

1.7 Example. Let T be the adjoint to the unilateral shift operator on I2. If

|X| < 1, then X is an eigenvalue of T with one-dimensional eigenspace Mx

generated by the vector

x = 2 A"e„,
71 = 0

where {e„} is the standard orthonormal basis in I2. Moreover Mx is hyperin-

variant under T. Fix X and on the disc |/x| < |A| define (inductively) a

sequence of analytic scalar-valued functions tk by

>*+i(/*) = ^(/0-À*,       k>0. (1.1)

It follows from (1.1) that on | ¡i\ < \X\, we have

kOOI^fc + OiAf-1.

In particular, the function/defined by the series

£ = 0

is an /2-valued analytic function whose range is obviously not contained in

AfA. But for | n\ < \X\, we have
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(/i - T)f(ix) - S ^(MK - ^MTek
k k

= 2 !>'*(/*)- '*+i(/*)K = 2 **** = *•
A: A:

This proves that Mx is not analytically invariant.

The next result is pivotal in §2; it is the analog of Proposition 1.3.7 in [4]

for analytically invariant subspaces.

1.8 Theorem. Let Y be analytically invariant under T and suppose that /:

Vf -» X is a nonzero analytic function on the connected region Vj such that

(X - T)/(X) = 0 on Vj. Then Vj c o(T\ Y).

Proof. Since /(ju) E Y on Vp if Vf n p(T\Y) =£0 then /= 0 on some

open set in Vf n p(T\ Y). By analytic continuation it follows that/ = 0 on V¡.

The contradiction proves the theorem.

We now show that analytic invariance is stable under the functional

calculus. If g is a scalar-valued analytic function on some open neighborhood

B of a(T) and L is a closed rectifiable Jordan contour enclosing a(T) and

contained in B n p{T), then we define g{T) to be the operator

g(T) = (2mylfg(X)R(X;T)dX. (1.2)

By Cauchy's theorem, g(T) is independent of L.

1.9 Theorem. Let T be an operator and let g be analytic on some open

neighborhood of a(T). If Y is analytically invariant under T, then Y is

analytically invariant under g(T).

Proof. By Proposition 1.5 and (1.2), the operator [g(T)]Y is well defined,

so that by Proposition 1.1 it suffices to prove that [g(T)]Y has the s.v.e.p. This

results from the following computation (here, x' denotes the coset of x E X

inX/Y):

[g(T)]Yx' =[g(7>]' =[(277/)-* f g(X)R(X; T)x dX

= (2m)-1[g(X)[R(X;T)x]'dX

= (2mylf g(X)R(X;TY)x'dX

= g{TY)x>.

Since g(TY) has the s.v.e.p. (see [4, p. 5]), then Y is analytically invariant
under g(T).

The next proposition is a partial converse to Theorem 1.9.
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1.10 Proposition. Let g be a nonconstant scalar-valued function on an open

neighborhood of the spectrum of the operator T. If Y is a hyperinvariant and

analytically invariant subspace under g{T), then Y is analytically invariant

under T.

Proof. Let /: Vf -> X be analytic on the connected domain Vj and such

that (X - T)f(X) E y for all X E Vf. We consider two cases.

Case 1. Vj n p(T) =^0. Since Y is hyperinvariant under g(T), we obtain

/(X) E Y lot X E Vf pi p{T), hence /(X) E Y for all X E V} by analytic
continuation.

Case 2. Vf c o(T). Since g is nonconstant, for each fixed ¡i E Vf there

exists hp analytic on the domain of g satisfying

¿K/O-sW-i/i-WX);
hence by the functional calculus

giti-gm-in-T^T).
By the hyperinvariance of Y under g(T), we have

[g(p.)-g(T)]f(ii)áY   îorpEVf. (1.3)

Let D c Vf be a disc on which g has an analytic inverse k and put

D' = g(D). For X E Z>', (1.3) becomes

It follows from the hypothesis that /(ju) E y on D, so that /(/¿) E y for

u E Vf by analytic continuation.

1.11 Corollary. Suppose T has the s.v.e.p. and let g be a nonconstant

scalar-valued analytic function on some neighborhood ofa(T). If Y is a spectral

maximal subspace for g(T), then Y is also spectral maximal for T.

Proof. Observe first that g{T) has the s.v.e.p. Thus, if y is spectral

maximal for g(T), it is analytically invariant and hyperinvariant under g(T).

Hence Y is analytically invariant under T by Proposition 1.10. Let Z be a

r-invariant subspace such that a(T\Z) c a(T\ Y). But since o(T\ Y) c a(T)

by Corollary 1.4, Z is invariant under g(T) by Proposition 1.3 and formula

(1.2). By the spectral mapping theorem, o(g(T)\Z) c o(g(T)\Y), and it

follows that Z c y
Since the following proposition is an easy consequence of the definition of

analytic invariance, the proof is omitted.

1.12 Proposition. If Y is analytically invariant under T, then o(x, T\Y) =

o(x, T) for all x E Y.

Analytically invariant subspaces have transitivity properties analogous to

those for spectral maximal spaces proved by Apóstol in [2, Proposition 1.3.2].
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1.13 Proposition. Let Y cZ be T-invariant subspaces. Then the following
hold.

(1) If Y is analytically invariant under T, it is also analytically invariant

under T\Z.

(2) If Y is analytically invariant under T\Z and Z is analytically invariant

under T, then Y is analytically invariant under T.

(3) Z is analytically invariant under T if and only if Z/ Y is analytically
invariant under TY.

Proof. The proofs of (1) and (2) are straightforward; we prove only (3).

Again let x' denote the coset of x in X/ Y. Suppose that Z/ Y is analytically

invariant under TY and let/: Vf^>X be an analytic function satisfying

(X - T)f(X) E Z for X E Vf. Passing to the quotient space X/ Y, we have
[f(X)Y E Z/Y on Vf. It follows that Z is analytically invariant under T.

Conversely, suppose that Z is analytically.invariant under T and let g:

Vg-*X/Y be analytic and such that (X - TY)g(X) E Z/Y for X E Vg,
where Vg is assumed to be connected. Fix p. E Vg and let D c Vg be a

neighborhood of ju. By [5, Lemma 1], there is a disc D' c D centered at ¡i

and an analytic function h on D' into X such that h(X)' = g(X) on D'. Hence

(X - T)h(X) e Z on Z)'. Since Z is analytically invariant under T, we see
that h(X) E Z on D'. It follows that g(X) E Z/Y for all X E Vg.

1.14 Theorem. Let T¡ (i = 1, 2) be bounded operators on Banach spaces X¡,

respectively, and let Y¡ be Trinvariant subspaces of X¡. Then Yx © Y2 is

analytically invariant under Tx © T2 if and only if each Y¡ is analytically

invariant under T¡.

Proof. Put Y = y, © Y2 and T= 7/, © T2. Then X/Y=XX/YX ©

X2/Y2 and TY = (TX)Y> © (T2)Y>. By [4, Proposition 1.1.3, p. 3], TY has the

s.v.e.p. iff its components have this property. The proof is now completed by

applying Proposition 1.1.

The purpose of the next example is to show that the analog of Theorem

1.14 fails for the class of spectral maximal subspaces.

1.15 Example. Let X be the direct sum of two copies of C[0, 1] and let T

be the direct sum of two copies of the multiplication operator on C[0, 1]

defined by (Mx)(t) = tx(t), t E [0, 1], x E C[0, 1]. Let Fx and F2 be two

non trivially overlapping closed intervals in [0, 1]. The subspaces

Y¡ - [x¡ E C¡[0, 1]: support x¡ c F¡ ),       i = 1, 2,

are easily seen to be spectral maximal for the respective multipliers M¡, but it

can also easily be shown that Yx © Y2 is not spectral maximal for T = Mx ©
M2 (see, e.g., [4, p. 4]).

Remark. By Theorem 1.14 the previous example is another example of an
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analytically invariant subspace that is not spectral maximal (although Yx ©

Y2 is hyperinvariant under T).

1.16 Proposition. If T has the s.v.e.p., then its kernel is analytically

invariant under T.

Proof. Let/: Vf -> X be analytic and such that (X - T)f(X) E ker T for X

in Vf. Then (X - T)Tf(X) = 0 on Vp and since T has the s.v.e.p., 7/(X) = 0

on Vf. Hence/(X) E ker T for all X in Vf.

1.17 Proposition. If Y is analytically invariant under T, then TY is also

analytically invariant under T.

Proof. Obviously TY is T-invariant. Let /: Vf -» X be analytic and satisfy

(X - 7)/(X) E TY, X E Vf. Since 7Tc Y, it follows that /(X) Ê F on K;.

Hence, for X E Vf we have

X/(X) ETY + TY c 7Y.

Since TY is linear, then/(X) E TY.

Remark. It is easy to find examples that show that neither analog of

Propositions 1.16 or 1.17 holds for spectral maximal subspaces. For example,

let T be any quasinilpotent operator with nontrivial kernel M. Then M is not

spectral maximal for T.

1.18 Proposition. Let T have the s.v.e.p. and let E be a bounded projection

in X commuting with T. Then EX is analytically invariant under T.

Proof. Let/: Vf -> X be analytic and such that (X - T)f(X) E EX for X in
Vf. Then, applying the projection / — E, we obtain

(X - T)(I - E)f(X) = 0,       X E Vf.

By the single-valued extension property this implies that (7 — E)f(X) = 0 or

/(X) = Ef(\), X E Vf. Thus EX is analytically invariant under T.

The following result extends Proposition 1.16.

1.19 Proposition. Let M be the kernel of T. If Y is analytically invariant

under T, then Y + M is also analytically invariant under T.

Proof. Let /: Vf -> X be analytic and such that (X - T)/(X) E Y + M.

Now fix ft E Vf. Then there are sequences {y„} and {«„} in Y and M,

respectively, such that

(¡i-T)f(¡x)=\im(yn + un).

Hence, since Y is T-invariant,

(ii -T)Tf{l¿) = lim TynEY.

We see that (X - T)Tf(X) E Y for all X E Vf. By analytic invariance, Tf(X)
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E y for X E Vf. It follows that/(X) EY+Y + M and/(X) E Y + M for all

Xin Vf.

1.20 Proposition. Let Y¡ (/ = 1, 2) be analytically invariant under T and

suppose that o(T\ Y¡) are disjoint. If Yx + Y2 is closed, then it is analytically

invariant under T.

Proof. Let Y = Yx + Y2 and let /: Vf -* X be analytic and such that

(X - T)f(X) E Y, X E Vf. We may suppose that Vf is connected and Vf c
o(T). For in case Vf n p(T) =^0, then /(X) E y on this intersection and

hence on Vf by analytic continuation. Since the spectra o(T\Y¡) are disjoint,

we conclude that Vf intersects at least one of the sets p(T\Y¡) nonvacuously.

Suppose, then, that there is some disc D c Vf n p(T\ Yx).

We shall next prove that y is a direct sum of the Y¡. It suffices to prove

that Z = y, n y2 = (0). Note that Z is analytically invariant under T, so

that, by Proposition 1.13(1), Z is analytically invariant under each T\Y¡. By

Corollary 1.4, a(T\Z) c a(T\ Yx) n a(T\ YJ =0, and hence Z = (0).
Thus there are complementary projections E¡: y~> Y¡. Since g(X) = (X -

T)f(X) is analytic, the functions g,(X) = E¡g(X) are also analytic. Hence

/i(X) = R(X; r|y[)g,(X) is analytic on D. From this we obtain for X E D,
that

(X - T)/(X) = gl(X) + g2(X) = (X - T)h(X) + g2(X),

or (X - T)[/(X) - h(X)] E Y2. Moreover,

f(X)- h(X)E Y2   forXinZ)

by the analytic invariance of Y2 under T. It follows that /(X) E Y for all-

XE Vf.

2. Analytically decomposable operators. To motivate the study of analyti-

cally decomposable operators we begin this section by indicating that there

exist analytically decomposable operators that are not decomposable.

In [1] E. Albrecht produced a multiplication operator Ton a certain /'-type

Banach space that has the following properties: For every open cover of a(T)

by sets Gx, G2 there are spectral maximal subspaces Yx, Y2 invariant under T
such that

(a)o(T\Y,)c (7,. and
(b) X = y, + Y2;

but the condition

(c) X=YX+Y2

fails, i.e., T is not decomposable. Albrecht showed further that the T above

also has the s.v.e.p., hence every spectral maximal subspace of T is analyti-

cally invariant by [5, Theorem 2]. Since the decompositions (a) and (b) hold

for arbitrary finite open covers of o(T), then Tis analytically decomposable.
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We now prove that every analytically decomposable operator has the

s.v.e.p. For the proof we need the following lemma. (We note that Theorems

2.2 and 2.3 are the respective analogs of parts (i) and (ii) of Corollary 2.1.4 of

[4]-)

2.1 Lemma. Let T be analytically decomposable. If G is an open set such that

G n a(T) is not empty, then there is a nonzero analytically invariant subspace

Y with o(T\ Y) C G.

Proof. Let H be a second open set such that H, G cover a (T), but H does

not contain a (77). By definition there are two analytically invariant subspaces

y, Z satisfying

X= Y+ Z,   a(T\Y)cG,   a(T\Z) C H.

Then Y - (0) implies that Z = X and a(T) = a(T\Z) c H, which is impos-

sible by the choice of H. Hence Y i= (0) and the proof is complete.

2.2 Theorem. Every analytically decomposable operator has the s.v.e.p.

Proof. Let T be analytically decomposable and let /: D -» X be analytic

and such that (X - T)f(X) = 0 on D. If f=£ 0 on D then D c a{T). By
Lemma 2.1 there is a nonzero analytically invariant subspace Y with a(T\ Y)

C D. By Theorem 1.8 we also have D c o(T\Y). Since this is clearly

preposterous, then/= 0 on D and 7" has the s.v.e.p.

2.3 Theorem. The approximate point spectrum of an analytically decompo-

sable operator coincides with its spectrum.

Proof. Let A denote the approximate point spectrum of the analytically

decomposable operator T, and suppose that A i=- a(T). Then V = a(T) \ A

is relatively open, so that (by Lemma 2.1) there is a nontrivial analytically

invariant subspace Y such that o(T\ Y) c V. Let B denote the point-set

boundary of o(T\Y) and let Ax be the approximate point spectrum of

a(T\ Y). There exists a X E V n B and clearly Ax c A. Thus we obtain the

contradiction XEA.lt follows that A = a(T).

2.4 Theorem. Let T be analytically decomposable. If f is a scalar-valued

analytic function on some neighborhood of a(T), thenfÇT) is also analytically

decomposable.

Proof. Let {G¡} be an open cover of a(f(T)) = f(o(T)). Since {/"'(G-)}

covers o(T), there are analytically invariant subspaces Y¡ under T with

X = clm{y;.} and a(T\Y,) Cf~\G¡) for each /. By Theorem 1.9 each Y, is
also analytically invariant under f(T), hence the result follows from the

inclusionsa(f(T)\YJ =f(o(T\Yi)) Gf(f-\G,)) c (?,.
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At this point we digress briefly to consider the relation of analytic decom-

posability to an intermediate notion of "Weak" decomposability introduced

by Colojoarä and Foia§, [4, p. 217]. The operator T is called weakly

decomposable if, for any finite open cover of a(T), the conditions (i), (ii') and

(iii) of the Introduction hold. By an argument analogous to that of Lemma

2.1 and Theorem 2.2 it can be shown that weakly decomposable operators

have the s.v.e.p. From this follow the implications: "decomposable"^

"weakly decomposable'Wanalytically decomposable." An open question in

the present theory is whether or not the second implication is reversible. A

difficult problem is the stability of weak decomposability under the

functional calculus (i.e., if T is weakly decomposable isf(T) also decompos-

able?). We are not able to answer this question now, but the above remarks

and Theorem 2.4 lead immediately to

2.5 Corollary. Let T be weakly decomposable. If f is analytic on a

neighborhood of o(T), thenf(T) is analytically decomposable.

Colojoarà and Foia§ proved that commuting quasinilpotent perturbations

of decomposable operators are also decomposable (i.e., if T is decomposable,

QT = TQ and o(ß) = {0}, then T + Q is decomposable). Such a theorem is

still unknown for either weakly or analytically decomposable operators, but

we do have the following.

2.6 Theorem. Let T be weakly decomposable and let Q be a quasinilpotent

operator commuting with T. Then T + Q is analytically decomposable.

Proof. Every spectral maximal subspace for T is ß-invariant. We prove

that such a subspace is analytically invariant under S = T + Q. Let Y be

spectral maximal for T. Then SY — TY = ßy is quasinilpotent on X/Y, so

that by [4, Theorem 1.2.3, p. 14], SY has the s.v.e.p. By Proposition 1.1, Y is

analytically invariant under S. The rest of the proof is an easy consequence of

the equalities

a(s|y) = o-(r+ß|y) = a(r|y),

for each spectral maximal subspace Y of T.

2.7 Proposition. Let T be analytically decomposable and let E be a

projection in X commuting with T. Then T\EX is analytically decomposable.

Proof. Let 5 - T\EX and let {G,}ï be an open cover of o(S). If we let G0

be the complement of o(S), we see that {G0, Gx,..., G„) forms an open

cover of o(T); hence there are subspaces Y0, Yx.Y„ that are analytically

invariant   under   T  such   that   X = clm{ Y¡)   and   a{T\ Y¡) c G,   (i =

0, 1.ri). By Proposition 1.18, EX is analytically invariant under T; thus

the subspaces Z¡ = Y¡ n EX (/ = 0, 1,..., ri) are analytically invariant
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under S by Proposition  1.13(1). Since evidently Z0 = (0) and £ is a

projection, then EX = clm{Z,-; i = 1.ri). Again, by Proposition 1.13(1),

Z¡ is analytically invariant under T\Y¡, so it follows from Corollary 1.4 that.

o(S\Z¡) = a(T\Z) c o(T\Y¡) c G¡, i=l,2,...,n. This completes the
proof.

2.8 Theorem. Let Tj be operators on the respective Banach spaces Xj

(J = 1,2) and let T be the direct sum Tx © T2 on Xx © X2. Then T is

analytically decomposable if and only if each Tj is analytically decomposable.

Proof. The necessity is a direct consequence of Proposition 2.7. For the

sufficiency, let {G¡} be an open cover of a(T) = o(Tx) u (¡(TJ. Then there

exist subspaces Yu analytically invariant under 7} such that

A-, = clm{y,}   and   o{tj\Y9) C <?,.

By Theorem 1.14, Y¡ = YiX © Ya is analytically invariant under T. Since

<¡{T\ Y¡) c G¡ and X = clm{ Y,}, then T is analytically decomposable.

An analog of the next result does not seem to occur in earlier theories of

spectral decompositions.

2.9 Theorem. If T is analytically decomposable, then T\TX is analytically

decomposable.

Proof. Let S =_T\TX and let {G¡) be an open cover of o(S). By

Proposition 1.17, TX is analytically invariant under T; hence, by Corollary

1.4, a(S) c o{T). Without loss of generality, then, we may suppose that {G¡}

covers a(T). As 7" is analytically decomposable, we can find subspaces Y¡

that are analytically invariant under T such that X = clm{ Y¡) and a(T\ Y¡) c

G¡. Then Z¡ = TY¡ form a requisite system of analytically invariant subspaces

under S; for the Z, are analytically invariant under T by Proposition 1.17,

and hence Z¡ is analytically invariant under both S and T\ Y¡ by Proposition

1.13(1). We thus obtain the spectral inclusions a(S\Z¡) = a(T\Z¡) c a(T\Y¡)

C G¡. Finally, the property TX= clm{Z,} follows from the continuity of T.

2.10 Theorem. Let T be analytically decomposable on X. If S is an operator

on a second Banach space Xx that is similar to T, then S is analytically

decomposable.

Proof. Let A : X-*XX be the bounded invertible linear mapping which

gives the similarity between S and T, i.e., AT = SA. Since A preserves the

spectral properties of T and S as well as density properties from X to Xx, it

suffices to show that if Y is analytically invariant under T, then AY is

analytically invariant under S. Clearly A Y is an 5-invariant subspace of Xx.

Thus let /: Vf->Xx be analytic and such that (X - 5)/(X) E AY on Vf.

Hence, A~X(X - S)f(X) E Y on Vf or (X - T)A"'/(X) E Y on Vf. Since
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A~lf(X) is analytic on Vp then A~]f(X) E Y for X E Vf. It follows that
/(X) E AY, and the proof is complete.

3. Applications. In this section we give several applications of the theory

developed in §§1 and 2.

Theorem 3.1 states, roughly, that if we weaken conditions (i), (ii) and (iii)

on an operator to (i'), (ii) and (iii) (see the Introduction), then the latter set of

hypotheses still guarantees that the operator is decomposable. In other words,

our discussion at the outset of §2 shows that condition (ii) is essential for

decomposability.

3.1 Theorem. Let T be analytically decomposable and such that T also

satisfies condition (ii). Then T is decomposable.

Proof. Since T has the s.v.e.p. by Theorem 2.2, the spectral manifolds

XT(F)= {X EX:a(x) c F)

are defined for each set F (for details, see [4, pp. 1-3]). Because (by

Proposition 1.12) every subspace Y that is analytically invariant under T

contains the range of the maximal analytic extension of R (• ; T)x for each

x E y, the proof of [4, Theorem 2.1.5, pp. 31-32] may be repeated, by

replacing "spectral maximal" with "analytically invariant," to prove that

XT(F) is closed whenever F is closed.

Now let {G¡} bea finite open cover of o(T). Let {//,} be another cover of

a(T) such that H¡ c G, for each i, and let Y¡ be analytically invariant

subspaces under T such that o{T\ Y¡) c H¡ and X = Yx + Y2 + ■ • ■ + Y„.

It follows that y, c XT(H) and o(.T\XT(HJ) c G, for each i. Hence T

satisfies (i), (ii) and (iii) of the Introduction and is therefore decomposable.

For the next theorem we introduce the following notation. Let L{X) be the

algebra of all bounded linear operators on X. If T E L(X), let H(T) be the

family of all scalar-valued analytic functions defined on some neighborhood

of o(T). Finally, denote by A(J) the uniform closure of {f(T): f E H(T))
in L(X).

3.2 Theorem. Let Tbe analytically decomposable. Then A(T) is a commuta-

tive, inverse-closed Banach subalgebra of L(X) such that every operator in

A(T) is analytically decomposable.

Proof. Clearly A(T) is a commutative Banach algebra, since {f(T):

f E H(T)} is a commutative linear and multiplicative system in L(X). To see

that A(T) is inverse-closed, let S E A(T) and suppose that S'1 E L(X).

Then there is a sequence {/„} c H(T) such/„(r)-» S in the uniform norm

of L(X) and o(fn(T))-* o(S) in the Hausdorff metric on compact sets. It is

evident that 0 E o(f„(T)) = /„(a(7/)) for sufficiently large n. Hence f„(T)~l
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exists for « large enough. But for such n, fn(T) x — g„(T) E A(T) where

g„(X) - 1//„(X) E H(T). Thus 5_1 E ^4(T) by the continuity of the map
S-> S-1 in L(A-).

Now let S E A(T) be arbitrary and let {/,} be a sequence in H(T) such

fhztf„(T) -» 5 uniformly. We claim that every subspace Y that is analytically

invariant under T is also analytically invariant under S. Evidently Y is

5-invariant, so it suffices to prove that the coinduced operator SY has the

s.v.e.p. By Theorem 1.9, each f„(T)Y has this property. Thus, since the

spectral radius of SY — fn(T)Y approaches zero, SY has the s.v.e.p. by [2,

Theorem II. 1.10, p. 1494]. This proves the claim.

Next, let {G¡}x be an open cover of o(S), so that {G-} also covers o(f„(T))

for sufficiently large n (because the latter spectra converge to o(S) in the

Hausdorff metric). Fix n0 such that the above property holds for « > n0.

Then {/,-1(G,)} covers o(T) for n > n0 and we can thus find subspaces Y"

that are analytically invariant under T and such that

* = clm{yf,...,y¿}   and   o(T\Y,m) cf-l(,Gl),n>n0.

Hence a(f„(T)\ y/1) c G, (/' = 1, 2,..., k) for n > n0. We may then choose n

so large mat o(S\Y¡") c G¡ (i = 1,..., k). Since every Y" is analytically

invariant under S for all n > n0 and all /, then 5 is analytically decompos-

able.

3.3 Theorem. Let T be analytically decomposable and let S be a scalar-type

operator in the sense of Dunford [3]. If T commutes with S, then TS and T + S

are analytically decomposable.

Proof. Let E denote the resolution of the identity for S and let M > 0.

Then for a suitable partition {bf} of a(S) by Borel sets and X^ E bjt we have

[S-2Wy)|<M||7ir. (3-1)

Setting Ej = E(bj), we obtain

\TS-^XjTEj\< M. (3.2)

Since each Ej commutes with T by [3, Theorem 5], each component 7} = TEj

= T\EjX is analytically decomposable by Proposition 2.7. Hence the direct

sum operator T' = 2^-7} is analytically decomposable by Theorem 2.8.

Now let y be analytically invariant under T. Defining Yj = Y p, EjX, we

see (by Proposition 1.13(1)) that Y} is analytically invariant under 7} because

TjYj - TEjY = EjTY c EjY - Yj. It follows from Theorem 1.14 that Y =
S Yj is analytically invariant under the sum T = 2X,2}. By (3.2) and a proof

similar to that of Theorem 3.2, the subspace Y is analytically invariant under

TS.
Let { G,} be a finite open cover of a(TS) and let 7" be as above with Xj and
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Ej chosen in such a way that {G,} also covers o(7"). Since T' is analytically

decomposable, there are subspaces Y¡ that are analytically invariant under V

such that o(T'\ Y¡) c G, and * = clm{ Y¡}.
Let Z be any subspace analytically invariant under 7", and write Zj = EjZ.

It follows by Theorem 1.14 that Z = "2Zj is analytically invariant under

T = 2 Tj, hence Z is analytically invariant under TS by the argument given

in the second paragraph of the proof. Since a(T'\ Y¡) can be made arbitrarily

close to o(TS\ Y¡) in the Hausdorff metric, then o(TS\ Y¡) c G¡ and so TS is
analytically decomposable.

To prove that T + S is also analytically decomposable, note that for

X E p(— S), we have

T + S = (X + S)[(T - X)R(X;-S) + I],

where I is the identity in L(X). Now T — X is analytically decomposable by

Theorem 2.4, and X + S and R (X; - S) are scalar-type operators by [3,

Theorem 9]. By the previous part of the proof on products and Theorem 2.4

again, T + S is analytically decomposable.

Theorem 3.3 is a "weak" analog of Apostol's theorem [2, Corollary II.2.11],

on perturbations of decomposable operators by commuting spectral opera-

tors. However, if we restrict T, we have the following result, which generalizes
Theorem 2.6.

3.4 Corollary. Let T be weakly decomposable and let S be a spectral

operator commuting with T. Then T + S is analytically decomposable.

Proof. By Dunford's fundamental theorem [3, Theorem 8], S = A + Q

where A is a scalar-type operator and ß is quasinilpotent; moreover, A

commutes with Tand ß. Then the decomposition

T+S=T+(A + Q) = (T+Q) + A

shows that T + S is analytically decomposable by Theorems 2.6 and 3.3.

Corollary 3.4 has the following analog for products, but its proof is

surprisingly delicate.

3.5 Theorem. Let T be weakly decomposable and let S be a spectral operator

commuting with T. Then TS is analytically decomposable.

Proof. Let S — A + Q be the canonical decomposition of S into scalar-

type and quasinilpotent parts. Since TQ — QT by [3, Theorem 8], then TQ is

quasinilpotent. Then TS = TA + TQ and TQ commutes with TA.

Let E0 — E(o), where E is the resolution of the identity for S and a is a

Borel set in the plane. If y is a spectral maximal subspace for T, we show that

y n EqX is analytically invariant under TS\EqX. First note that Y is

invariant under S, A and ß (since it is r-hyperinvariant), and TE0 = E0T by
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[3, Theorem 8]. Thus Y is invariant under TA and TQ. By a proof similar to

that of Theorem 3.3, Y is analytically invariant under TA ; and because TQ is

quasinilpotent, Y is analytically invariant under TS. By Theorem 1.13(1),

y n EqX is analytically invariant under TS\EqX.

Let {G,}* be an open cover of o(TS) = a(TA). Without loss of generality

we may suppose that {G,} covers the whole plane. Now let U = YXjTEj be an

approximation of TA as in (3.2) with each X7 ̂ 0. Since T is weakly

decomposable, for/ fixed there are spectral maximal subspaces Y^ such that

X = clm{ y,w} and

a(T\YP) cXj-'Gi,      i- 1,2,..., k.

Then the subspaces Yf = y,w n EjX are analytically invariant under

U\EjX,    TA\EjX   and    TS\EjX,

and are such that if Yt — S F/, then

"(fli",) - U (V(re,|î?)) c U Mx/'g,.) = U g,. = G,..

But, by the last paragraph and Theorem 1.14, the Y¡ thus defined are

analytically invariant under U, TA and TS. The proof is completed by

choosing U sufficiently uniformly close to TA such that a(TA\Y¡) c G,

whenever o(U\ Y¡) c G¡, i=l,2,...,k.
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