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THE REAL AND RATIONAL COHOMOLOGY

OF DIFFERENTIAL FIBRE BUNDLES

BY

JOEL WOLF

Abstract. Consider a differential fibre bundle (E, ir, X, G/H, G). Under

certain reasonable hypotheses, the cohomology of the total space E is

computed in terms of the cohomology of the base space X and algebraic

invariants of the imbedding of H into G.

0. Introduction. Consider a differential fibre bundle

a = {E,m,X,G/H,G),

where G is a compact, connected Lie group and H is a compact, connected

subgroup of G, E and X are differentiable manifolds, and it: E -» X is a

differentiable map. One would like to compute the cohomology of the total

space E in terms of the cohomology of the base space X and certain algebraic

invariants of the imbedding of H into G. Specifically, there exists a universal

bundle

Ba(G, H) = (BH,f, BG, G/H, G),

and a classifying diagram

G/H     =     G/H

i I
E        ->      BH

ir\, if

X        X       BG

One would like to obtain some sort of isomorphism

H*(E; K) m torH.iBG;K)(H*(X; K), H*(BH; K)),

where H*(X; K) is regarded as a right H*{BG; Ä")-module via the multi-

plicative map g* and H*{BH; K) is regarded as a left H*{BG\ ÄT)-module via

the multiplicative map f*.

One does have the following result, due to Eilenberg and Moore [4], [5]:

Theorem 1. Given a differentiable fibre bundle
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a = {E,,T,X,G/H,G),

there exists an algebra isomorphism

*: H*(E; K) = Torc.(BC;i0(C*(I; K), C*(BH; K)),

where C*(X; K) is regarded as a right differential C*{BG; K)-module via the

differential multiplicative map g* and C*(BH; K) is regarded as a right

differential C*(BG; K)-module via the differential multiplicative map /*.

In this paper we prove the following result.

Theorem. Given a differential fibre bundle

o = {E,tt,X,G/H,G),

where K is the reals R or the rationals Q, and X = G'/H' is a homogeneous

space formed as the quotient of a compact, connected Lie group G' by a

compact, connected subgroup H' of deficiency 0 in G', then there is an algebra

isomorphism

H*(E; K) m torH.(BG.K)(H*(X; K), H*(BH; K)).

This result is a generalization of the results of Baum and Smith [2], and is

in the same spirit. See also Wolf [7], [8] for related results.

§1 contains the necessary preliminaries. §2 contains the proof of the

Theorem.

1. tor, Tor, and the two-sided Koszul construction. In this section we shall

define torA (M, N) and Tor,, (Af, TV) in the special case where

A = P[xv ...,x„]

is a polynomial algebra. The definition is in terms of the so-called two-sided

Koszul construction.

Fix K to be a field, and suppose P[xu .. ., xn] is a polynomial algebra

over K. Consider the exterior algebra

over K, where n¡ has INTERNAL degree Deg(x,), EXTERNAL degree - 1,

and hence bidegree (Deg(x,), - 1) and degree Deg(x,) — 1 in the associated

graded algebra over K.

(a) tor. Suppose that A = P[xx, . . ., xn], Ai is a right A -module, and TV is a

left A -module. We form the complex M ® .E[/i,, . . . , jjj ® JV with the

natural differential dE given by

dE (m ® 1 ® n) = 0,

dE (m ® jUj ® «) = mxi ® 1 ® n + m ® 1 <£> x¡n,

dE a derivation.
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dE is called the EXTERNAL differential, since it acts on external degree. We

call the complex

{M®E{lil,...,iLn)®N,dE)

the FIRST TWO-SIDED KOSZUL CONSTRUCTION. Observe that the

composition dE ° dE = 0. The first two-sided Koszul construction thus has

the structure of a differential graded module over K.

Theorem 2. tor,, (M, N) is the homology of the first two-sided Koszul

construction:

tOTA(M, N) * H(M ® E[ /i„ . . . , ft,] ® N, dE).

Proof. Simply check that the first two-sided Koszul construction is a

projective resolution. See, for example, Baum and Smith [2].

(b) Tor. Suppose again that A = P[xx, . . . , x„\ but now suppose also that

M is a right differential v4-module, and TV" is a left differential A -module. We

again form the complex M ® E[fiu . . ., ft,] ® N, this time with the natural

differential dT = dE + d„ where

d, (m ® 1 ® n) = dm ® 1 ® n + (- \f*&(m)m ® 1 ® dn,

dj(m ® ft: ® n) = -dm ® ft ® n - (-l^^m ® ft ® dn,

d¡ a derivation.

d, is called the INTERNAL differential, since it acts on internal degree. We

call the complex

(M® £[,*,, ...,ft,]®/V\¿r)

the SECOND TWO-SIDED KOSZUL CONSTRUCTION. Observe that the

signs have been chosen so that dT ° dT = 0. The second two-sided Koszul

construction thus has the structure of a differential graded module over K.

Theorem 3. Tor,, (M, N) is the homology of the second two-sided Koszul

construction:

TorA(M, N) s H(M ® E[ ft,, . . . , ft] ® N, dT).

Proof. Simply check that the second two-sided Koszul construction is a

differential projective resolution. See, for example, Baum and Smith [2].

Now let us recall two important naturality results for torsion products. The

first is simply functoriality:

Theorem 4. Consider the following commutative diagram:
a ß

TV",     <_     Ax     -»     M,

/Î »T T*

N2     Z.     a2     X     M2
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Suppose Au A2, M,, M2, TV,, N2 are differential graded algebras over K while f,

g, h, a, ß, y, 8 are differential multiplicative maps. Then:

(i) If g*: H{A2) -> H{AX) is an isomorphism, then so is

TorÄ(l,l): Tor^M,, TV, ) -»Tor^M,, Nx ).

(ii) Iff*: H{N2) —> H(Ni) is an isomorphism, then so is

Tor,(l,/): TorAi(M2, N2 ) -> Tor,,2(M2, TV, ).

(iii) If h*: H(M2) —* H(Ml) is an isomorphism, then so is

Tor,(/,,l): Tor^2(M2, TV2 ) -> Tor,,2(M„ TV2).

And the second is a comparison theorem:

Theorem 5. Suppose P[xu . . . , x„] is a polynomial algebra over K, M and

TV are differential graded algebras over K, and f, g: P[xx, . . . , xn] -» TV and h:

P[x}, . . ., x„] -» M are differential multiplicative maps. If f and g are chain

homotopic,   then   Tor^ ,(M, TV)   is   unambiguously   defined;   that   is,

ToTP[Xt      xj(Ai, TV) is the same whether TV is regarded as a left differential

P[xx, . . . , xn]-module via for via g:

(Torp[jc„...,X£M, N))f « (Tor,,!,,,...,xJ(M, N))g.

An analogous result is true for TorP[;t       x .(TV, M):

(Iotp1x.xJ(TV, M))f * (Tor^,,....X¿(N, M))g.

Proof. We form M ® E[ ju„ . .., ft,] ® TV with the differential df obtained

via/and with the differential dg obtained via g. Now construct the map

T: (M ® E[ (i„ . . . , ft, ] ® TV, df ) -* ( M ® E[ ju„ . . ., ft ] ® TV, dg )

as follows: Since / and g are chain homotopic, there exists, for each / =

1, ...,«, an element h¡ £ TV such that

/(*,) = g{xt) - d{h,).

Therefore set
T(m ® 1 ® n) = m ® 1 ® n,

T(l ® ft ® 1) = 1 ® ft ® 1 - 1 ® 1 ® h,.
We claim that T is a map of differential graded algebras; the proof is a direct

calculation:

Tdf(m ®l®?i) = i/m®l®n + (- \)Ue%mm ® 1 ® dn

= dgT(m ® 1 ® n); (i)

Tdj{\ ® ft ® 1) = h(xf) ® 1 ® 1 + 1 ® 1 ®/(x,)

= h(x,) ® 1 ® 1 + 1 ® 1 ® g(x,) - 1 ® 1 ® d(hi)

= 4(1 ® ft ® 1 - 1 ® 1 ® A,) = dgT{\ ® ft ® 1).    (Ü)
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Since T has an obvious inverse it follows that Tm is the desired isomorphism.

The second assertion is proved analogously.

2. The real and rational cohomology of differential fibre bundles. In this

section we prove the main theorem. For the sake of exposition, let us first

make the following additional assumptions:

(I)tf-R.
(2) H' has maximal rank in C.

The general result then will follow by some elementary remarks at the end

of the section.

Notation. If M is a Riemannian manifold modeled on a separable Hubert

space, then we denote by R"(A/) = R*(A/, d) the differential graded algebra

of de Rham cochains with exterior derivative. Recall that we have a natural

algebra isomorphism

H*(M, R)s H(R*(M, d)).

Consider the following classifying diagrams:

G/H   =    G/H      G'H'    =    G'/H'

G/H —> BH       G'/H'-^ BH'

I     V   \     I?
*->BG *-> BG

These give rise to the following diagrams in de Rham cochains:

R#(G/H)    =    R#(G/H)      R#(G '///")    =    R*(G'/H')

1 »     -    1
R#(G/H) *—  R#(BH)        R*(G'/H') ¿—  R#(BH')

| \f* | \h#
R      <— R#(BG) R        *—   R*(BG')

And these, in turn, give rise to the following diagrams in cohomology:

H*(G/H;R)    =   H*(G/H;R)       H*(G'/H';R)    =    H*(G'/H';R)

Il î II m Î

H*(G/H; R) «- H*(BH; R) H*{G'/H'\ R) «£- /7*(5T/'; R)

î                          î/*                    î î^*

R        «— H*{BG;R) R <-H*(BG';R)

(We may assume that all spaces are differential manifolds modeled after

separable Hilbert spaces, and that all maps are differentiable.  See, for

example, Eells [3].)

We know that H*(BG; R), H*(BH; R), H*(BG'; R), and H*(BH'; R) are
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polynomial algebras on generators of even degree. In fact, let

H*(BG;R) = P[xx,..., xm],    H*{BG';R) = P[zx, ,]>

H*(BHM) = P[y» ■ - ■ ,yn],     H*(BH';R) = P[wx, ..., wq].

Let us now recall the relevant facts about maximal rank spaces. Since

Rank(G') = p and Rank(/T) = q, it follows that p = q. It further follows

that the sequence

R^H*(BG';R) h-^H*(BH';R)%>H*(G'/H';R)^>R

is coexact. For further details see Baum [1].

Construction. Now choose arbitrary representative cocycles /x„ . . ., ft„ in

R*(5G) for xx, . . . , xm, respectively. Define a map a as follows: for each

/ = 1, . . ., m, define a(x¡) = ft. Since R\BG) is graded commutative, the

map extends to a unique differential multiplicative map

a:H*(BG;R)^>Rs(BG).

From its definition it is clear that a induces the identity map in homology.

We can similarly construct differential multiplicative maps

ß: H\BH;R) ^R\BH),

y: H*(BH';R) -» R\BH'),

8: H*(BG';R) -*R*(5G'),
all inducing the identity in homology.

Now consider the following diagram (which we do not claim to be

commutative):

R\BG') t-     R\BG') -»        R

H*{BH';R)      ^     H*(BG';R)     —        R

Using the above we are now able to consider the following diagram (which,

again, we do not claim to be commutative):

R#(BH)
f*

R*(BG) R#(Z)

H*(BH; R) H*(BG; R)
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where

(a) We define Kx to be the one-sided Koszul construction for computing

"~\TorH.(BG,.R)(R, R\BH')); in other words,

Kx = E[ /i„ . . ., ft] ® R\BH'),

where

¿(ft ® 1) = 1 ® h*8(x,),       d{\ ® w) = 1 ® d(w).

(b) We define K2 to be the one-sided Koszul construction for computing

t_TorH.(ÄG-;R)(R, R\BH')); in other words,

K2 = £[ Pl> . . . , ft] ® R*(5//'),

where

¿(ft ® 1) = 1 ® yh*(x¡),       d(l ® w) = 1 ® </(w).

(c) We define K3 to be the one-sided Koszul construction for computing

toTH.(BG..K)(R, H*(BH'; R)), in other words,

K3 = E[ (ix, . . . , ft] ® H*{BH';R),

where

i/( ft ® 1) = 1 ® A*(x,)>       d(\ ® w) = 0.

(d) 0, is defined as follows: To define 0,(ft ® 1), we note that K9h$8(x¡) is

a coboundary in R*(A^). Therefore choose, for each / = 1, ...,/?, an arbitrary

element r, E R*(X) such that d(r¡) = Ä"*A8S(x,). Now set

9X ( ft ® 1) = r,.,       Ö, (1 ® w) = K* (w).

The proof that 0, is a differential multiplicative map is a direct calculation:

dß1 ( ft ® 1) = d{r,) = KV8 (Xi) = Ö, (1 ® h*8 (x,)) - 9xd( ft ® 1). (i)

¿0, (1 ® w) = ¿(ä:*(w)) = ^(¿(w)) = 0, (1 ® d(w)) = 0,¿/(l ® w).   (ii)

Observe that 0, induces an isomorphism in homology.

(e) 02 is defined to be the differential multiplicative map which induces the

identity in homology given by Theorem 5; in other words,

02(ft ® 1) = ft ® 1 - 1 ® S¡,       02(1 ® w) = 1 ® w,

where S, <E R*(BH') is such that yh*(X¡) = h*8(Xi) - d(S).

(f) 03 is defined as follows:

03(ft ® 1) = ft ® 1,       03(1 ® w) = 1 ® y(w).

The proof that 03 is a differential multiplicative map is a direct calculation:
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¿03(ft ® 1) = ¿(ft ® 1) = 1 ® yh*(x,)

= 03(1®/,*(*,.)) = 03¿(ft®l). (i)

¿03 (1 ® w) = ¿(1 ® y(w)) = 1 ® d(y(w))

= 1 ® y(d(w)) = 0

= 03(O) = 03¿(l®w). (Ü)

Observe that 03 induces an isomorphism in homology.

(g) 04 is defined as follows:

04 ( ft ® 1) = 0,       04 (1 ® w) = K*(w).

The proof that 04 is a differential multiplicative map is a direct calculation:

¿04(ft ® 1) = ¿(0) = 0 = K*h*{x¡) = 04(1 ® h*(x)) = 04¿(ft ® 1).   (i)

¿04 (1 ® w) = d(K*{w)) = 0 = 04(0) = 04¿(1 ® w). (ü)

(h) We construct a differential multiplicative map

X: H*(BG;R) -> K3

which induces g* in homology, by analogy with the maps a, ß, y, 8 above.

Choose arbitrary cocycles /,,... ,fm G K3 representing g*(xx), . . ., g*(xm),

respectively. Set X(z,) = r, and extend.

Now consider the extreme right-hand side of the diagram. We claim that

0,0203 and 04 induce the same map in homology. In other words, we claim

commutativity in the diagram

H*(X; R) ►

h. \
H*(X; R)

K
H*{X; R)

h.
;R) /H*(X

To see this we examine the effect of applying the maps 0,0203 and 04 to a

cycle in K3. A cycle in K3 has the form 1 ® w. Now

0,0203 (1 ® w) = 0,02 (1 ® y(x)) = 0, (1 ® y(w)) = K*y(w); (i)

on the other hand

04(1 ®w) = K*(w). (Ü)

Thus   (0,0203)»([1 ® w]) = (K*yU[w]) = K*([w]) = 04<([1 ® w]).   So   the
diagram commutes.
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By the definition of X we know that the following diagram is also

commutative:

H*{BG; R)-► H*{X; R)

• H*(X; R)

Thus we can extrapolate commutativity in the following diagram:

H*(X; R)

(öi0203)*

H*(BG; R) -> H*{X; R)

Ultimately we have pieced together the fact that our entire original diagram

commutes upon passage to homology. Thus utilizing Theorems 1, 4 and 5 we

have the following string of algebra isomorphisms.

H*{E; R)

*u
TorR#(BG)(R#(*)> R#W)

= \Toxa(l,l)

"1 Torff.(BG;R)(R#(r), rHBH)) r

«|r,
Í- Tor//* (BG;R)(R#W. R#W) P

ssjTor^l./î)

Torff'(BG;R)(R#W. ""W R)) P

Tor//'(BG;R) (R#W. H*(BH; R))J

HlTor^',,1)
TorH.(BÖ Ä) (£,,#*(*#; R))^í

as(Tor,(02,l)

as f Tor,(03, 1)

TorH.(BG.R)(K3,H*(BH;R))/

= |Tori(04, 1)

To%*(5G ;r) (#*(*; *), #*(*#; R)) ^

= 1
teH.(BG;R) (#*(*; R), #*(*#; R))
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To extend to the deficiency 0 case, recall that the sequence

H*(BG';R) h^H*{BH';R) ^H*(G'/H')

will be coexact. For the definition of deficiency and further details see Baum

m-
The proof goes through as before except that 04 must be redefined. Write

K3 as

K3 = E[ fix, . . . , ft] ® E ® H*(BH';R)

where the elements fix,.. ., ft are not cycles, and the elements of E are.

Define

04(ft® 1® 1) = 0,

04(1 ® 1 ®w) = K*(w),

04(1 ® w® 1) =[0,0203(1 ® w® 1)].

The first diagram in our chase is still commutative, this time by our choice of

04, and the rest of the argument is the same.

Finally we remark that the case K = Q works equally well by simply using

graded commutative rational cochains. See Sullivan [6].
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