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CHERN CLASSES OF CERTAIN REPRESENTATIONS
OF SYMMETRIC GROUPS

BY

LEONARD EVENS AND DANIEL S. KAHN1

Abstract. A formula is derived for the Chern classes of the representation

id / £: P f H -» Up„ where P is cyclic of order P and i: H -» U„ is a fintie
dimensional unitary representation of the group //. The formula is applied

to the problem of calculating the Chern classes of the "natural" representa-

tions iry. Sj -» Uj of symmetric groups by permutation matrices.

1. Introduction. In [Ch], one of us derived "formulas" for the Chern classes

of an induced representation in the case where the inducing representation of

the subgroup is 1-dimensional. The formula for the /th Chern class involved a

leading term expressed in terms of the multiplicative generalization of transfer

in [N] plus additional terms arising from Chern classes Cj(irk) of "natural

representations" by permutation matrices. The situation was somewhat un-

satisfactory since little or nothing was known about the classes Cj(irk).

Recently, through access to an interesting paper of C. B. Thomas [Th], our

attention was drawn to this question again. Thomas makes use of estimates of

Grothendieck [G] on the orders of Chern classes of representations of discrete

groups. Grothendieck's results [G, Corollary 4.11, p. 263] imply that, for a

rational representation p: G->GL(rt, Q), the p-primary component of the

order of e,(p) is bounded by

p° if / 5É 0 mod/? - 1,

^i+,„(,)    if/ = 0mod/? - 1,

for/? odd, and

21 if / is odd,

22+>.2o)    if i is everi)

for/? ■» 2.

Here, / = p'rW where (/',/?) = 1. (See [Th, §2], for detailed derivation.) In
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310 LEONARD EVENS AND D. S. KAHN

this paper, we show for p = mpn,: S^ -*GL(/?m, Z), the p-primary compo-

nent is exactly the Grothendieck bound, for p odd, but one-half that bound

for p = 2, i even, (/ < pm). In the process, we independently establish

Grothendieck's bounds for the representations trk without use of étale

cohomology. (The anomalous situation for p = 2 may have something to do

with rational representations of Quaternion groups.)

In order to calculate these orders, we needed the first steps in the analysis

of representations induced from representations (of a subgroup) of degree

greater than one. Although the method is quite general, it yields the most

intelligible result for normal subgroups of prime index (§2, Theorem III). This

result and its analogues, for many readers, may be of greater interest than the

results on orders of Chern classes discussed above.

2. Chern classes of an induced representation of prime index. Let H be a

subgroup of the group G, and let |: 7/ -» U„ be a finite dimensional unitary

representation of H. In [Ch, Theorem 4, p. 190], there is a formula for the

Chern classes of the induced representation p = ind^^gl in the special case £

is 1-dimensional (n = 1). Here we derive a parallel formula for general n but

in the special case 7/ is normal and (G: H) = p is prime. The methods are

similar to those in [Ch] and [N], and we use the terminology and results of

those papers freely.

As in [Ch, p. 189, 2nd paragraph of Remark], the induced representation

may be dissected by wreath products:

* id r i
G^^PJJI -i   PJJJ^< upn.

p

Here O is the "Frobemus" imbedding of G in Sp / H. (See [N, §2, pp.

54-55].)

Because of the hypotheses on H, we may replace Sp by its p-Sylow

subgroup P which we may take to be generated by the cycle o = (123 ... p).

Note also that, in the last inclusion, F = F / 1 is imbedded in Upn as "block"

permutation matrices. One useful way of visualizing this is as follows: First

imbed P in S    by

a - (1,2, ...,/>)-* (1, n + 1, ...,(/> - \)n + 1)

•(2, n + 2, . . . , (p - \)n + 2) . .. (n,2n, .. . ,pn)

and then imbed Sp„ in Up„ by its natural representation mpn as permutation

matrices. Alternately, the imbedding of F in S    may be obtained by
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Î Î
«-fold diagonal shuffle

[The last "shuffle" is the inner automorphism of §>pn arising from the

appropriate rearrangement of {I, 2, ... ,pn}.] We shall make use of these

descriptions below.

The crucial step in our argument is the calculation of the Chern classes of

the inclusion representation i„: F / U„ < Upn. Since H*(BU„, Z) is Z-free, the

argument of Nakaoka in [Ch, pp. 181-182] shows that

H*{B(P I Un), Z) * H*(P, H*(BU„, Z)p)

as graded rings. Moreover, the isomorphism is consistent with all the homo-

morphisms (such as restriction and transfer) we shall have need of. (See [Ch,

pp. 181-182].) We shall need some notation. Let c = 1 + c, + c2 + • • • + cn

be the total Chern class in H*(BU„) = Z[c,, c2, . . . , c„], and let p be a

generator of H2(P, Z). (It does not matter which generator is used because

only pp~ ' appears in our formulas.)

Theorem I. With the notation as above, the total Chern class of t„ is given by

c(in) = c X c X ■ ■ ■ Xc+[(1- pp-x)" - l]

+ [(l-p'-1)"-1-l](c1Xc1X--- Xcx)

(A) +[(1 - p"-1)"-2 - l](c2 X c2 X ■ ■ ■ Xc2)

+ ...

+ (-J^"1)(c„-,Xc„_1X • • • Xcn_x)

where each iterated cross product [in (H*(BUnY)p] is p-fold.

Explication. Forp = 3, n = 3, the bidegrees with nonzero contributions are

indicated below. (The true degrees are twice those indicated.)

Thus, on the vertical edge appear the Chern classes of the inclusion of

(U„Y in Up„, i.e. the components of c X c X • • • X c. (These are, of course,

invariant under P.) The additional contributions along the horizontal rows,

H*(P, H^^BUfl), Z)), 0 < s < pn, are zero unless s is divisible by p. If so,

s = pt, and the contribution along that row is essentially

(B) O-^'^'feiSl^l^)-
/»-times
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01       Z3+56789
cnXcnXcn

c2Xc2*c2

c, Xc, xc

046
3m   =0      3m   =0       -*

We use (1 - pp "')""' - 1 in the formula in the theorem to avoid counting

c, X c, X • • • X c, twice. 1 - pp~x is, of course, the total Chern class c(irp)

of the natural representation (= regular representation) of F in Up. Its powers

are nonzero only in degrees = 0 mod 2(p - 1). Finally, we remark that, in

formula (B), c, X c, X ■ ■ ■ X c, may be replaced by (c X c X • ■ ■ X c)p„

the component of the c x c x ■ ■ ■ X c of degree 25 = 2p/. (That will be

apparent in the proof.)

Proof of Theorem. Consider H*(BUP, Z) = Z[c„ c2, ..., c„Y as a mod-

ule over P. It decomposes into a direct sum of homogeneous submodules,

each of which is isomorphic either (i) to Z or (ii) to Z[F]. The first type are

generated over P by monomials of the form c, X c, X • • • X c, (or products

of such) and the second type are generated over F by monomials which

necessarily involve factors of the form ct X c¡ X • • • X c¡ where at least two

indices differ. In particular, Hr(P, H>2s(BUp)) = 0 for r > 0 when s s£ 0

mod p. (Only type (ii) submodules Z[p] occur in that case.) Accordingly,

there are no nonzero contributions to the Chern classes along (the positive

part of) those rows (s ^ 0 mod p.)

Un contains a maximal torus T" so that F / Un contains the subgroup

F / (Tn) at F }p (1 /„ T) = (P fp 1) fpn T. (The subscript indicates the per-

mutation degree and also the number of factors of the following subgroup to

take.) We shall show res: H*(B(P / t/„), Z) -» H*(B((P fp 1) fpn T), Z) is a

monomorphism. (Then the methods of [Ch] may be used to calculate the

Chern classes.) First, recall that H*(BU„, Z) = Z[c„ c2, . . . , cn] restricts

injectively onto a direct summand of H*(BT", Z) = Z[xx, x2, . . . , x„], c, going

onto the /'th elementary symmetric function in xx, x2, . . . , x„. (The splitting

may be checked directly by appropriate change of basis; see also [Bo, §20, p.

66] for a more general result along these lines.) It follows that H*((BU„Y) as

0    (1-mV
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Z[c„ . . . , c„Y is a direct summand of H*((BT"Y) = Z[x„ . . . , xnY even as

F-module. (Recall F acts by permuting the factors.) Hence,

7/*(F, H*(BU„)P) -+ H*(P, H*(BTn )p)

is  a monomorphism.  Now apply  the  Nakaoka  isomorphisms.  [Ch,  pp.

181-182.]

To analyze the situation in (P / 1) / T, we resort to the diagram in Figure

1.

HUn P» .(TP)"=Pn ¡pnT^(PfpTf

A S id

Pfp T" % (PSp \)-TP"
Twist

* P* ■ (Tp)" = P* f     T

Figure 1

Here F* is just F again but, as permutation group, its action is obtained as

follows: F acts on T" (as usual), hence P" acts on (Tp)n; let F* act by

composing with the diagonal A: F* -» P". We may now make the desired

calculation by descending the diagram on the right. First, however, we need

some notation. Viewing (T"Y as a subgroup of (UnY (on the left), let

H*((BTnY, Z) = Z[X] where

X = {xx, x2, . . . , xn,

xn + \> Xn + 2' ■ ■ • ' x2n>

•*(/;-l)n+b x(p-l)n + 2> ■ • • > xpn) •

The block structure indicates the segregation of the factors. F permutes the p

rows cyclically. On the right, let H*(BTP, Z) = Z[v,, y2, . . . ,yp] where

v, = xx,y2 = xn+x, . . .,yp = *(,_1)n+1, and \etH*((BT")n, Z) = Z[Y] where

Y is identical with X, but with elements renamed y,, . . . ,ypn and reordered

by successively traversing the columns in the above presentation of X.

Y = {yi>yP+i> ■ ■ ■ 'JV-op+i

^2'>^ + 2' • • • >.>V- l)/> + 2

yP>y2p> ■ ■ ■ >ynp] - x.

P acts cyclically on each column of v's; hence P" and F*(= F) act on y as
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before. Let <¡>x, </>2,. .., $p be the elementary symmetric functions of v,,

y2, . . ., yp. Write ^ = <j>x + • • • + <¡>p. More generally, write <j>(1) = <j>, and let

<j>(2) = </>f2) + • • • + <j>£2\ . .., <^(n) have corresponding meanings for the

other blocks of Y. Finally, we shall have occasion to use cross-product

notation so that subject to appropriate identifications, 1 X <¿> X • • • X 1 =

<j>(2), etc.

Lemma. In H*(B(P ¡p T), Z) m H*(P, H*(TY), the total Chern class is

given by

c(ix)=4>+ \-pP~\

Proof of lemma. This result is contained in [Ch, Corollary 5, p. 190] but

the order of presentation there does not make this clear. However, in view of

the discussion of the F-module structure of Z[y,, . . . , yp] above, the result

follows easily from the following diagram: (true degree = twice indicated

degree.)

s

p

4
*, s. \v
es^-Ss:

Hr(P,KÎSCBT°)) ■- 0

for   r>0

in this rang«.

Figure 2

That </> and 1 - pp~x = c(irp) appear on the edges is fairly clear, and it is

discussed in [Ch, §3, pp. 183-184].

To continue the proof of the theorem, in H*(B(P f T)n),

c(ix X ■ ■ ■ X t,) = c(t,) X c(ix) X ■ ■ ■ X c(ix)

= (<i> +1 - pp-x) x (<p +1 - pp~l) x ■ ■ ■ x (4> + l - pp~x).

The descent to P* • Tpn requires a description of the homomorphism induced

by

A / id: P*Tp" = F* lpn T^P" fpn T^(P \p T)".

Making use of the Nakaoka isomorphisms, we need

H*{P», Z[yx, . . . ,yp]n) « 7/*(F, Z[ y„ . . . ,yp})"

H*(P*,Z[yx,...,yp,yp + x,...,ypn]).
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Because of the naturality of the Nakaoka isomorphisms with respect to

change of permutation group, this homomorphism is essentially just the

«-fold cup product for the cohomology of F based on the «-fold "pairing"

Z[y„ . . - ,yp]n-*Z[yx,y2, ...,yp,... ,ypn\ Thus, the desired Chern class at

the bottom level is the product

((p(1) + 1 - pp~x) U (<j>(2) + 1 - pp~x) U • • • U (</>(n) + 1 - u'-1)-

To complete the proof, we must expand this product and show it agrees with

the expression in the theorem. If we expand in powers of 1 - pp~], a typical

term is

(C) ( £ ^...A-^-i)-^

0 < r < n. Call the sum in parentheses xpr Then it will be convenient to

rewrite (C) as

(D)      *(i-^-irl-*+*[o-^"ir,-ï}-
Assume / > 0 (xp, ¥= 1) and t < n ((1 - pp~x)"~' ^ 1). We claim that most of

the terms xp, are annihilated by (1 - pp~l)n~' — 1. For, by our previous

analysis, viewing Z[y,, y2, . . . , yp„] as a F*-module, we need only include

terms contained in factors isomorphic to Z and we can exclude terms arising

entirely from factors isomorphic to Z[F], since products of such with [(1 -

pp~l)"~' — 1] are zero. Hence we can exclude

4*1 = v, + y2+ • • ■ +yp,

<f>2 = (viv2 + v2y3+ • • • + vp-iVp) + (v1y3 +y2y4+ •••)+•••

(which involves (p — l)/2 factors isomorphic to Z[F]), </>3, . . . , 4>P-\- Thus,

we can rewrite (D) as

*(i-^-'r_'-*+{    s     *?•>•••*?>)

.[(i-p'-T'-i].

The sum in parentheses is of degree tp (in the variables Y), and is part of the

tpth elementary symmetric function in the np variables y „ y2, . . . , y . (Call

that %.)

The additional monomials in <frlp generate direct summands isomorphic to

Z[F]. (All monomials left invariant by P* are already in the above sum.)

Hence, these monomials may be added without affecting the product and we

obtain

(F) *,(! - M'-1)""'= fc + •„[(! - ft'"')"" - l].
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To get the total Chern class, add up all the above terms (including í = 0 and

/ = n). The result is

1+2  fc+fc+lO-M'-1)"-!]
r=l

+ 21*Jo-^-ir,-i]./=i j
On the other hand, the first three terms,

i + "2 (      2       *(,,) • ■ • ¿(°) + </>(1)</>(2) • • • <j>(n)
/=1   V 1<i,< ■ • • <;,<n I

= (1 + <p('))(l + ¿W) - - • (1 + ¿<">)

=  1  + $,  + $2 +  ■  •  •   + <!>,„ = $,

where Í», is the ith elementary symmetric function in y„ y2, . . . ,yp„. Hence,

we obtain finally

(G) s+21 $J(l-p/>-')"-'-ll.
r = 0 J

$, of course, is the total Chern class of the torus (Tp)n = (Tny. Following

Figure 1 down on the left, we carry c X c X ■ ■ ■ X c to $; hence we have

accounted for the term c X c X • • • X c in the basic formula. To complete

the proof, now call the variables xx, x2, . . ., xpn. (Technically, this involves a

reordering and some twisting, but the O, are clearly unchanged.) Note that,

by means of the F-module argument, we can replace $v by any sub-sum

which is F-invariant and which contains all F-invariant monomials of degree

pt: (e.g. xxxn+xx2n+x_- ■ ■ xip_X)n+x = yxy2 ■ ■ • y - $*>, generally

«r^'ty/^ • • - <í>p(,,))- Let ¿, be the z'th elementary symmetric function of the n

variables xx, x2, . . . , x„. Then one such sub-sum is

$t x fy x ' ' " x h •

/»-terms

Since this last expression is the image of c, X c, X • • ■ X c„ we have

completed the proof of the theorem.

To continue our analysis, suppose as before that £: 7/ -> Un is a unitary

representation of H. We wish to find the Chern classes of id / £ : F / 7/ -»

P j U„ < Up„, and to do so we simply carry the results of Theorem I back to

F / 7/ by (id JQ*.
In general, given a G H*(BH, Z) involving only even degrees, we can define

a class 1 / a £ H*(B(P f H), Z).(See [N, §4, pp. 56-58] for definition and

properties.) If a is of degree 2i, 1 / a is of degree 2/p. Moreover, for H = U„,
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we have the Nakaoka isomorphism

H*(B(P f Un), Z) a H*(P, H*(BU„)P)

and 1 / a corresponds to a X aX ■ ■ ■ X a G H°(P, H*(BU„Y). (This

follows directly from the definition and the formal properties of the Nakaoka

isomorphism.) [Note: If //*(//, Z) is not Z-free, not only does the Nakaoka

argument fail, but the spectral sequence H*(P, H*(HP, Z)) =» H*(P / H, Z)

behaves badly. E2 =£ Ex, and as we shall see below, the filtration in

H*(P j H, Z) need not split. All this should be distinguished from the original

case investigated by Nakaoka for coefficient ring Z/pZ. This is one example

of several in which the theory for coefficients in Z differs radically from that

for coefficients in a field.]

Because of the naturality of the wreath product construction, we have

(id / H)*(c X c X ■ ■ ■ X c) = (id / £)*(1 / c) = 1 / i?(c)

and similar formulas with c, replacing c. Also (id / £)*( p) = p. Hence, the

translation of Theorem I to F / 7/ reads as follows.

Theorem II. Let £: H —> U„ be a unitary representation of H, and let P be a

cyclic permutation group of prime order p and degree p. Let p generate

H2(P, Z). Then

c(idfO = 1 Jc(0 +"2   (1 /c,(Ö)[(l - M'-1)""' - l]
í = i

+ [(i-p>-T-i].
The last step is to carry Theorem II back to G in the case 7/ is a normal

subgroup of G of index p. This requires composing with $* where 0 is the

Frobenius imbedding discussed earlier. Generally, we define 9l//_,G(a) =

$*(1 / a). (See [N, §§5 and 6, pp. 58-62] for definition and properties.) As

above, if a G H2i(H, Z), 91(a) 6 H2ip(G, Z). (If a (of even degrees) is not

homogeneous, then we denote by 9L,(a), the component of 91(a) of degree

2j. Often, the components %¡ (a), 0 <j < p, can be expressed in terms of

transfer.)

Theorem III. Let H be normal in G of prime index p, and let £: 7/ -» U„ be

a unitary representation. Let p generate H2(G/H, Z), and let y =

infG/#-»G(/i)- Then the Chern classes of the induced representation p =

indH_G£ are given by

c(p) = 9L(c(o) + "2 ^(¿))[0 - v'-T' - 1]
(=1

+ [(l-y-')"-l].
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Proof. We need only note that <E*(p) = y where p is identified with the

appropriate element of H2(P f H, Z) = H2(P, Z) ©_

It is interesting to write out some of the components explicitly. (Some of

these formulas have to be modified for special values of p and n, e.g. p = 2,

n = 2.)

cpn{p) = %n(c(0) = ncn(o)

Cpn-ÁP) =  %n-Ác(0) -  %(cH.l($))yf-1

Cpn-2(P) =  %n-2(c(0) + 9l(cn-2(t)h2(p-l)

(Terms like ^pn-X(c(0), 9l/,„_2(c(|)), . . .   may be rewritten in terms of

transfer [7/ -> G], should it be necessary.)

cp(p) = %(c(0)

(%(c(0) = 9l(c,(£)) + transfers)

cp-Ap) = %,-MQ) - ny»-x

cp-2(p) = %-2(c(0)

c2(p) - %(c(Q)

c1(p) = 9l1(c(0) = tr^c(c1(¿)).

3. Some possible generalizations. The theorems of §2 were not stated in the

widest generality. Certain extensions immediately come to mind.

First, note that Theorem I could equally have been stated for Sp j T by

ignoring components relatively prime to p. As a result, in Theorem III, we

could drop the assumption that 7/ is normal in G, but we would have to

suppress components relatively prime top.

To be even more general, it is possible to analyze the situation in S, j U„

where / is not necessarily prime. As before, we have the diagram in Figure 1'.

As before, //*(§„ H*(BUn)1)^ //*(§„ H*(BTn)') is a monomorphism.

Hence, we may attempt to descend on the right using the results of [Ch] for

S, / T. Unfortunately, we were unable to make much sense out of the

calculations. About all that one can get easily are bounds on the orders of the

components of the Chern classes additional to the elementary symmetric

functions. (These terms involve Chern classes of the natural representations

77): §7 -> Uj for 0 < j < n in a rather complicated way.)
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hfun

S, Si T"

A/id

(S//i)/ff|rjrwËUs»/iltr

Figure l'

4. Chern classes of natural representations of symmetric groups. We apply

Theorem II of §2 to the calculation of the Chern classes c¡(<it¡) of the natural

representations m¡: S, —> U, of symmetric groups by permutation matrices.

Because of the known Sylow subgroup structure of symmetric groups [Ha,

§5.9, pp. 81-83], and because restriction to the p-Sylow subgroup is a

monomorphism on thep-primary components [CE, Chapter XII, §10, p. 259],

it suffices to consider prime powers I = pm.

Our conclusion is that the p-primary components of the integral Chern

classes have orders exactly equal ¡.o the Grothendieck bounds (§1) forp odd

but often one-half those bounds forp = 2.

Before stating the theorem we need some notation. For a prime p, let vp

denote the usual p-adic valuation in Z, and if A is an abelian group, denote

Xp(a) = vp (order of a)

for each a G A.

Theorem. Let p be a prime. The integral Chern classes, c¡(TTpm) G H2'Cè>p»,

Z) have p-primary components given, for p odd, by

\(c¡(^„-)) =
0 if i & Omodp — 1,

1 + v (i)    if i = Omodp - 1,

0 < / < pm; and, forp = 2, by

X2(c2m(ir2m)) = 0, and

M<*(*2-)) = l + ^(0.
0 < / < 2m - 1.

Proof. First, note that we may replace %pm by itsp-Sylow subgroup which

we denote Pm. One knows that these Sylow subgroups may be constructed

inductively as wreath products:

PX = P,      Pm = PjPm-X.

Moreover, the natural representations of these subgroups are given by
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px = regular representation of F, = F,

Pm = id f Pm-X: Pf Pm-X^Up».

(pm = restriction of irpm to Pm. )

Thus, the obvious way to proceed is by induction on m. (Note. For the case

p = 2, slight modifications in language will sometimes be necessary, but we

mostly ignore this issue.)

Form = 1,

c(Pl)= 1-y"-1,

so that the theorem is true.

Assume now m > 1. We suppose inductively that c(pm_x) = c = 1 + c,

+ • • • + cpm-, satisfies the conclusion of the theorem. For a E //*(//, Z) of

even degrees, let w,(a) G H2i(P f H, Z) be the homogeneous component of

1 / a of degree 2/.

We are now ready to use Theorem II of §2 with n = pm~x, H = Fm_„

£ = Pm-1- Smce ci = 0 for /' sé 0 modp - 1, we have also w.(c) = 0 for i =¡é 0

modp - 1. In particular, cpm-i = 0, and the nonzero component of 1 / c of

highest degree is upm_p(c) = 1 / cp*-i_x. (We see below that this is nonzero.)

To clarify the situation we use the diagram in Figure 3.

r

Ir- 4«gr««s

• 2Cp"-l)

CtUWF--2(pm-p)

u>.   -0 Or
tp

I H«r«,   OXOCa- H.'p'1)p",'-t - I) = 0   «Inc.   c = I
■ r-t-!- *

'"puCp-D f

H«r«, only terms with s - O nod 2(p-i) occur.

\»tp-1) ~

- Ztp, t 4 0 wod P-L

Ztp,    t = ucp-l)

^-0 Ç-
u>t<0   O-

,<P-«P'

-   Mp-1)

• -4
-2

V
2(Pm-p"-1)

Figure 3

2CF--1)

The diagram roughly represents the spectral sequence of the group extension
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l-*//p-»F///-»F->l except that since Nakaoka's Theorem fails, ele-

ments such as (¿¡(c) or 1 / c, do not have any meaning in any terms of the

spectral sequence. (Modulo the filtration, of course, they represent elements

at the indicated positions.) One notes immediately that c¡(pm) = 0 for / ^£ 0

mod p — 1 since nonzero contributions either on the vertical edge or on the

rows have degrees divisible by p — 1. Also, the highest degree terms in the

rows are

-(1 / (L,-,.,)*'-' of deg/2 =p(pm-x - 1) +p - 1 =pm - 1

- (1 / c/,„-,_/))p<''-1>[*m-,-('"-,-')l of deg/2

= P{pm~x -P) + P(P - l)=Pm-P

_ pP-i[pm->) 0f deg/2 = pm - pm~'.

Hence, the (potentially) nonzero Chern class of highest degree is

V-l(Pm) -   - 0 / 9-'-l/>'"!>

and for 1 < /' < pm — p, i = 0 modp - 1,

Cj(pm) = w,(c) + additional terms.

The "additional terms" are all of order at mostp (being multiples of pp~x),

and are in the kernel of res: H*(P f Pm_x, Z) -* H*(Pm_x, Z). We shall see

that the order of e,(pm), 0 < /' < pm - p, is determined by the order of the

component <o,(c).

Lemma U. Ap(w,(c)) < 1 + vp(i).

Proof. We begin by analyzing 1 / c = 1 / (1 + cp_x + c^p_X) + • • • +

cpm-!_,) in greater detail. The homogeneous component of deg 2/ involves

terms of two kinds:

(a) "cross-terms" which restrict in Pm_, to terms of the form

ch X ch X ■ ■ ■ X cip + ch X cls X ■ ■ ■ X c,.

+ • • • + cip X c,. X • • • X c^,

where

», + i2 + • • • + ip = i (all = 0 modp — 1),

and the indices are not all the same, or, if /' = 0 modp,

(b) one term of the form 1 / c, (pj = i), which restricts in Pm_x to

Cj X Cj X ■ ■ ■  X Cj.

To see this, choose a cocycle/ = /0 + fp_x + • • • + fpm-\_x representing c,

and expand the cocycle e ® f = e //representing 1 / c. See [N, §4, item 5,
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p. 58]. Also, note that the cocycle representation shows that each type (a)

term is the transfer [F£_, -+Pm] of the element ct¡ X ct X • • • X c, G

H2'(Pm_ „ Z). (See [N, pp. 63-64] for an analogous argument.)

Suppose first that /' = 0 modp — 1, but i'20 modp. Then, no type (b)

term occurs, and, for each type (a) term, one of the indices i ¿£ 0 modp. In

that case, p(c^ X • • ■ X c, X • • • X c,) = 0, and the same is true for the

transfer of this element. Hence w,(c) is a sum of terms, each of order at most

P-
Suppose next that /" = jp where/ = 0 modp — 1. For / = ix + i2 + • • • +

*P>

v(i) >min v(iu).

Hence, for /,, i2, . . . , ip =0 modp — 1,

\(ch X c,2 X • • • X C¡) = min vp(iu) + 1 < vp(i) + 1,

and therefore the same is true for type (a) terms. Thus, to complete the proof

of the lemma, we need to show

^(1 / cj) < 1 + vp(í) = 1 + vp(j) + 1       (by induction)

= \($ + »■

This follows from the following calculation. Let q = pWcj\ Then

q(tr ■ res)(l / cj) = q tr(c, X c, X • • • X c,)

= tx(q(Cj X • • • X Cj)) = 0.

On the other hand,

tr • res(l / Cj) = (Pm: Pm_x){\ f c,) = p(\ f c,).

Hence, qp(\ J cj) = 0 as required.

The lemma proved, we now conclude

(U) \(c,(pj) < vp(i) + 1

for i = 0 modp — 1, / > 0. For, if 0 < / < pm — p, the additional terms

have order at most p, and if i = pm — 1, c¡(pm) = —(1 / cpm-,_x)pp~x has

order at most p as claimed.

Lemma L. Ap(w,(c)) > 1 + vp(i).

Proof. Suppose first that / = 0 modp — 1, but / ^ 0 mod p. Then, as

above, no type (b) term occurs, and, each type (a) term restricts to something

of the form

c,  X c,  X • • • X c, + c,  X ■ • • X c, + • • • + c,  X • • • x c,   ,
'i '2 ip ¡2 'i 'p 'p-r

where /' = /, + ••• + ip (each iu = 0 modp — 1), the indices are not all the



CHERN CLASSES OF CERTAIN REPRESENTATIONS 323

same, and also at least one iu ̂  0 modp. The latter expression is exactly of

order p. For, each term in the sum is exactly of order p. Also, the terms

belong to different direct summands in the Künneth Theorem decomposition

of H2'(Pm_x, Z), so they cannot add up to zero. It follows that each type (a)

term restricts to something of order p, and by the same Künneth Theorem

argument, their sum co,(c) restricts to something of order p, and hence

yW,(c)) > 1.

Suppose next that i = 0 modp(p - 1); let /" = jp withy = 0 modp - 1.

Consider first the type (a) term tr(c(| X c, X • • • X c, ). The argument in

Lemma U shows that vp(tr(-)) is bounded above by min¡u=/í¿0vp(i¿) + 1, and the

argument presented above (restricting to Pm-X) shows that its order is

bounded below by the same quantity; hence this is its exact order. Suppose

one of these type (a) terms has order p"'(,)+1. Then it is easy to see

Xpfa^c)) > vp(i) + 1. For, Tes(p"''(')o)i(c)) is a sum of terms of the form (type

(a))

p"/')(c.  x c.  x . . . x c. + . . . + c. x c. x . . . x cL ,)

plus one additional (type (b)) term

p"'(i\Cj X CjX ■ ■ ■ X Cj).

Since vp(i) = v (J) + 1, the latter is zero, and we have assumed at least one of

the former terms is nonzero. By the Künneth argument used above,

Tes(p"i'Mo3i(c)) =7*= 0. Suppose, then, on the other hand, that every type (a) term

has order < p"'(,) (as would certainly be true for i >pm_l, for example).

Then, to prove the lemma, it suffices to prove Ap(l / c) > vp(ï) + 1. We shall

prove this below. (Subcomplex argument)

Given Lemmas U and L, we can (almost) complete the proof of the

theorem. If Xp(u¡(c)) > 1, Ap(c,(pm)) = \(u¡(c)) since the additional terms (to

be added to <o,(c)) have order at most p. If Ap(w,(c)) = 1, we need only show

ci(Pm) ̂  0 (because then its order is necessarily p). But, since the additional

terms are in Ker(res), res(c,(pm)) = res(w,(c)) ^0 as above. Thus, we can

conclude finally that

\k(pj) = vp(i) + 1,

0 < / < pm — p. Thus, it remains only to show that (1 / cpm-¡_x)pp~x =£ 0

(so that its order is necessarily p). One can see this directly by a simple

analysis of the product structure in the F2-term of the spectral sequence of

the group extension 1 -> Pm_, -> Pm -» F -* 1. However, it also follows from

the subcomplex argument presented below.

Subcomplex argument. Let C be a cochain complex which is Z-free and

suppose ß G H2'(C, Z). Let q be a power of the prime p. Suppose there is a

homomorphism xp: H2i(C, Z)-+Z/qZ such that xp(q) generates Z/qZ. Let W
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be a F-free resolution of Z. Then, we claim that

1 / ß G H2ip {HomP(W, C9p ))

has order > pq. Also, (1 / ß)p' * 0 in H2ip+2'(KomP(W, C®')) for / > 0.

The product arises from the obvious pairing

H*(HomP(W, Z9')) ® H*(UomP(W, C®' )) -, H*(HomP(W, C9p ))

Hi

H*(P, Z).

In our application, C = Hom,>m (Z, Z), where A' is a Fm_,-resolution of Z,

¿8 = Cj, and 9 is the order of c,. (We shall show the existence of the required

homomorphism xp inductively later.)

Proof of claims. (Note: The use of the module M in the following

argument was suggested by the analysis in [ST].)

Let ß G H2'(C), xp: H2'(C)^>Z/qZ be as above. For convenience, write

n = 2». Let Z" and B" denote the cocycles and coboundaries of the complex

C. Form the usual Z-free cochain complex M as follows:

M"~x = Zy,    M" = Zx,     MJ = 0 otherwise;

d»-V(y) = qx.

Then HJ(M) = 0 for/ j= n, and Hn(M) = Z/qZ. Moreover, because Z" is

free, we can fill in the diagram

0     _,       B"       -,     Z"     -*    Hn(C)     ->    0

+J- +1 +4-

0     -»    M""1     -»    Ai"    -,      Z/^Z      -»    0.

(Call all the vertical maps xp for convenience.) Finally, as C = B"+l © Z",

we can extend xp to a map of complexes

->    C"-2    -*    C""1     ->    C"    -»    c+1    ->...

-,       0       -,    Mn~x    ->    M"    -*       0       -►_

Because of the naturality of the wreath product under Hom^rid, xp9p) it

suffices to analyze 1 / xp(ß) G 7/""(Horn,,(IF, M®")). Since ^(/J) G H"(M)

s= Z/qZ generates, we have xp(ß) = tx where x<-> 1 and (t, q) = 1. On the

other hand, it is easy to see that H*(HomP(W, M9p)) is ap-group. (For, by

the Künneth Theorem, H*(M9p, Z) is ap-group, and hence, so is the F2-term

of the "first" spectral sequence

H*(P, H*(M9p, Z)) => H*(UomP(W, M®p ))

of the double complex.) Thus, we may replace 1 / xp(ß) = 1 / ?x = ^O / x)
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by 1 / x in our deliberations. Notice that since x G M" represents \, e f x G

Horneo, (M")9p) represents 1 /* (e / x is defined in [N, p. 58]. If we

choose W with W0 = Z[F], we may identify e / x with x ® x ® • • • ® x G

(M")9p.)

To calculate in the double complex HomP(W, M9p), we consider the

so-called "second" spectral sequence, [CE, Chapter XV, §6, pp. 330-333]

H*(H*(P, M9p )) => H*(HomP(W, M9p )).

To calculate H*(P, M ® M & • • • ® M), we must first analyze M9p as a

F-module. The case p = 2 is a little different, so we suppose p > 2. Then,

M9p breaks up as follows into homogeneous components:

degree Z-basis F-module

np -x ® x ® • • • ® x        -Z

np-\        -y ®x ®- ■ • ®x,      - Z[F]

x ® x ® ■ ■ ■ ® y,

x®y®• ■ ■ ® x

P- 1
np-2-^- copies of Z[F]

np - p + 1 -x ® y ® • ■ ■ ® y,      -   Z[F]

y ®y ® • • • ®x,

- y ® • • • ®y ®x ®y,

- y ®x ®y ® ■ ■ ■ ®y

np - p        -y ® y ® • • • ® y

In particular, except in the extreme degrees np and np — p, the module

(M9py, of degree/, is free over Z[F]. Hence, H°(P, (M®p)>) is Z-free and

Hr(P, (M9py) = 0 for r > 0. Thus, the first term of the spectral sequence,

E, can be represented diagrammatically:
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I*»X8...«X

2Cy®x®...<g>x+...+ x® ...®>c®y)

Z/pZ T/Pl
■VpX

-S= pn

Z(x®jr®...®y+..._-t-y® ...®y®x)

Zy®}®...®y

■ • i
■ < i i i

i ■
O-O-

I I
O-O-O-O-0-

I
-o-

Co-o-o-o-p-o-
I  I  I  1 II

0-i-O-•-O-1-s
I       Z/pT.     i      x/pX     i      Z/pZ.

pn - p

(Note that y ® • • • ® y is in fact invariant under o (the generator of P)

despite the signs involved in the action of F on the complex. For, p being

odd, o is an even permutation.) The differential dx is trivial except on the

vertical edge. There, dxJ"'~x, the relevant differential, is calculated as follows:

d(y ® x x + x ® x ® ® y + x ® • • • ® y

+ • • • + x ® y ® •

x + • • • + #x ® • •

® x)

= qx<8 ■ ■ • ® x + qx ® • •

= gp(x ® x ® • • • ® x).

(Similarly, at the lower end, d?'"p~p: Z -> Z is multiplication by <?.) Thus, the

F2-term of the spectral sequence looks like the following:

2/pqZ       Z/pZ _    7/pI Z/pIq_Z/p7-0_ All no«rero t«rm$   Way«

" K[Tl I I eV'n  t0t*1 d'8r"'
o— O—O—O—O—o—o—o— o— o—

l\l  I  I   I  I  I  I   I
—o—-O—O—O—O—O—O—O— O-

I   l\l   I   I   I   I   I   I
o—o—O—O— O—o—O—O—o-
I   I   l\l   I   I   I   I   I
O—o—o—o—o—O — O—O—o-
I   I   I   l\l   I   I  I   I
o—o—o—o—o—o—o—o—o-

I   I   l\l   I   I   I
0^_û-r-O—O— O—O—O—O—O-

&2P I      I  l\l      I
i—O—*—O—i—o—l—o—1—o- _ .MI   nomero terms   kave

Z/pZ        Z/PI      -Z/pl -   Z/pT"   oé¿   t.ttia.|r...

Figure 4
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We claim that dr = 0 for r > 0. To see this, it suffices to calculate the

differentials for s = np — p, (the bottom edge). Moreover, it suffices to show

¿Xnp-p. Hnp-P (h2(P, M^^^H""-"*1 (H°(P, M9p ))

is trivial. For, viewing the entire complex as a module over HomP(W, Z9p)

(for which the spectral sequence trivially reduces to H*(P, Z)), we note that

every generator on the aforementioned bottom edge may be obtained by

multiplying a generator in position (np — p, 2) by some power of p G

H2(P, Z).

To show dlnp-p = 0, we calculate the order of Hpn-pJr2Q\omP(W, M9")).

To do this, it will be easier to work in homology. Let M = Homz(N, Z),

where Nn_, = Zu, Nn = Zv and dn(v) = qu. Then

HomP(W, M9p)^ Homz(W ®P N9p, Z)

and

7/° (P, M9p) = Homz(7/0(F, N9p ), Z).

(Thus, we may use the universal coefficient theorem to calculate the cohomol-

ogy on the left.)

The F-module structure of N 9p in the relevant lower degrees is indicated

in the table:

deg

pn

pn - p + 2

pn - p + 1

•basis

u® ®v

v Q9u

u ®u

59«,

®v,

F-module

izl
2

Z[P]

copies of Z[F]

pn-p

u ®v

u ®u

®u

®u

The E '-term is similar to what occurred above, but at the lower end, we have

dl„-P+x: H0(P, (N9p)pn_p+X) « Z^7/0(F, (**')„_,) « Z

which is multiplication by q. [Modulo o — 1, t? ® u ® • ■ ■ ® u generates,

and d(v ® u ® • • • ® u) = q(u ® • • • ® «).] Thus
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(Hl)
Hpn-p+x(H0(P,N9p)) = 0,

Hp„_p(H0(P,N9p)) = Z/qZ.

The F2-term of the spectral sequence looks like

I     I     I      I
—o—o—g—c

rr-rr-r
T

-?-r
.0—0—0—0—0—0—0—0—

I   I
o—o-

• 0—o-

.u
I   I

-O—O—O—O—O—o—O—o—
lili

—O—O— O— O—Q

i  i   i   i T
1   I

Moreover, dl¡pn_pJt.2 = 0_(in fa'ct dr = 0 for r > 0). For, we may tensor with

Z/pZ to get a complex N with vertical differential d„: Z/pZ—> Z/pZ trivial.

In the spectral sequence for W ®P N9p all differentials dr — 0, r > 1. Com-

paring the spectral sequences and noting that

Hnp-P {Hx (F, N9p )) = Z/pZ -> //„_, (//, (F, TV®" )) = Z/pZ

is an isomorphism allows us to conclude that dlfn_p+2 = 0. Thus,

(H2) Hpn_p+x(W ®P N9p ) a Z/pZ.

The universal coefficient theorem for cohomology now yields

(Cl)    Hp"-p+2 (H°(P,M9p)) ^ Ext(/^_J) + 1(//0(P,JV®')),Z) = 0

(using (HI)), and

(C2)   HP"~P+2 (Hom,(rF, M9»)) s Ext(//^_|,+1(pf ®, M9p), Z)

aZ/pZ

(using (H2)). It follows that d2,np~p = 0, since otherwise, using (Cl), we

conclude that the left-hand side of (C2) is trivial.

The basic contentions are now proved (at least forp odd). For examination

of Figure 4 yields

Hpn (HomP( W, M9p )) « Z/pqZ,
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with generator 1 / x (represented by x ® x ® • • • ® x), and

Hpn+2(p-X)(HomP(W, M®*)) =* Z/pZ

with generator (1 / x)pp   '•

The case p = 2 is quite similar but differs in details, o does not act trivially

on (M„_,)®2 = Zy ® y; instead o(y ® y) = - y ®y.

The F2-term of the spectral sequence looks like

Z/»*1     Z/22     z/iZ       ihi
x®x v—o—f—o—f— O—T-

fe5T i      i   1d¿¿&=^o—o—o-o- o —

o—-»—o—1—o—i—o —
Z/2Z       Z72Z       I/2Z

One can show d2'2n~2 — 0 fairly easily by direct calculation in the complex

or one can use a duality argument as above.

Note. The method we have employed reduces the study of the homology of

W ®PN9p to that of H0(P,N9p). This is an interesting Z-free chain

complex, and the method is perhaps interesting as a direct method for

studying integral homology. Note in particular that the "increase in torsion"

for 1 / x is immediately apparent.

With the completion of the subcomplex argument, we are ready to finish the

proof of the theorem. To do so, we need to define appropriate homomor-

phisms xp. For m = 1, cp_x(px) = — pp~x generates H2(p~x\Px, Z) which is

cyclic of order p. Suppose inductively we have shown that c¡(pm) is of order

q' =p*>(,)+1 (/= 0 modp — 1). To continue the induction, we need xp':

H2i(Pm, Z)-> Z/q'Z such that xp'(c¡(pm)) generates. Suppose first that 0 < i

< pm — p. If there is a type (a) term

tr(c,. X • • • X ct)

of order q' in w,(c), the restriction of this term to H2'(Pm_x, Z) is a sum of

terms of order q'. Using the Künneth Theorem, we can obtain a homomor-

phism onto Z/q'Z such that res(<«?,(c)) goes into a generator. Since res(c,(pm))

= res(w,(c)), one sees how to obtain the desired xp'. If, on the other hand,

i = jp and every type (a) term in o?,(c) is of order < q', then 1 / c, is of order

q'. Inductively, xp: H2j(Pm_x, Z) -» Z/qZ (q' = pq) carries c, to a generator of

Z/qZ. As above, in the subcomplex argument, HomP(id, xp9p) carries 1 / c, to

a generator of H2ip(YiomP(W, M9p)) = Z/pqZ = Z/q'Z. Since xp carries

every other component of c(pm_x) to 0 (by degree considerations), it follows

that HomP(id, xp9p) is trivial on every term contributing to c¡(pm) except

1 / Cj. Thus, HomP(id, xp9p) induces the required xp'. Finally, for i = pm — 1,
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cÁPm) = -0 / cp^-'-\)ßpl' and, as above,  HomP(id, xp9p) induces the

required xp'.

Note. It is in fact true that, at each stage, H*(HomP(W, M9p)) is a direct

summand of H*(Pm, Z), and c¡(pm) generates a direct summand of H2'(Pm,

Z), but it was possible to get away with a little less in the proof.
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