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ANALYTIC EQUATIONS AND SINGULARITIES

OF PLANE CURVES
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JOHN J. WAVRIK

Abstract. Theorems (Artin, Wavrik) exist which show that sufficiently

good approximate (power series) solutions to a system of analytic equations

may be approximated by convergent solutions. This paper considers the

problem of explicity determining the order, ß, to which an approximate

solution must solve the system of equations.

The paper deals with the case of one equation, f{x, y) = 0, in two

variables. It is shown how ß depends on the singularities of the curve

fix, y) = 0. A method for obtaining the minimal ß is given. A rapid way of

finding ß using the Newton Polygon for/applies in special cases.

Introduction. Let k be a field of characteristic 0 complete with respect to a

non trivial valuation. We use k{ } to denote convergent power series; k[[ ]] to

denote formal power series; and k[ ] to denote polynomials. Let x =

(jc„ . . . , xn), y = ( v„ . . . ,yp), z = (z„ . . . , zr), f = (/„ . . . ,/J with /■ E

k{x,y}[z].

The following theorem was proved in [7]:

Theorem. Va 3ß such that if y(x) E k[[x]Y with y(0) = 0 and z(x) E

k[[x]]r satisfy

f(x, y(x), z(x)) = 0   mod (xf.

Then 3y(x) E k{x}p withy(0) = 0 and z(x) E k{x}r such that

(l)f(x,y(x),z(x)) = 0,
(2) y(x) =y(x), z(x) = z(x) mod (x)a.

This result may be paraphrased by saying that sufficiently good approxi-

mate solutions to a system of analytic equations can be approximated by

actual solutions. The corresponding theorem in the case in which the / are

polynomials was obtained by Artin in [1]. The theorem has applications in

deformation theory (see [7])—it is the genesis of results asserting the existence

of only finitely many obstructions to deformation. The proof given in [7] is
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purely existential. No calculation, estimate, or bound for ß is obtained from

the proof. If the theorem is to be applied to a deformation theory problem, no

means is provided for determining when the last obstruction is encountered.

The purpose of the present paper is to explore means for explicitly calculating

ß.
The number ß must depend on the nature of the singularity determined by

f(x, y, z) = 0. To clarify this connection we restrict to the case n = p = m =

1, r = 0, / a polynomial. Thus we seek to find solutions of a single polynomial

equation, f(x, v) = 0, in two variables.

The proof in [7] uses a complex multiple induction. An approach to the

calculation of ß would be a more detailed analysis of that proof. In §1 we

present a drastically simplified version of that proof. This simplified proof

yields an explicit value for ß which, unfortunately, is not usually close to the

minimal value.

In §2 an alternative proof is provided which is based on the resolution of

singularities by quadratic transformations. This proof provides a criterion for

determining when the last obstruction is encountered.

In §3 the resolution scheme is used to find the minimum ß in specific cases.

In §4 a method for rapidly determining ß from the Newton Polygon for/is

discussed.

1. A proof of the theorem.

Theorem I. Given a > 0 andf(x,y) E k[x,y] 3ß such that ify(x) E k[[x]]

satisfies f(x, y(x)) = 0 mod (x)ß then 3y(x) £ k[[x]] with

(l)f(x,y(x)) = 0,
(2)y(x)=y(x)mod(xy.

Theorem II. Given f, g E A:[x,^] Vy 3ß such that ify(x) E k[[x]] satisfies

(ï)f(x,y(x)) = 0 mod (g(x,y(x)) + (*)'),

(ii) g(x,_y(x)) m 0 mod (x)\ _

thenf(x,y(x)) = 0 mod (g(x,y(x))).

Proof of Theorem II. We show that ß = y — 1 satisfies the requirements.

Let y(x) satisfy the hypothesis. If g(x,y(x)) is a unit in k[[x]] then the

conclusion is obvious. If g(x, y(x)) is not a unit then we write g(x, y(x)) =

xsu(x) where u(0) =£ 0 and 1 < s < y.

Now

f(x,y(x)) = A(x)g(x, y(x)) + B(x)x'3

= (A(x) + (u(x)ylB(x)x^)g(x,y(x))

= 0   mod (g(x,.y (*))),

since ß = y — 1 > s.
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Proposition 1. Given f(x,y) £ &[*,.)>] Va, y 3/3 > y such that if y(x) £

k[[x]] satisfies

f(x,y(x)) = 0   mod(xy,

fy(x,y(x))^0   mod(x)y,

then 3y(x) £ k[[x]] with

(l)f(x,y(x)) = 0,

(2)y(x) =y(x) mod (xf.

Proof. Let g = (fy(x, y))2. We will show that ß = a + 2y satisfies the

requirements.

Since f(x,y(x)) = 0 mod (x)ß we have f(x,y(x)) = 0 mod (g(x,y(x)) +

(x)ß). Also ß = a + 2y > 2y - 1 and g(x,y(x)) 5* 0 mod (x)2y. By the

previous theorem we see that fix, y(x)) = 0 mod (g(x,y(x))).

Let F(x, F) = f(x,y(x) + Y) so that F(x, 0) = /(*,/(*)) and

dF(x,Q)/dY=fy(x,y(x)).

Let y be the ideal in k[[x]] generated by dF(x, 0)/dY and /' = (x)a. We have

fix, y(x)) = B(x)(fy(x, y(x)))2. The left side is = 0 mod (x)ß while

(fy(x,y(x)))2 5* 0 mod (x)2y thus 5(jc) = 0 mod (x)' with t > ß - 2y = a.

This shows that /^(x, 0) E J2 ■ J'. We now apply the Tougeron Implicit

Function Theorem ([5, III.3.2], or [7, Theorem 3]): there is a y(x) E J • J'

such that F(x,y(x)) = 0. Set^(x) = y(x) + y(x). Then f(x,y(x)) = 0 and

y(x) = y(x) mod (x)a as required.

Proof of Theorem I. The task is to reduce the proof to a case of

Proposition 1.

Write f(x,y) andj^,(x,_y) in powers of v. Let D(x) denote the discriminant

of / (as a polynomial in v). We can find [6, Theorem 9.6] polynomials A(x, y),

B(x,y) £ k[x, y] so that

D(x) = A (x, y)f(x, y) + B(x, y)fy(x, v). (*)

Case 1. / is irreducible.

In this case D(x) sé 0. Let d = ord(£>(x» If y(x) E k[[x]] satisfies

fix, y(x)) = 0 mod (x)d then we see from (*) that fy(x, y(x)) ^ 0 mod (x)d.

Let a be given and set ß = 2d + a. By Proposition 1 we find a solution,y(x),

to fix, y(x)) = 0 such that y(x) =y(x) mod (x)a.

Case 2. f is reducible.

Let / = /)■••/, be a factorization of / into irreducible factors. Let ßi

satisfy the condition of Theorem I for the equation f(x, y) = 0. Let ß = /?,

+ • • • + ß,. \if(x,y(x)) = 0 mod (x)ß then 3/ s.t. f(x, y(x)) = 0 mod (x)ß.

By Theorem I, applied to/, we findy(x) such thatf(x,y(x)) = 0 hence also

f(x,y(x)) = 0. Moreover y(x) =y(x) mod (x)a.
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Notice that we have not only proved the theorem, but we even have a

formula for ß that satisfies the conditions:

If fix, y) E k[x, y] is irreducible and d = ord(D(x)), where D(x) is the

discriminant of /, then ß = 2d + a satisfies the conditions of Theorem I. If

fix, y) factors, / = /, • • • / with / irreducible, then ß = /3, + • • • + ß, with

/?, as above for/.

2. ß and the resolution of singularities. In this section an outline is given of

an alternative proof of Theorem I.

We will always assume that fix, v) = 0 has no multiple solutions. This will

be the case, for example, when fix, y) is irreducible.

Proposition 2. If fix, y) = 0 is regular at (0, aQ) then there is a solution to

fix, y) = 0 with y(0) = a0 if and only if there is a solution to fix, y) = 0 mod

(x)2 with y(0) = a0.

Proof. Apply the Implicit Function Theorem.

We will refer to this as the "IFT case".

Remarks. (1) In the IFT case, ß = max(a, 2) satisfies the conditions of

Theorem I.

(2) The solution is unique in this case and the a¡ (i > 1) can be calculated

by recursion.

(3) Kung and Traub [4] provide an algorithm for computing the a¡ (i > 1)

with lower "cost" by using Newton Iteration.

Now suppose that/(x, v) = 0 has an r0-fold point at (0, a0) with r0 > 1. We

write fix, a0 + xy) = xr<fx(x,y).

Definition 1. /,(*, v) = 0 is called the proper transform of fix,y) = 0

under the standard quadratic transformation with center (0, a0).

Definition 2. The points (0, ax) satisfying /,(0, ax) = 0 are said to lie over

(0, a0).

The process is repeated using/, and the (0, a,).

Proposition 3. A plane curve singularity may be resolved by a finite

sequence of standard quadratic transformations.

Remark. The proof of Proposition 3 is found in [3]. Bounds for the number

of quadratic transformations required can be given in terms of the "apparent

genus" of the curve and, ultimately, in terms of the degree of fix, v).

Proposition 4. If y = a0 + axx + • ■ • + akxk satisfies f(x,y) = 0 mod

(x)ß for ß sufficiently large, then the (0, a¡) are centers of successive quadratic

transformations and conversely.

Proof. If (0, a0) is an r0-fold point then y = aQ + a\x + • ■ • satisfies

f(x,y) = 0 mod (x)ß if and only if y, = ax + a2x + . . . satisfies fx(x,yx) =
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0 mod (x)ß~r°. The proof follows from this.

Remarks. (1) Since a finite (bounded in advance) sequence of quadratic

transformations leads to regular points, the IFT case will apply after a finite

number of steps.

(2) The last obstruction is encountered when fk(x, y) = 0 is regular at

(0, ak).

(3) Theorem I follows from Propositions 3 and 4.

(4) Since the multiplicity of a singularity does not increase under quadratic

transformation, a bound for ß can be obtained. This bound is usually

excessively large.

3. Computing the minimum /?. We record the results of the resolution

process of §2 in the form of a "tree diagram" showing the points that arise in

successive quadratic transformations and their multiplicities. This diagram is

similar to the classical diagram of "infinitely near points" to a singularity.

Example \.f(x,y) = v5 + 2xy4 - xy2 - 2x2y + (x4 - x3) [6, Chapter IV,

§3.3] has the tree diagram <-• at (0, 0). Thus (0, 0) is a 3-fold point with a

simple point lying over it. The termination of the diagram means that the

simple point has no points lying over it (it has a vertical tangent!).

Example 2. f(x,y) = v4 - y3 - 2xy2 + (2x4 - x2)y + x5 (this is the pre-

ceding example with x sandy interchanged) has tree diagram

i i

3

at (0, 0). (0, 0) is a triple point with two simple points lying over it. One of the

simple points has no points over it. . . the other has a sequence of simple

points over it.

The tree diagram will always have a finite number of branches some of

which terminate and some which continue indefinitely with a line of simple

points. We attach to the j'th branch in the tree the number ß, = ßj(a).

Definition 3. (a) For a terminating branch with multiplicities r0,. . ., rk

setA-r0+ ■ ■ ■ + rk + l.

(b) For a nonterminating branch with multiplicities r¡ set /3, = 2/~o/7 + *■

Theorem 1. ß = max(/3,) is the minimum ß which satisfies the conditions of

Theorem I.

Proof. This follows from the observation used in the proof of Proposition

4.

Remark. For a nonterminating branch there is a smallest k so that r¡ = 1
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when / > k. If a > k we obtain /3,, = r0 + • • • + /-£_, — A: + a. We can

always use this procedure for the case of a nonterminating branch: Take the

sum of the multiplicities of all vertices corresponding to singular points,

subtract the number of such vertices and add a.

Examples. (l)f(x,y) = y5 + 2xy4 - xy2 - 2x2y + (x4 - x3). ß = 5.

(2)f(x, y) =y4-y3- 2xy2 + (2x4 - x2)y + x5. ß = max(5, a + 2).

Q)f(x,y) - y5 - xY + x5 [2, p. 48, Example 2]. ß = 6.

(4) f(x,y) = v" - xm (n, m > 0, n \m). ß = m + 1. (We may compare

this with the value ß = 2m(n - 1) + a found in §1.)

(5)f(x,y) = y" - xkn (n, k > 0). ß = kn - k + a (minimum if a > k).

4. /3 and the Newton Polygon. In this section we show how ß may easily be

obtained from the Newton Polygon ior f(x,y) in special cases.

These methods apply only to solutions that begin with a0 = 0. For a0 =£ 0

the origin of the coordinate system must be translated.

We will also assume that v is not a factor oí fix, y). The case in which it is

a factor is treated at the end of the section.

Let fix, y) = ~2a¡jX'yJ. Let / = {(i,j)\ aij =£ 0}. We define a partial order on

R2 by (xx,yx) < (x2,y¿ if xx < x2 and>», < y2. Let S = {(x,y) £ R2| (x,y)

> (i,j) for some (#",/) E /} and let S be the convex closure of S.

Definition 4. The Newton Polygon off at (0, 0) is that part of the boundary

of S which is not contained in the coordinate axes.

Examples. The Newton Polygons for Examples 1-5 are given in Figures

1^1.

vs + 2xy"-xy2- 2x2y + (x4 - x3) -Ixy2 + (2x4 - x2)y + Xs

Figure 1 Figure 2
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(0,«)

I_i_I_■_L

ys-x2y2 +xs y"-xm (m. 0)

Figure 3 Figure 4

Definition 5. By the declivity of a segment of the Newton Polygon we

mean the negative of the reciprocal of its slope.

Thus if d is the declivity the segment is part of a line whose equation is

x + dy = X for some constant X.

Definition 6. A Newton Polygon is called simple if every segment of

integral declivity contains only two vertices.

The Newton Polygons in Figures 3 and 4 are simple. The Newton Polygons

of Figures 1 and 2 are not simple.

Let m = ord(/(x, 0)). If x + dy = X for d and X integral is the equation of

a segment of the Newton Polygon we put Xd = X.

Theorem 2. If the Newton Polygon for fix, y) is simple then ß = max(w +

1, Xd — d + a) satisfies the conditions of Theorem I.

Proof. y(x) = 0 can solve fix, y(x)) = 0 mod (x)ß for ß = m but not

ß = m + 1. Thus we havey(x) = acxc + . . . with ac ¥" 0. Now/(x, x°y) =

~2aiJyJxx' + higher terms (where the sum is taken over all pairs (/',_/) for which

a¡j ^ 0 and i + cj = Xc is a minimum). If there is only one such term then,

since Xc is minimal, the line x + cy = Xc must he on only one side of the

Newton Polygon, so \c < m. Since ac j= 0 we cannot have fix, y(x)) = 0 mod

(x)^ + 1. However we have assumed f(x,y(x)) = 0 mod (x)ß for ß > m + 1 so

this case does not occur. There must, therefore, be two pairs (i,j) in this sum.

The line x + cy = Xc then coincides with a segment of the Newton Polygon

with integral declivity and so there are exactly two terms in the sum. We write

f(x, xcy) = xKfx(x,y),

and note that /,(0, v) = Sú^vA Since ß > m + 1 > Xc + 1, ac must be a

(nonzero) root of /i(0,>>) = 0. Since there are only two terms in/,(0,.y) any

nonzero root is simple so 3/,(0, ac)/dy + 0. Now clearly/, is the same as the
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/, obtained by applying the method of §2 with a0 — • • • = ac_, = 0 and

Xc = r0 + • ■ ■ + rc_x. At this stage we are now in the IFT situation and

obtain a nonterminating branch in the tree diagram. The analysis of the

preceding section shows that /3(a) = Xc — c + a works on this branch. This

completes the proof.

Simplicity of the Newton Polygon can be immediately detected. The proof

of Theorem 2, however, applies in a more general situation. It should be

observed that simplicity was used only to guarantee that /,(0, v) had no

nonzero multiple root.

Let (/,,7i), . . . , (ik,jk) be the vertices of a segment of the Newton Polygon.

We call F(y) — ̂ „a^y^ the associated polynomial of this segment.

Theorem 3. If, for every segment with integral declivity, the associated

polynomial has no nonzero multiple roots then the conclusion of Theorem 2

applies.

Example 6.fix,y) = y3 + xy2 — 2x2y + x5 has a Newton Polygon identi-

cal to that in Figure 2. The associated polynomial for the initial segment is

F(y) = y3 + v2 — 2y which has no multiple roots. There are only two ver-

tices on the other segment (which also has integral declivity). The two values

of X are X, = 3 and X3 = 5. Theorem 3 applies, ß = max(3 - 1 + a, 5 — 3 +

a) = 2 + a.

By contrast, however, Theorem 3 does not apply to Examples 1 or 2.

Proposition 5. If A(x) E k[x] and g(x,y) = fix, A(x) + v) then the same

ß works for both f and g.

Proof. Obvious.

In some circumstances we can easily convert a nonsimple Newton Polygon

into a simple one by applying a transformation of this type. If F(y) is the

associated polynomial to a segment with integral declivity d and if a is a

nonzero multiple root of F (y) then A(x) = axd will at least eliminate the

problem with this root.

Example. For Example 1 the associated polynomial for the segment of

declivity 1 is F(y) = - y2 - 2v - 1 = - ( v + l)2. a = - 1 is a nonzero

multiple root. Let g(x, y) = fix, y — x). Then

g(x,y) = y5 - 3xy4 + 2x2y3 + (2x3 - x)y2 - 3^ + (x5 + x4).

The Newton Polygon for g(x, y) is
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Figure 5

This Newton Polygon has no segment with integral declivity. Therefore

/3 = 4 + 1 = 5 satisfies the condition of Theorem I for g(x, y) and so also for

fix,y).
The same transformation also works for Example 2.

Now suppose f(x,y) = yg(x, y) and that Theorem 2 or 3 applies to g(x, v).

Let m and Xd be as in Theorem 2 for g(x, y).

Theorem 4. ß = m + a satisfies the conditions of Theorem I for fix, v).

Proof. If y(x) satisfies fix, y(x)) = 0 mod (x)ß then either y(x) = 0 mod

(x)a (in which case we are done) or else ord(y(x)) = c < a.

f(x,y(x)) =y(x)g(x,y(x)),

so

g(x,y(x)) = 0mod(x)ß-c.

We have ß-c>m + a-c>m + l so y(x) coincides mod (x)a with a

nonterminating branch for g(x, y) = 0 provided ß — c > Xc — c + a. Since

Xc < m this is the case.
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