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DIFFERENCE EQUATIONS:
DISCONJUGACY, PRINCIPAL SOLUTIONS,

GREEN'S FUNCTIONS, COMPLETE MONOTONICITY1

BY

PHILIP HARTMAN

Abstract. We find analogues of known results on nth order linear differen-

tial equations for nth order linear difference equations. These include the

concept of disconjugacy, Pólya's criterion for disconjugacy, Frobenius fac-

torizations, generalized Sturm theorems, existence and properties of prin-

cipal solutions, signs of Green's functions, and completely monotone fami-

lies of solutions of equations depending on a parameter.

1. Introduction. In the linear nth order difference equation

n

(Pu)(m) = S aj(m)u(m + j) = 0,    where a„(m) = 1, a0(m) ¥^ 0,   (1.1)
7 = 0

assume that the independent (integral) variable m ranges over a finite interval

I = [a, b] = {a, a + 1, . . ., b) or an infinite interval / = [a, oo) = {a, a +

1, . . . }. The coefficients a0, . . . , a„_, are defined on /, while the solution u

is defined on the set /", where I" = [a, b + n] iî I = [a, b] and /" — / if

/ = [a, oo).

It is known that if n = 2 and

(-l)nao(m)>0, (1.2)

then analogues of the Sturm comparison and separation theorems for linear

second order differential equations are valid for (1.1); cf., e.g., [4, Chapter

XVI], where the algebraic signs seem to be incorrect in Theorem IV (see §6

below).

The object of this paper is to carry analogous results on linear «th order

differential equations over to (1.1). These include the formulation of the

concept of disconjugacy in §1, the analogues of Pólya's [17] criterion for

disconjugacy in §5, the generalized Sturm comparison theorems of [6], [7], [13]

in §6, discussion of the sign of Green's function of [11], [12], [16] (cf. [2, pp.

105-109]) in §7, existence and properties of principal solutions of [6], [7] in §8,

inequalities for certain solutions in §9, and completely monotone families of

solutions of equations depending on a parameter [8] in §10. We illustrate the
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2 PHILIP HARTMAN

result of §10 with an application to Bessel functions. In §11, we consider the

existence of a positive solution of a (not necessarily disconjugate) difference

equation.

In order to define the concept of "disconjugacy" for (1.1), we generalize the

familiar notion of "node" in the case n = 2; cf. [4, p. 131]. These generaliza-

tions will be chosen to yield analogues of Rolle's theorem; cf. Proposition 5.1

below. For a finite or infinite sequence of real numbers u: u(a), u(a + 1), . . . ,

we say that m = a is a "node" for u if u(a) = 0 and we say that m( > a) is a

"node" for u if either u(m) = 0 or u(m — l)u(m) < 0. The difference equation

(1.1) is called disconjugate on I" in the restricted sense or r-disconjugate if no

solution u ^ 0 has n nodes on I". When I = [a, oo), (1.1) is called nonoscilla-

tory on I if every solution u ^ 0 has only a finite number of nodes. [Cf. [4, p.

221], where n = 2, / is a finite interval, and (1.1) is called "nonoscillatory"

(instead of "disconjugate") if no solution u¿0 has two nodes on / ' (instead

of/2).]

When n > 2, we can use another concept of "node" and "disconjugacy".

For a finite or infinite sequence of real numbers u: u(a), u(a + 1), . . . , we say

that m = a is a "generalized zero" for u if u(a) = 0, and we say that m ( > a) is

a "generalized zero" for u if either u(m) = 0 or there is an integer k,

1 < k < m — a, such that (— l)ku(m — k)u(m) > 0 and, if k > 1, u(m — k +

1) = • • • = u{m — 1) = 0. This is motivated by the fact that u should be

considered to have an odd or even number of generalized zeros on (w —

k, m] according as u(m — k)u(m) < 0 or > 0. The difference equation (1.1) is

called disconjugate on I" if no solution u ^ 0 has n generalized zeros on I".

Obviously, if m is a node for u, then it is a generalized zero for u, so that

disconjugacy implies r-disconjugacy. It turns out that the two notions, discon-

jugacy and r-disconjugacy, are equivalent (§5).

If (1.1) is disconjugate on /", then of course no solution u{m) ^ 0 has n

zeros on /". But the converse is false (even if (1.2) holds), as can be seen from

the example

u(m + 2) - 2u(m + 1) + 3u(m) = 0   for m = 0, 1. (1.3)

One advantage of introducing generalized zeros is that the following analogue

of a result [12] or [19] on differential equations becomes valid: (1.1) is

disconjugate (= r-disconjugate) if and only if u{m) = 0 is the only solution

of (1.1) having k (> 0) successive zeros at m = a, . . . , a + k — 1 and n — k

successive generalized zeros at m = j, . . . ,j + n — k — I E I" for some

j > a + k. This is false if "generalized zero" is replaced by "node", as can be

seen from the following example:

u(3) - 2u(2) + u(\) - u(0) = 0   for m = 0,

u(4) - i/(3) + «(2) - u(l) = 0   for m = 1, (1.4)
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with a solution u,(0) = 0, t/,(l) = 2, w,(2) = 1, w,(3) = 0, and h,(4) = 1 with

zeros at m = 0, 3 and no other node, but a generalized zero at m = 4, and a

solution m2(0) = 0, w2(l) = 0, h2(2) = 1, m2(3) = 2, t/2(4) = 1 with zeros at

m = 0, 1 and no other generalized zero.

For a finite or infinite sequence u: u(a), u(a + 1), . . . , the maximal

number S +u [or minimal number S ~u] of sign changes of u is the largest [or

least] number of sign changes obtainable by replacing the zero elements by

arbitrary nonzero elements in the sequence; see, e.g., [5, p. 100]. S ~u is also the

number of sign changes when the zero elements are deleted; cf. [5, p. 100] and

[18, p. 37].

Proposition 1.1. For a finite or infinite sequence u: u(a), u{a + 1), . . .,

which is not identically zero, S +u is the number of generalized zeros of the

sequence.

The concepts of "node", "generalized zero", and Proposition 1.1 do not

seem to appear in the literature of total positivity; cf. [5], [10]. The concept of

disconjugacy does appear in the following form (see [5, p. 281] for finite

dimensional vectors): The set of n finite or infinite dimensional vectors uk:

uk{a), uk(a + 1), . . . , 1 < k < n, is said to have the property T+ if S +u < n

for all vectors u = cxu{ + • • • + c„un for all «-tuples (c„ . . ., c„) ¥= 0. In

view of Proposition 1.1, this is equivalent to the disconjugacy of (1.1) when

u = uk(m), m & I" and 1 < k < n, are linearly independent solutions of

(1.1).
The main results here, with the emphasis on the difference equation (1.1)

and results on m -» oo, are different from those in [5], although some

arguments (involving standard identities on determinants) are similar. Many

of the proofs for (1.1) are similar to those for differential equations and, for

the sake of brevity, will be omitted or only indicated. The principal tools in

[6], [7], [13], [8] for differential equations are identities for Wronskian determi-

nants, Rolle's theorem, and results of [9]. We enumerate equivalent identities

for determinants in §2, an analogue of Rolle's theorem is Proposition 5.1

below, while results of [9] are stated for both differential and difference

equations.

2. Wronskian determinants. Below a, b, i,j, k, m, n, ¡i and v denote integers,

and m denotes the independent (integral) variable. If / = [a, b] or / = [a, oo)

is an interval of integers, and / is an integer (< 0 or > 0) such that

j > - card /, then P = [a, b + j] or V = [a, oo), so that (Pf = P+k, where

these are defined, and P = I for ally if card / = oo.

Except at the end of this section, the equation (1.1) is not involved. Thus,

since uk(a), uk(a + 1), . . . are arbitrary numbers, most of the results are or

are related to standard identities on determinants, but we use the terminology
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of "Wronskian determinants" for suggestiveness and economy of notation.

These identities are enumerated here for convenience in the most useful form

for us, generally without proofs.

For any function u = u{m), we sometimes write

u  for u(m)   and   u* for u(m + 1). (2.0)

As usual,

W(ut, . . . , uk) « W(ux, . . ., uk)(m)

= det(t/y(m + i - 1)),   where i,j = 1, . . . , k,      (2.1)

is called the Wronskian of «,,..., uk at m. If convenient, we write Wk in

place of W to indicate that it is a k X k determinant in which they'th column

is Uj(m), . . ., Uj(m + k — 1). We put A°w(m) = u(m),

A«(w) = u(m + 1) - u(m) = u* - u   and

A*«(m) = î(-\y(k.)u(m+j), (2.2)

so that A = A',A* = A*"'A,

W(uu ...,uk) = det(A'" y«)),   where ¿,y = 1, . . . , k,        (2.3)

A(m/ü) = W(v, u)/vv*. (2.4)

We have the following obvious identity

A:-l

W(uu ...,uk)= W{ujv, ..., uk/v) II v(m + ,i), (2.5)
M-0

when v ¥= 0. On replacing A: by k + 1, («,, . . . , uk) by (u0, . . . ,uk) and ü by

u0, (2.5) implies

^+1(t/0> .-.,«*)- Wk{^ux/u0), ..., A(uk/u0)) Il u0(m + M).(2.6)
M-o

By (2.4) and the case v(m) = u0u0* of (2.5), (2.6) gives

*-i

W[ W\u0, «,), • • . , W\uQ, uk)} = Wk+\uQ, . . ., uk) II "o(^ + i^)-
ft=i

(2.7)

The relations (2.6), (2.7) and an induction on y lead to a variant of Sylvester's

theorem (cf. [5, p. 15]),

Wk[ WJ+\ux, ..., Uj, vx), ..., Wi+\ux, ..., uj, vk)]

k-\

= W"+*(k„ ...,Uj,vx,..., vk) II  W\ux, ..., Uj)(m + p).     (2.8)

By (2.4) and the case k = 2 of (2.8),
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[W^\ux,...,uj,w)} WJ+2(ux,...,uj,v,w)WJ(ux,...,uJ)*

[ WJ+\ux, ..., Uj, v) J W**x («„ -. -, Uj, v)WJ+i («„ .... Uj, ©)* '

(2-9)

Arguments similar to those used for the proof of Corollary 2.2 of [6, p. 311]

(cf. also [5, pp. 297-298]) give

Wk{x, ux,...,ûj,..., ifeK-i = Wk~\x, «„...,«,,..., «*_,)«*

+ ^(x, «„..., «^^-'(m,, ...,«,,..., «t),        (2.10)

where û- indicates the omission of up x = x(m) is arbitrary, and

cck = o>k(m) = W(ux, . . . , uk). (2.11)

Proposition 2.1. Let k > 2 and

w0 = 1    and   (o, > 0, . . . , uk > 0. (2.12)

Then, for l< j < k - I,

Wk(x, «„..., û,, ..., uj

= «* 2 ^_I(«i. • • • , "7, • • • , «„) »"*(*, "„..., «„-,)/«„_,«„, (2-13)

wAtve W(x, «„..., «,,_,) = x for ¡i = I and WJ~\ux, . . ., u), wM) = w,_,/or

If y = & - 1, (2.13) follows from (2.10). In particular, the proposition holds

for k — 2, and the general case of (2.13) follows from an induction on k by

substituting the case k - 1 of (2.13) into (2.10); cf. [7, p. 442].

We can verify

ak_iWk~i(ui, ...,«,,..., uk)* = ukWk-2(ux, ...,«,,..., uk_x)*

+ Wk~\ux, ...,«,,..., uk)wî_, (2.14)

for 1 < j < k and k > 2 by writing (2.14) in the form

W2[uk_x, Wk~\ux, ...,ûj,..., uk)] m ickWk-2(ux, ...,ûj,..., uk_x)*,

and applying (2.8) when k = 2 and y + 1 = k — 1. An induction on k then

gives the following proposition (in which (2.15) for j = k — 1 is implied by

(2.14)).

Proposition 2.2. Let k > 2 and (2.12) hold. Then, for 1 < j < k,

k

Wk~\ux, ...,ûj,..., uk)* = Wfc 2 W*-i(ki, • • • . ",, • • •. rç,X-i/«„-i<V

(2.15)
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Definition. We say that the set of functions «,,..., u„_x is a wn(I)-system

if they are defined on I, card I > n — I, and

ak(m) = W(ux, ..., uk)(m) > 0   for m E P~k,\ < k < n.    (2.16)

Also, «,,..., u„_x is a Wn{I)-system if

H^(ki(1), . . . , «w)(f«) > 0   for m E / ' "*,1 < k < n,        (2.17)

for every set of indices 1 < z'(l) < • • • < i(k) < n.

Definition. We say that a set of functions ux,.. ., un_x is a Wn(I)-system

if they are defined on I, form a wn(/)-system, and satisfy

Wk~ '(«„ . . . , Û,, . . . , ma)(w) > 0   for m E /2~*, 1 < j < k < n.

(2.18)

Introduce the notation,

D(i(l),..., i(k); ju(l), . . ., n(k)) = det^^/i^)),/*, í - 1,..., k),

(2.19)
is the determinant in which the pth column is («,(/,)( jw(l)), • • • , «,-(/>)( M^)))»

where ¿(1) < • • • < /(£) and ju(l) < • • • < ju(fc). Also, let

Z>t(fi(l), • • •, M*)) = D(l, ...,k; ju(l), . . ., n(k)); (2.20)

so that, in particular, W(ux, . . . , uk)(m) = Dk(m, . . ., m + k — 1).

Definition. We say that the set of functions w„ ...,«„_, is a Dwn(I)-sys-

tem if they are defined on I, card I > n — I, and

Z^(M(1),...,M(*))>0 (2.21)

for 1 < k < n and all sets of indices ¿t(l) < • • • < ju(&), /i(y) E 7. Also,

«!>•••> un-\ is a DWn{I)-system if

Z>(i(l),. .., «(*); M(l), • • •, M*)) > 0 (2-22)

for   1 < A: < /i   and  all  sets  of  indices   1 < i(l) < • • • < /(A) < n,  ii(l)

<        < n(k), p(j) e /.
In [6], we introduced the terminology of wn- and Wn-systems of functions

as we were not aware of earlier terminology for these notions. We have

continued this notation here to facilitate the adaptation of the proofs of [6],

[7] to the situation here. We should remark that the theorem of [5, p. 296]

shows that a Z)w„(/)-system is a Markov system in the sense of [5]. Also,

«i,..., m„_, is a Dwn(7)-system if and only if it is a Descartes system [10, p.

25].

Proposition 2.3. Let ux, . . . , «„_, be a w„(I)-system. Then a necessary and

sufficient condition that ux, . . ., un_x be a Wn(I)-system is that

W{uj, .. ., uk){m) > 0   for I <j < k <n (2.23)

hold for m = a,
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This is a slight generalization of a theorem of Fekete [3] in which the

assumption is that (2.23) hold for all admissible m.

Proof. The necessity of (2.23) is clear. In order to prove the converse, we

first show that (2.23), for m = a, and (2.16) imply that, for m = a,

W(uiW, ..., u,w)(m) > 0   for 1 < k < n (2.24)

and arbitrary sets of indices 1 < z'(l) < • • • < i(k) < n. This is clear if k = 1

or k = 2. And if we assume the set of inequalities in (2.24) for a given k at

m = a, then they follow for k + 1 from Proposition 2.1.

Thus the proof will be complete if we show that (2.23), for m = a, and

(2.16) imply (2.23) for m E P~k. The inequalities (2.23) hold for 1 «y < k <

n, by (2.16). Assume their validity if j > 1 and y is replaced by y - 1. Note

that L(uj/uj_x) = W(uj_x, Uj)/uj_xuf_x > 0 for m E 7_1. Thus u/m) > 0,

by (2.23) at m = a, implies that m,(w) > 0 for m E I. This gives (2.23) for

k = j. Assume its validity if k is replaced by k — 1, when 1 < j < k — 1 < «
-1. By (2.9),

Í      W(uj, . . ., uk)      ) W{uj_x,...,uk)W{uj,...,uk_xy

\ w{uj_x,...,uk_x)\" w{Uj_x,...,uk_x)w(Uj_x,...,uk_xy ■

By a similar argument, W{up . . ., uk) > 0 for m E P~k. This completes the

proof.

As an immediate corollary, we have

Proposition 2.4. Let ux,.. ., u„ be a Wn+x(I)-system, card I > n + 1. Let

u0(m), m E I, satisfy W(u0, . . ., uk) > 0 for m E P~k, 0 < k < n. Then

u0,...,u„ is a Wn+2(I)-system.

An analogue of Proposition 2.3 is

Proposition 2.5. Let ux,..., u„_x be a wn(I)-system and satisfy

W(ux, ...,ûj,..., uk)(a) > 0   forKj <k<n. (2.25)

Then ux, . . . , «„_, is a Wn(I)-system, i.e., (2.18) holds.

Proof. It is clear that (2.18) holds for m E I2~k for k = 2 with 1 < j < k.

Assume the validity of (2.18) if k > 2 and k is replaced by k - I, 1 < j < k

- 1 < n - 1. By (2.8), with k = 2 and./ + 1 = k - 1,

W2[ Wk~\ux, ..., uk_x), Wk~\ux, ...,ûj,..., uk)]

= W(ux, ..., uk)Wk~\ux, ...,ûj,...,uk_x)> 0.

Hence by the definition of W2,

W(ux, ...,«,,..., uk)*

> W{ux, . . ., uk_x)*W{ux, . . . , uj, . . ., uk)/W(ux, .. ., uk_x);
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and so, the inequality (2.18) is obtained successively for m = a + 1, a +

2, . . . .

Proposition 2.6. Let I be a finite interval and let (1.2) hold in (1.1). Let

ux, . . . , un_x be a wn(I)-system [and/or a Wn(I)-system]. Then there exist

functions u0(m) and un(m), m E I, such that u0, . . . , un_, and »„...,«„ are

wn+x(I)-systems [and/or Wn+X(l)-systems], also (— \)"PuQ > 0 and Pun > 0

for m G I.

It suffices to choose u0(m) = em and un{m) = \m for sufficiently small

e > 0 and sufficiently large A > 1.

Recall that a standard result on Wronskians of solutions of (1.1) is

Proposition 2.7. Let ux, . . . ,u„ be solutions o/(l.l). Then

W(ux, ..., un)(m + 1) = (- l)na0(m) W(ux, ..., un){m)   for m G I.

(2.26)

3. Reduction to first order systems. In order to make the results of [9]

available, it will be convenient to write the nth order linear difference

equation (1.1) for the scalar m as a suitable first order difference equation for

a vector v = (v1; . . . , v„); cf. [7, pp. 443-445].

Proposition 3.1. Let ux,...,u„ be a wn+x(I")-system. Then (I.I), for

m G I, is equivalent to a first order system

Av = -Ay,    i.e.,y(m + 1) = (/ - A{m))y{m) for m G I,       (3.1)

where A (m) is an n X n matrix function for m G I,

yk = Wk(u, «i,..., uk_x)/uk   for 1 < k < n (so that y, = u/ux),   (3.2)

and (3.1) can be written as

&yk-JhiH+K-iM«*   Ml <k<n, (3.3)

Ayn = - «_,/<) ¿    Ê (- iy+J(Puj)W(ux, ...,«,,..., k*KM_,.
y-i  k=j

(3.4)

Also, we have

det(/-^) = (-l)"aoWn/<on*. (3.5)

Ifux, . . . ,unis a set of solutions o/(l.l) or is a Wn+x(I")-system and

(- \)n+J{Puj) > 0   for m G I, 1 < j < n, (3.6)

then the entries of the matrix A are nonnegative on I and if, in addition,

(— l)"a0 > 0, then the entries of (I — A)~l are also nonnegative on I.

Proof. By the definition of yk in (3.2), (2.9) implies
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4y* = - Wk+1(u, ux,..., uk)uk*_x/wkwk*   for 1 < k < n;        (3.7)

in particular, (3.3) holds. When u is a solution of (1.1), we obtain

Wn+\u, «„..., M,) - 2 (- I)-*-y(Ajr)W^(«f, «„ ...,«,,... , k„)
j-l

by adding a, times the /'th row of the matrix in W"+l to the last for

i = 0, . . ., n — 1, and expanding along the last row; cf. [7, p. 444]. Hence

(2.13), with k = n, and (3.2) imply (3.4). The arguments leading to (3.3)-(3.4)

are reversible, so that (1.1) is equivalent to (3.3)-(3.4) by virtue of (3.2).

If x = (jc,, . . . , x„) is a vector, then we can write the equation (/ — A)x =

y as

** = h*k+i +yk   for 1 < k < n, where \k = ufc+,wj?_ ,/<^«j?,
n

Xn  =    2   4***  + ^, (3-8)
*-l

where, by (3.4),

4* = «-./<) 2 (-lr^Ptty/Wt«,, • • • - ûp ■ ■ ■ > Uk)/"k-V  (3.9)
7=1

Thus, we have

xk = xn[  II \) + 2 J il XJ   for 1< fc < n. (3.10)

i - 2 4* n \
n-l

Hence

\H = k

A simple induction on n shows that

7-1

= 24*2   nxjv,. + yn.    (3.11)
£=1 y = *\|i = A:

n-l

det(7 - A) = 1 -  2 4*(  u A,
A; = l

By the definition of X,, . . . , \,_, in (3.8), we have

7-1

u K = <¿jWk*_x/i¿ko)*_x    for 2 < y < n,

(3.12)

(3.13)
v-k

so that w* det(7 — A) is given by

«: + (-ox 2 2 (-iy+\puj)w(ux,...,«,,...,«>**_,/«*_,<*.
*=1   7=1

(3.14)

If we interchange the order of summation over j, k and note that Puj =

1a¡(m)Uj(m + i), (3.14) becomes
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<-0     7 = 1

n

• 2 W(ux, ...,ûj,..., uk)uk*_x/wk_xwk.
k-j

Applying (2.15), with k = n, to the inner sum, this becomes

< + (-ir2 «,2 (-iy+S(»i + o^(«„...,«,,...,«j*. (us)
1 = 0     y=l

The inner sum over y represents the expansion along the first row of the n X n

determinant in which the first row is (m,(w + /),..., u„(m + /')) and the A:th

row is (ux(m + k — 1), ... , un(m + k — 1)) for k = 2, . . . , n. Thus the in-

ner sum is 0 for /' = 1, . . . , n — 1, and is w„ and (— l)"~'co* for / = 0 and

i = n. Hence (3.15) is (— l)"a0wn (since a„ = 1). This proves (3.5).

The last assertion in Proposition 3.1 is clear from (3.3)-(3.4) and from

(3.10H3.H).

Proposition 3.2. Assume (1.2) for (1.1). Let ux, ..., un be a wn+x(I")-sys-

tem, ux, . . ., u„_x a Wn(I")-system, and

( - \)"+JPuj > 0   on I for 1 < j < n. (3.16)

Then, for m G I, (1.1) is equivalent to a first order system for a vector

z = (z„ . . ., z„),

Az = -Bz,    i.e.,   z(m + 1) = (I - B(m))z(m) form G I, (3.17)

where B(m) is an n X n matrix function for m G I,

zk = Wk(u, k„ . . ., uk_x)/uk for I < k <n, (3.18)

z„ = tW(u,ux, ...,«„_,)/«„, (3.19)

T = t(w) > Ofor m G I", and (3.17) can be written as

&zk = -Zk + i<->k + iuk-i/uku*   for I < k < n - \, (3.20)

Ä2„-l =  -*»«Bttí-2M-l«*-lT, (3.21)

Az„ = - (tX-iA*) 2  2 (-1)"+/(/^) w("„ ■ • •, uj, ■ ■ ■, «*K/«*-i;
*=1   7=1

(3.22)
also, det(7 — 5) > 0, a«i/ the entries in B and in (I — B)~l are nonnegative

for m G I.

Proof. We indicate how to obtain this from Proposition 3.1. Make the

change of dependent variables given by zk = yk for 1 < k <n and zn = ry„.

Thus (3.20)-(3.21) follow from (3.3). Write (3.4) as

n-l n-l

yi - (i - An)yn = - 2 4*7* = - 2 4***-
*=i *=i
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If we multiply this equation by t* = t(w + 1), we obtain (3.22) provided that

t(w) = (1 - Ann)T(m + 1). Note that, by (3.5) and (3.12),

n-l /n-l     \

l-4n>24*    IR )>o.
*=1 \*«*     /

Thus, we can choose t(/w), m G I, by letting r(a) = 1 and

m

T{m + 1) = r(m)/ (1 - Am) = 1/ u (1 - Ajv)).

The equation (I — B)x = z can be written

xk=hxk+\ + zk   forl <*<»-1,       xn_, =X„_1x„/t + z„_1;

where X¿ is defined in (3.8), and

n-l

Xn = T     Zi   4*-*1*  "*" Zn-
*=1

By the arguments in the last proof, we see that

dct(7 - B) - 1 - (t*/t)"2 4*f "O K) = (1 - 4J-Idet(/ - ¿),
*=1 \y=k      J

and that the entries in B and (7 — B)~' are nonnegative.

4. A factorization theorem. Standard textbooks give a "variation of con-

stants" formula for the solution of linear inhomogeneous difference equa-

tions, but do not state it in the following form. Let U(m, v), defined on

I" X 7, be the Cauchy function for (1.1); i.e., for fixed v G I, u(m) = U(m, v)

is the solution of (1.1) satisfying the initial conditions

U(m, v) = 0   for m = v + 1, . . . , v + n — 1    and    U(v + n, v) = 1.

(4.1)

The condition a0 =7= 0 is needed to assure the definition of  U(m, v) for

a < m < v. If «,,..., w„ are linearly independent solutions of (1.1), then

t/(«. ") - 2 (- ir+S(»o^(".> ../;$,..'., un){v +1)/«^ + o,
7-1

(4.2)

where the sum is the n X n determinant in which they'th column is {uj(v +

1), . . . , Uj(v + n — 1), w,(w)). In particular,

U(m, m) = (- iy-\(m)Mm + 1). (4.3)

Proposition 4.1. 77ie unique solution of

(Pv)(m) = f(m)   for m G I, v(a) = • • • = v(a + n - 1) = 0,   (4.4)

is given by
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m-1

v(m) =   2   U(m, v)f{v)   for m G I". (4.5)
v = a

Note that if 7 = [a, b] is finite, then (4.1) implies that U(m, v) = 0 in (4.5)

for m G I" — I, v > b, so that we should replace the sum by one over the

range a < v < max(/w — 1, b) or define/(w) arbitrarily for m > b.

Proposition 4.2. Let 1 < k < n aw*/ «„..., «t ¿>e solutions of (1.1) swc/i

í/iaí ok = W(M], . . . , uk) =£ 0 on I"~k+l. Then there exists a unique difference

equation of order n — k,

n-k

P\v =  2 ßj{m)v{m +y) = 0,       m G I, (4.6)
7=0

such that

ßn_k =1    and   /?„=(- 1)V>*M* * 0, (4.7)

and v is a solution of (4.6) // and only if there is a solution u of (1.1) such that,

onI"-k,

v = W(u, ux,..., uk). (4.8)

This corresponds to the Mammana [15] type of factorization for linear

differential equations (and an obvious analogue of the proof of Proposition

4.2 below can be used to give a new proof of Mammana's theorem). Let

*

7> S W{w, K,.ttk) K 2 Yy(«M»» + J\     m e '""*> (4-9)
7 = 0

where y0(m) = w* =£ 0 and yA(m) = (- l)kuk ¥" 0. Then Proposition 4.2 im-

plies the factorization

P = PXP2. (4.10)

Proof. Let W(m, v), defined in 7" X I"~k, be the Cauchy function for

(4.9), i.e., for fixed v, w(m) = W(m, v) is the solution of

P2w = 0,       w = 0   for v < m <v + k   and   w = 1    iî m = v + k.

(4.11)

Define m = P2~ lv as the unique solution of

7*2« = v    and    u = 0   for m = a, . . ., a + A: — 1,

so that

m-l

u = P2xv=  2   *H>, ")«('')   forme/". (4.12)
v = a

We define T^,« by Pxv = PP2~lv, and show that it has the desired form (4.6).

To this end, note that, for / = 0, . . . , k - 1,



DIFFERENCE EQUATIONS 13

m-1

u(m + i) =  2  W(m + i, v)v(v)
v = a

and that, for i » k,...., n,

m + i — k m—\

u(m + i) -    2     W(m + i, v)v{v) +  2  W(m + i, v)v(v).
v = m v = a

Since w(-) = W(-, »>) is a solution of P2w = 0 and hence of Pw = 0, it is seen

that 7>,u = Pu is

n m + i — k n — k

Pxv = 2 «,(«)    2     W{m + /, j^W = 2 ßj{m)v(m + j),
, = * y = m y_o

where the coefficients

n

/?y(m) =    2   a/(w) W{m + i,y + m)   fory = 0, . . . , n — k,
i —J + k

are defined for m G I. It follows that ß„_k = a„ = 1 and, since PW{-, v) =

0,

k-\

ß0 = - 2 «/("O W(m + i, m) = - a0(m) W(m, m).
( = 0

As Wim, m) = (- l)k~1o3k/o}^ by the analogue of (4.3), the proof is complete.

5. Disconjugacy. In this section, we prove most of the following result. The

proof is completed in §8 where we obtain the implication (c) => (e) for infinite

intervals.

Theorem 5.1. The following are equivalent:

(a) (1.1) has a wn+x(I")-system of solutions;

(b) there exist positive functions pk{m), m G I"~k+l,for 1 < k < n such that

ifAku = A(pku) = pk(m + \)u(m + 1) - pk{m)u(m), then

Pu=Pn+xAn- ■ ■ Axu = Pn+xA{pnA[ ■ ■ ■ A(Pxu)]}, (5.1)

where pn + x = \/px ■ ■ • p„ for m G I;

(c) (1.1) is disconjugate on I";

(d) (1.1) m r-disconjugate on I";

(e) (1.1) has a DWn + l(I")-system of solutions;

(f) u(m) = 0 is the only solution of (1.1) having k (> 0) successive zeros at

m = a, . . ., a + k — 1 and n — k successive generalized zeros at m =

j, . . . ,j + n - k - I for somej, a + k < j G Ik+i;

(g) if u = uk(m), m G I" and 1 < k < n, are linearly independent solutions of

(1.1), then the determinants 7J>„(/i(l), . . . , ¡i(n)) do not vanish and are of the

same sign for all u(l) < • • • < /x(n), ix(y) E I".

The factorization (5.1) of P is the analogue of the Frobenius factorization
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(cf. Pólya [17]) for disconjugate differential equations. By virtue of Proposi-

tion 1.1, the equivalence of (c) and (g) is a theorem of Krein and Gantmacher

[5, Satz 1, p. 283] (where "m > n" should be replaced by "m > n").

We can also formulate necessary or sufficient conditions for the discon-

jugacy of (1.1) in terms of its coefficients. To this end, let $ = (</>,OT) be the

rectangular matrix, with j G I as row index and m G I" as column index,

defined by

<t>Jm = 0,   <t>Jm = am_j(m)   or   </>,.„, = 0 (5.2)

according as a < m <j, j < m < j + n, m >j + n. Thus if one considers

u = u(m) as a vector (u(a), u(a + 1), . . . ), then Pu = $«. Put

$(y(l), . . . ,j(k); ju(l), . . . , n(k)) = deu>,(,)jM(m); i,m=\,...,k)   (5.3)

for a < y(l) < • • • <j{k) G I, a < /t(l) < • • ■ < ¡i(k) G I", also

$,(,i(l), . . . , ^(k)) = 0(a, . . . , a + k - 1; /i(l), . . ., M(*))-    (5-4)

The Krein-Gantmacher criterion (g) will be used to prove the first part of the

following theorem in which there is no loss of generality in assuming that 7 is

finite. We shall use an induction on n and the factorization of Proposition 4.2

to obtain the second.

Theorem 5.2. Let I = [0, b], d = card 7 = 6+1. (i) A necessary and

sufficient condition for (1.1) to be disconjugate on I" is that

(_ 1)nrf+rf(</-l)/2 + S,(m)^(/i(1)> } ̂  > 0 (5 5)

for 0 < fi(l) < • • • < /i(i/) < b + n. (ii) A necessary condition for (1.1) to be

disconjugate on I" is that

(-1)*"***0**"™«^ ■ • • J(k); M(l), . . . , Kk)) > 0 (5.6)

for 0 < y(l) < • • • <j(k) < d, 0 < u(l) < • • • < n(k) < b + n, except in

trivial cases resulting from <$>jm = 0 if 0 < m <j and j + n < m < b + n; in

particular,

(- \)n+J<Xj{m) > 0   forO<j<n,mGL (5.7)

In particular, a necessary condition for disconjugacy is that the rectangular

matrix (- 1)"4> be "sign regular"; cf. [5, p. 86]. The necessary conditions (5.7)

are not sufficient; cf. the example in (1.4).

We first prove Theorem 5.1 and then Theorem 5.2.

Proof of Theorem 5.1. In this section, we prove the implications a^(b)

and (a) => (c) for arbitrary intervals 7, and the implications (d) => (a), (a) =>

(e), and (f) => (a) for finite intervals, while (c) => (d), (c) => (f) and (e) => (a)

are trivial. This gives a complete proof of Theorem 5.1 for finite 7. Theorem

8.1 below gives (c) => (e) for infinite intervals. As (d) => (a) and (f) => (a) on

finite intervals imply (d) => (c) and (f) => (c) on arbitrary intervals, the validity
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of Theorem 5.1 for infinite intervals follows.

On (a) => (b). This can be obtained from Proposition 4.2 and an induction

on n or, as we shall proceed, directly from Proposition 3.1. Let «,,..., un be

a w„ + 1(7',)-system of solutions. Then (1.1) is equivalent to the first order

system (3.3)-(3.4), where (3.4) is merely Av„ = 0. Hence (5.1) holds with

P\ = W"\>Pk = «*-i"*-i/w*w*-2 for 2 < k < n, and/7„+1 = l/>, • • • p„ =

On (b) => (a). Define uk successively for k = Í, . . ., n as solutions of

Ak • • • Axuk = 0 such that uk > 0; cf. Proposition 2.7.

We shall use here (and later in the paper) the following analogue of Rolle's

theorem.

Proposition 5.1. Suppose that the finite sequence v(l), . . ., v(J) has Nj

nodes [or generalized zeros] and that Au(l), . . . , Av(J — 1) has Mj nodes [or

generalized zeros]. Then Mj > N¡ — I.

Proof. The proposition is obvious if j = 2. Assume y > 2 and that the

proposition is valid if y is replaced by an integer i <j. If Nj = Nj_x, then the

proposition holds. Suppose therefore that m = j is a node, so that JV, = Nj_x

+ 1. We can also suppose A/, _, > 1.

Case 1. v(J) = v(j - 1) = 0. Clearly, Af} = A/y_, + 1.

Case 2. v(J) = 0, v(J — 1)^0, say v{J - 1) > 0. Let m = i be the largest

node for t>(l), t>(2), . . ., with i < j — 1. Hence N¡ = Nj_x and M¡ > Nj_x —

1. We consider the alternatives o(/) = 0 or v(i)v(i — 1) < 0. In the first

alternative, i <j - 1 and v(i + 1) > 0, so that Av(i) > 0, while Av(j - 1) <

0, so that Mj > M¡ + I > Nj_x = Nj — I. In the second alternative, v(J — 1)

> 0 implies that ©(/*) > 0, v(i - 1) < 0, so that At?(/ - 1) > 0. Again Av(J -

1) < 0 implies the desired result.

Case 3. v(j)v(J - 1) < 0, say t>(y) < 0> «0* - 1) > 0. The arguments here

are as in the last case.

This proves the proposition for the case of "nodes". Similar arguments are

valid in the case of "generalized zeros".

On (a) => (c). In order to verify (a) => (c), assume (a) and that ux, . . . ,u„

are defined as in the proof (a) => (b). Suppose, if possible, that (c) does not

hold, so that (1.1) has a solution uiO which has at least n generalized zeros

on I". Then there is a A:, 1 < k < n, such that u = cxux + • • • + ckuk,

ck =*= 0, and so Ak_x • • ■ A,m = const uk ¥= 0 does not change signs on

jn-k+i gut tj^s contradicts Proposition 5.1 which implies that Ak_x • • • Axu

has at least n — k + 1 > 0 generalized zeros on I"~k+1.

We next verify the following result which seems of interest in itself.

Proposition 5.2. Suppose that (1.1) is r-disconjugate on I". Let u = uk(m),

m G I" and 1 < k < n, be a solution o/(l.l) satisfying the partial set of initial
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conditions

uk(m) = 0   fora<m<a + n-k   and   (-l)k~xuk(a + n — k) > 0.

(5.8)

Then, for 1 < k < n,

7\(M(1), . . . , /i(*)) >0   fora + n-k< jn(l) E 7"-*+1       (5.9)

and ail sets /¿(l) < • • • < ju(A;), ¡i(j) G I". In particular,

u°(m) = W(u°x, ...,u%)>0   fora + n-k<mG In~k+l.   (5.10)

Proof. It is clear that (5.9) holds for k = 1. Suppose that 1 < k < n and

that (5.9) holds if k is replaced by k — 1. Suppose first that, if possible,

Dk(n°(\), . . . , n°(k)) = 0 for some set of indices a + n - k < ju°(l)

< • • • < ¡i°(k). Then, since a0(m) J= 0, there is a solution u — c,t/°

+ • • • + ckuk ¿0 of (1.1) such that u{m) = 0 for k values of m =

ju°(l), . . ., /i°(A:). But u(m) = 0 also for the n - k values of m = a, . . . , a +

n - k - 1 (< jti(l)), so that « sé 0 has n nodes. Hence Dk(n°(\), . . ., n°(k))

= 0 cannot hold.

Arrange the possible sets of indices (ju(l), . . . , u(A;)) lexographically. It is

clear, from (5.8), that the inequality in (5.9) holds for the first set of indices

(jii(l), . . . , ii(k)) = (a + n — k, . . ., a + n — 1). Suppose that there is a first

set of indices (/x'(l), . . . , /i'(Ar)) such that T>A(ju'(l), . . . , ix\k)) < 0. Let

(ju°(l), . . . , ¡i0(k)) be a set of indices preceding (fx'(l), . . . , jh'(A;)) which has

k — 1 elements in common with it, and which has the property that, for some

index J, fi°(J) =£ n\j) and /*%/) + 1 = mV) ^/At) for \ < j < k. Since
(1.1) is r-disconjugate, there exists a solution u such that

u(m) = 0   for m = a, . . . , a + n — k — I and m = n°(j),j ¥* J,

u(m) ^=0   for m = ¡x°(J).

Thus u is a linear combination u = cxu° + • • • + ckuk of w°, . . . , uk and

ck ^ 0. We can therefore suppose that ck = 1 and, in fact, we can consider u

to   be   uk   (without   affecting   any   of   the   considerations   above).   Thus

Dk(n°(l), ..., n\k)) > 0 implies that

(- l)*+\(MV))£*-,(iAl), • • • > ßV), ■■■, M°(*)) > o,

while Dk(n\l), . . ., n\k)) < 0 gives

(-l)k+Juk(ti\j))Dk_x(^(l), ..., ß\J), ..., ¿{k)) < 0,

so that uk(ti°(J))uk(n\J)) < 0. Hence u = uk has a node at m = jn°(/) + 1

= n\J) ¥= jn°(y). But then uk has « nodes which is impossible. This completes

the proof of Proposition 5.2.

On (d) =>(a), I finite. For t > 0, let u = uk{m), 1 < A; < «, be the solution

of (1.1) determined by the initial conditions
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ul(m) = (- i)*-ir»-*+«-»y („ _ k + a _ m)\    for m = a, . . . , a + n - k,

uk(m) = 0   for m = a + n — k + \, . . . ,a + n — l,

where 0° = 1, so that u¿ satisfies (5.8) for / = 0. Hence u'k = W{u[, . . . ,u'k)

satisfies

w¿(m) > 0,       1 < k < n, (5.11)

for / = 0, a + n - k < m G I"~k, by (5.9). It can also be shown that (5.11)

holds for / > 0 and a<m<a + n-k by noting that w'k{m) on this

w-range is a Wronskian determinant [= det(d'~lXj/dt'~1)] of k of the func-

tions Xj = ± tJ/j\ forj = 0, 1, ... ; cf. [5, p. 322] or [4, Lemma 8, p. 95].

Since 7 is a finite interval, it follows from the case / = 0 in (5.11) and from

continuity, that (5.11) holds for small / > 0 and a + n — k < m G I"~k.

Consequently, for small t > 0, u{.u'n is a vvn(7")-system.

On (a) => (e), 7 finite. This can be proved by an induction on n. We omit

the proof as it can be modeled on the proof [6, pp. 319-320] of the necessity

of Bn(I) in Theorem 1.1,, p. 309; cf. the proof of Theorem 6.1 below.

On (f) => (a), 7 finite. It is clear that the last part of the proof (d) => (a) can

be adapted here if we verify

Proposition 5.3. Suppose that (1.1) satisfies (f). Let u = uk(m), m G I and

1 < k < n, be as in Proposition 5.2. Then (5.10) holds.

Proof. It is clear that (5.10) holds for k = \. Suppose that 1 < k < n and

that (5.10) holds when k is replaced by i < k.

Note that (f) implies that (5.10) holds if "> 0" is replaced by "^ 0". For if

w*(mo) = 0 for some m0, a + n — k < mQ G I"~k+i, then a linear combina-

tion (5É 0) of m°, . . . , uk has n - k zeros a.t m = a, . . . , a + n — k — I and

k zeros at m = m0, . . . , m0 + k — 1. Note also that uk(a + n — k) = 1 > 0.

Suppose, if possible, that there is at least m0, a + n — k < m0 G In~k+i,

such that uk(m0 + 1) < 0. By virtue of (f), (1-1) has a solution u = u{m)

satisfying

u{m) = 0   for m = a, . . . , a + n — k — 1,

u(m) = 0   for m = m0 + 1, . . . , m0 + k — 1 and u(m0) ^ 0.

Thus « is a linear combination u = cxu° + • • • + ckuk with ck ¥= 0. We can

suppose first that ck = 1 and second that u = uk. Then uk(m0) > 0 and

u>°k(m0 + 1) < 0 give

(- 1)HI«»KK».,K + 1) > 0   and   u°k(m0 + k)U°k_x(m0) < 0.

Since co°_, > 0 by the induction hypothesis, we have (— l)kuk(m0)uk(m + k)

> 0 and hence m = m0 + k is a generalized zero for u = uk. This is a

contradiction, and completes the proof.

Proof of Theorem 5.2(i). Let «,,...,«. be linearly independent solutions
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of (1.1) and u„ = W(ux, . . ., u„). Then, by (g) in Theorem 5.1, (1.1) is

disconjugate on 7" if and only if

Dn(p(l), ..., v(n))/(o„(b + 1) > 0   for 0 < »-(1) < • • • < v{n) < b + n.

(5.12)

In particular, (1.2) is necessary for disconjugacy; cf. Proposition 2.7. Thus,

the desired result follows if we show that

<MMD,...,M(¿)) = (-1)°+1+ ■■■+("-1)+S"('")[  u ot0{m)
. mei

•7)n(,(l),...,K«))/"n(¿+l)> (5.13)

where the sets of integers { /i(l), . . . , [i(d)} and {v(l),..., v{ri)} are comple-

mentary sets in I" = [0, b + n].

In order to verify (5.13), let W(n) be the n X n matrix having the determi-

nant w„(¿» + 1), i.e., W(n) = («,(m + b)),j, m - 1, ...,n, and let i>w be the

d X d matrix consisting of the first ¿/ columns of 4>, so that det <J>(</) =

a0(0) • • • a0(b), since the elements below the main diagonal are 0. Let Ö be

the {d + n) X (¿/ + «) matrix in which $ is the set of first d rows, the n X n

matrix ( Ww)~ ' is in the lower right corner, and the other elements in the last

n rows are 0. Also, let M be the (d + n) X (d + «) matrix in which the last n

columns are (uk(0), . . ., uk(b + n)), k = I, . . . , n; (3><d))_1 is in the upper

left corner, and the other elements in the first d columns are 0. As Puk = 0, $

annihilates the last n columns of M. Hence $ and M are inverse matrices,

and (5.13) follows; cf., e.g., [5, p. 15].

Remark. Before beginning the proof of part (ii), we might mention that

certain cases of (5.6) are immediate consequences of part (i). For example, if

we replace 7 = [0, b] by a subinterval [ax, ax + k — 1], then (5.6) follows in

the nontrivial cases of (y(l), . . . ,j(k)) = (ax, . . . , ax + k — 1). Also, since

Pu = W(ux, . . . ,un, u)/wn, (5.7) follows from

(- l)n+Jaj(m) = D„(m, ..., m^+j, ...,m + n)/<*n. (5.14)

The proof of (ii) can be completed by the use of a Fekete type of theorem; cf.

Proposition 2.3. We indicate another type of proof.

Proof of Theorem 5.2(h). If (1.1) is disconjugate on I", then there exists a

solution m = w0(wî) > 0 such that if one applies Proposition 4.2, with k = 1

and u0 = ux, then the resulting difference equation (4.6) of order n — 1 is

disconjugate on 7; cf. the proof of Theorem 6.1 below. In this case, (4.9)

corresponds to

— P2w = W(u0, w) = u0(m)w(m + 1) - u0(m + l)w(m).

If tyx, ^2 are the matrices belonging to Px, - P2 as <E> belongs to P, then (4.10)

implies $ = ^x^2. Thus one can easily prove Theorem 5.2(h) by an induction
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on n, using the Cauchy-Binet identities for subdeterminants of matrix prod-

ucts; cf. [5, p. 12].

6. Sturm comparison theorem. The Sturm comparison theorem for n — 2

has the following generalization:

Theorem 6.1. Assume (1.2). Then a sufficient condition for (1.1) to be

disconjugate on I" is that there exist a set of functions ux(m), . . . , un_x(m)for

m G I" which is a wn(I")-system satisfying (2.23) at m = a (so that

«„..., u„_x is a Wn(In)-system) and (- \)n+JPUj > 0 for m G I, 1 < j < n.

If n = 2, these sufficient conditions mean that there exists a positive

function ux(m), m G I", such that Pux < 0 on 7; cf. this with [4, p. 223],

where the condition seems to be given incorrectly as Pux > 0 [and where

ux(a) > 0 is permitted, but 72 is replaced by 71]. It will remain undecided if

the condition "(2.23) at m = a" can be relaxed to "(2.25)"; cf. [7, Theorem

18.1„, p. 449].

Corollary 6.1. Assume that (1.2) holds and that, for fixed m G I, the

polynomial

P(m, X) = X" + an_1(w)X"-1 + • • • + a0{m) (6.1)

has positive real roots (0   <) X,(m) < • • •  < X„(m), and let there exist

constants a,, . . . , o„_x satisfying

0 < X,(m) < a, < X2(m) < • ■ •  < a„_, < X„(w)   for m G I;     (6.2)

in particular, (— \)n+kP(m, ak) > 0. Then (1.1) is disconjugate on I".

If 0 < a, < • • ■ <on_x, this is a consequence of Theorem 6.1 with the

choice uk(m) = ak for m G I", 1 < k < n. The proof in the case ak = ak+x

for some k can be modeled on that of [6, Theorem 6.1, pp. 320-321], and will

be omitted.

Proof of Theorem 6.1. There is no loss of generality in assuming that 7 is

a finite interval. In this case, there exists a function un(m), m G I", such that

un = W(ux,. . ., un) > 0 on I1, Pun > 0 on 7; cf. Proposition 2.6. Thus

«,,...,»„ satisfies the conditions of Proposition 3.2, so that this proposition

and the arguments of [9] imply that there exists a solution u = u0(m) of (1.1)

such that xx = u0 > 0 and xk = W(u0, . . . , uk+x) > 0 for m G I"~k+\ 2 <

k < n. Thus w0, . . . , u„_x is a If„+1(7',)-system; Proposition 2.3. The re-

mainder of the proof can now be modeled on that of first part of Theorem

l.l„of[6,p. 309].

7. Green's functions. If (1.1) is disconjugate on / = [a, b], then for any

function/ = f(m), m G I, the boundary value problem,
m

(Pv)(m) = 2 <Xj{m)v(m + y) = f{m),       m G I, (7.1)
7 = 0
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v(m) = 0   for m = m(l), . . . , m(n), (7.2)

where a < w(l) < • • • < m(n) < b + n, has a unique solution. Further-

more, there exists a Green's function G(m, v), defined on I" X 7, such that

the solution is given by

b

v(m) = 2 G{m, v)f(v)   for m G I". (7.3)
v — a

The Green's function is characterized as follows: for a fixed v G I, v(m) =

G(m, v) is unique solution of the boundary value problem, (7.2) and

{Pv)(m) = 8mv   for wE 7", (7.4)

where Sm„ is 0 or 1 according as m ^ or = v. See Bôcher [1, pp. 83-88] (or [4,

Chapter IX], for a reproduction of this part of [1]).

Theorem 7.1. Let I = [a, b], let (1.1) be disconjugate on I", and let G(m, v)

be the Green's function for (7.1)-{7.2). For m G I", put

a(m) = card [j: 1 < j < n, m{j) <m). (7.5)

Then we have, for 1 < k < card 7 = b — a + 1,

( - ly^^'det^ ju(0, v{j); i,j = 1, . . . , k) > 0, (7.6)

for a < /i(l) < • • • < n(k) < b + n, a < r(l) < • • • < ?(*) < ¿>; í/r/cí in-

equality holds in (7.6) when k = d and ju.(/) ̂  m(l), . . . , m(/i). Also if m{\) =

a and m(ri) = b + n, then

(-\y+a(m)G(m,v)>0   for m * w(l), . . ., m(n); (7.7)

in particular, if0<k<n and m(j) = a + j — 1 for 1 < y < k and m(J) = b

+ y/or k < j < n, then

(-l)" + kG(m,i>)>0   fora + k <m <b + k. (7.8)

It will be clear from the proof (cf. (7.9) below) that we can easily determine

when strict inequality holds in (7.6).

Proof. For convenience, let a = 0, 7 = [0, b], d = b + 1. Let $ be the

d X (d + n) matrix defined in connection with (5.2). Consider G = {G(m, v))

to be a rectangular matrix with m G I" = [0, b + n] as row index and

v G I = [0, b] as column index. Hence, the characterization of the Green's

function involving (7.4) is equivalent to the matrix equation 3>G = E, where

E is d X d identity matrix, and to be requirement that the entries in the /wth

row of G are 0 for m = m(\), . . . , m(n).

Let 4>w be the d X d matrix obtained from $ by deleting the mth column

for m = m(l), . . . , m(n), and G(d) the d X d matrix obtained from G by

deleting its mth row for m = m{\), . . . , m(n), consisting of zeros. Then $(rf)

and G(d) are inverse matrices. Hence, if ¡x(i) # m(l), . . . , m(n), then

det(G(M0, "(/))) = (- l?M0+°i«m+*'<J)àet(*HPMq))/àtt *(rf),    (7.9)
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where {/*(/)}, {p{q)} are complementary sets in I" - {m(\),. . ., m(n)) and

ivU)}> {Mp)} are complementary sets in 7; cf. [5, p. 15]. By (5.6),

(-ir-¿)n+2AO,)+Sp(?)det(^(/)),p(9))>0

and, by (5.5),

(_ !)«<*+<*«/-i)/2+2„(0+Zp(*)det qw > 0

Since 2r(j) + 2X(/>) = d(d - l)/2, (7.6) follows. When k = d, so that the

set of indices {X(p)}, {p(q)} are vacuous, (7.9) should be replaced by

det(G(/x(/),Ky))=l/det$((/).
If the first and last column of Í» are deleted, then any {d — 1) X (d — 1)

subdeterminant of the resulting matrix is not 0. Hence (7.7) follows from

(7.9).
In the next theorem, we let 7 = [0, oo) and use Theorem 8.3 below.

Theorem 7.2. Let (1.1) be disconjugate on I = [0, oo). Let 0 < k < n, b > 0

and G(m, v) = Gk(m, v; b) be the Greeris function associated with

(Pv)(m)=f(m)   for m G [0, b], (7.10)

v(m) = 0   forO <m <kandb + k <m <b + n.        (7.11)

Then the limit

yk(m, v) = lim Gk(m, v; b)   exists on I X I; (7.12)
b—»oo

v(m) = yk(m, v) satisfies (7.4),

yk(m, p) = 0   forO < m < k, (7.13)

(-\)n+kyk(m,p)>0   for0<k<n, (7.14)

yk(m, v) = y\m, v) - ¿ y>-'(/ - 1, v)Vj(m), (7.15)
7=1

where u = t]j{m) is the unique jth principal solution o/(l.l) satisfying T)j(m) = 0

forO < m <j - 1, tjj(J - 1) = 1 in Theorem 8.3.

Proof. We begin with the case k = 0. It is easy to see from the characteri-

zation of Green's functions involving (7.4) that G°(m, v; b) = y°(m, v) is

independent of b. In fact, y\m, v) for m = 0, . . . , v is the last column of the

inverse of the (y + 1) X (y + 1) triangular matrix (<t>Jm),j, m = 0, . . ., v; so

that

V

y\m, v) = (- l)M+rdet(fy; 0 < / < v, i * m, 0 < j < v)/ ü «0(0
/=0

(7.16)

for 0 < m < v, while y\m, v) = 0 for m > v.
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Note that, by (7.8), (- l)n+kGk > 0 for 0 < k < m < b + k, so that (7.14)

follows when the limit (7.12) exists.

We complete the proof by an induction on k. Let k > 1. Then, if Gk~\k

- \,v;b)*0,

uk(m, b) =[Gk~\m,v;b)- Gk(m, v; b)]/Gk~l(k - \,v;b)

is independent of v and is the unique solution of (1.1) satisfying «(A — 1) = 1,

and u{m) = 0for0<m<A- 1 and b + k<m<b + n. Thus, whether or

not Gk~\k - l,v;b) = 0,

Gk(m, v; b) = Gk~\m, v; b) - Gk~\k - 1, v; b)uk(m, b).    (7.17)

By Theorem 8.3 below, t]k(m) = lim uk(m, b) exists as b -» oo. Thus, by the

induction hypothesis, (7.12) holds and

yk(m, v) = yk-\m, v) - yk~\k - 1, r)%(m). (7.18)

This completes the proof.

8. Principal solutions, 7 = [a, oo). The proof of Theorem A in [6, Appendix

A, pp. 352-355], implies

Theorem 8.1. Let (1.1) be nonoscillatory on I - [a, oo); cf. §1. Then (1.1)

has solutions u = uk(m) ï 0, 1 < H n, such that

uk-\im) = °(uk(m))   as m-+oo, I < k < n. (8.1)

If ux, . . . , u„ is a family of solutions of (1.1) satisfying (8.1), we call uk a

Ath principal solution. It is clear that a first principal solution is unique up to

a constant (^=0) factor and that, for 1 < A < n, a Ath principal solution is

unique up to a constant (¥= 0) factor and the sum of a linear combination of

the first k — 1 principal solutions.

When (1.1) is disconjugate and (1.2) holds, we can obtain other properties

of principal solutions. As a basis for an induction, we begin with properties of

the first principal solution.

Theorem 8.2. Let (1.1) be disconjugate on I = [a, oo). (i) Let b > a and

u = ux(m, b), m G I, be the solution o/(l.l) determined by

u(b + 1) > 0   and   u(m) = 0   for b + 1 < m < b + n, (8.2)

\u(a)\+ ■ ■ ■ +\u(a + n- 1)| = 1, (8.3)

then the limit

T/i(m) = lim ux(m, b)    exists on I (8.4)
b—>oo

and is, of course, a solution o/(l.l). (ii) Also,

7}x(m) > 0   on I; (8.5)

so that (i) is valid if the normalization (S3) on ux(m, b) is replaced by
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ux(a, b) « 1, (8.6)

in which case, Tj,(a) = 1. (iii) If Ux, . . . , U„ is a wn + x(I)-system of solutions of

(1.1), then W(r\x, Ux, . . . , Uk) > 0 for 1 < A < n. (iv) If Ux, . . . , U„ is a

Wn+x(I)-system of solutions o/(l.l), then tj,, U2, . . ., Un is a Wn + x(I)-system.

We omit the proof which can be modeled on that of Theorem 7.1„ in [6].

As in that theorem, we could enumerate other properties of tj,. See also [2,

Theorem 12, pp. 110-111] for an analogue of a proof of a simpler theorem,

similar to Theorem 8.2 above.

Theorem 8.3. Let (1.1) be disconjugate on I = [a, oo). Then there exists a

unique set of n solutions o/(l.l) characterized Z>v (i) tj ,,..., tj„ is an ordered set

of principal solutions; (ii) u = t\k(m) satisfies

u(m) = 0   for a < m < a + A - 1 and u(a + A - 1) = 1,       (8.7)

u(m) >0   for m > a + k - I; (8.8)

(iii) ifu = uk(m, b) is the solution o/(l.l) satisfying (8.7) and

u(m) = 0   forb + A <m <b + n, (8.9)

then

7}k(m) = lim uk(m, b); (8.10)
b—>oo

finally (iv) rj„ . . . , tj„ is a DW„+x(I)-system.

The analogous results (i), (ii), (iv) for differential equations are given in [6],

while (iii) was given in [8, Appendix 3].

Proof. The existence of u = Tj,(m) satisfying (ii) and (iii) is clear from

Theorem 8.2. Assume n > 1 and the validity of Theorem 8.3 for difference

equations of order n-l. Make the "variations of constants" v = A(«/tj,) =

W(j]x, u)/i)xt)x* to obtain a difference equation of order n — 1,

n-l

Qv = 2 Sj(m)v(m +y)    for m G I, (8.11)
7 = 0

with 5„_,(/m) = tj,(/m + n - 1)tj,(/m + n) > 0 and (- íy-'ó^/n) > 0; cf.

Proposition 4.2 with A = 1 and ó}(m) = /3y(w)rj,(w +y')Tj,(m +y + 1). The

equation (8.11) is disconjugate on/""1 by virtue of (iv) in Theorem 8.2; cf.

the proof of Theorem 6.1. Thus, by the induction hypothesis, (8.11) has

solutions vx, . . . , v„_x satisfying the analogues of (i)-riv) m Theorem 8.3.

Thus, there are solutions tj2, . . . , tj„ of (1.1) such that

t>*_, = const A(rfk/r}x),   where const = 1/Tj,(a + A - 1), 1 < A < n,

(8.12)
and i)k is unique up to the addition of a constant multiple of tj,. We can

determine tj¿ uniquely by putting
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m-1

Vk(m) = rj,(m) 2 «fc-ito/lii« + k - 1), (8.13)

where "const" was inserted in (8.12) to achieve the normalization in the last

part of (8.7).

It follows that tj,,..., tj„ satisfy assertion (ii). Also, they satisfy (iii) for

vk_x(m, b) = const A(uk(m, 6)/tj,(w)),       const = rj,(a + A — 1),

or equivalently,

m-l

uk(m, b) = tj,(w) 2 Vk-\("> b)/t)x{a + A - 1).
v = a

We can verify (i), i.e., that tj,, . . . , tj„ are ordered principal solution as in [6]

or in [2, p. 113].

In order to show that tj,, . . . , tj„ is a DW„+,(7)-system, consider a determi-

nant (2.19). Divide the first row by Tj,(jbi(l))/rj,(a + /(l) - 1) > 0, the second

by V](K^))/Vi(a + /(l) — 1) > 0,..., so that we obtain a determinant of

the matrix in which the wth element in they'th column is

M(m)-1

2   t>K/)-i(")  ifi(y)>i.
v = a

If we subtract the first row from the second, the second from the third, etc.,

the mth element in they'th column is

/i(/n)-l

2      o«y)-i(")    form > 1,i(/) > 1.
>■ = n(m— 1)

Thus, according as /(l) > 1 or /(l) — 1, the resulting determinant is

M(l)-1    K*)-' »(*)-'

2 2     • • •        2      d^(viU)_x(vm);j, m = l,...,k)>0
"1 = "        »2 = ,»(1) ^ = M(*-1)

or is

K2)-l («(*)-*

2     • • •        2      àet(viU)_x(vm);j, m = 2, . . ., k) > 0.
"2 = K') x* = K*-i)

This completes the proof.

9. Inequalities, 7 = [a, oo). An analogue of Theorem 14.1„ of [7, p. 440] on

differential equations holds for (1.1). Recall the notation: u* = u(m + 1).

Theorem 9.1. Let (1.2) hold and let I = [a, oo). Let u0, . . ., u„_, be

functions on m G I satisfying

(- \)n+kPuk > 0   for0<k <n, (9.1)

m„ . . ., !/„_, » a H/„(7)-jyjiem, (9.2)
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W(uo, ...,uk)>0   forO < A < n. (9.3)

Then (1.1) has positive linear independent solutions u = xk(m), m G I and

1 < A < n, satisfying

xf/x, < u*x/ux < xi/x2 < ■ ■ ■ < «*_,/«„_, < x*/xn,      (9.4)

W(xx, u0) < 0,   so that m*/"o < xî/xi where uQ > 0, (9.5)

and the inequalities

W(xx, ...,xk)>0   for I < A < n,

W(xx,...,xk,up,...,uq)>0[or >0]

for I < A <p <q < n [or 1 < A < p < q < n],     (9.6)

W(xx, . . . , xk, uk_,) < 0,       W{xx, . . ., xk, uk_ „ up, . . . , uq) < 0

for 1 < A < n and k <p < q < n.

If, in addition, u = un(m), m G I, satisfies

Pun > 0, (9.7)

W(uk_, u„) > 0   for I < A <n, (9.8)

then the solution u = x„(m) can be chosen to satisfy

x:/x„ < u;/un, (9.9)

and q = n is permitted in (9.6).

We omit the proof which can be modeled on that in [7, pp. 442-448].

Theorem 9.1 remains correct if there are no assumptions or assertions

concerning u0. (But if no u0 is specified, u0 = 0 is a possible (trivial) choice.)

Corollary 9.1. Let I = [a, oo) and let (1.2) hold. Let there exist positive

constants a0 < a, < ■ • • < an such that the polynomial (6.1) satisfies

(- l)n+kP(m, ak) > 0 for m G I, 0 < A < n. Then (1.1) has positive linearly

independent solutions u = xk(m), m G I and 1 < A < n, satisfying

0 < a0 < xf/xx < a, < x2*/x2 < ■    ■ < x*/xn < o„.

This assertion is valid if there are no assumptions or conclusions concerning a0

and/or on.

This follows from Theorem 9.1 by the choice uk(m) = ak, m > a and

0 < A < n.

10. Complete monotonicity. In (1.1), let a,(w) = a,(w, X) be defined on

7 X A, where A is a (bounded on unbounded) interval on the real axis, such

that a.j{m, ■ ) G C°°(A) and, for a fixed A, 0 < A < n, (- \)n+kdaj(m, \)/d\

are completely monotone functions of X E A for 0 < y < n, i.e.,

(-l)n + k + i+ldiaJ(m, X)/dX' >0   for i = 1, 2, . . . . (10.1)
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Proposition 10.1. In (1.1), assume (10.1) for some k, 0 < A < n, and that,

for every fixed X G A, (1.1) is disconjugate on I", I = [0, b]. For fixed X, let

Gk(m,v)= Gk(m,v; X) be the Green's function for (7.10)-(7.11) and let

uk(m, b) = uk(m, b; X) be the solution of (1.1) defined in Theorem 8.3. Then

(- \)"+kGk(m, v; •) and uk(m, b; •) are completely monotone functions of

X E A (for fixed m G I", v G I).

Proof. This follows as in [8]. In (7.4), let v(m) = Gk(m, v; X). Differentia-

tion with respect to X gives

n

PGk\m, v;X)= - 2 ^(m, X)Gk(m + j, v; X),   where ' = d/dX.
7 = 0

(10.2)

Thus, by (7.3),

(- l)n+k+lGk'(m, v; X) = £ (" \)"+kGk{m, u; X)

•2(-í)"+S;(M.A)(-ir+*Gfe(-i+y>;X).
7 = 0

(10.3)

Since (- l)"+/cG* > 0 by (7.8), it follows from (10.1) that (- \y+k+lGk' > 0.

Successive differentiations of (10.4) show that (- \f+k+idiGk/d\i > 0 for

i = 1, 2, . . . .
The proof for the assertion concerning uk(m, b; •) is similar, using the

result on G*.

Since nothing is altered (except the normalization an(m) = 1) if we multiply

(7.4) by a factor a(m, X) > 0 before differentiating to obtain (10.2), condition

(10.1) can be replaced by

(- l)" + /c+'rf'{[a(w, X)otj(m, X)]'/a(m, X)}/</X' > 0    for i = 0, 1, . . . ,

(10.4)

(- l)'dl[a'(m, X)/a(m, X)]/dX' >0   for i = 0, 1, . . .,        (10.5)

a(m, X) > 0   on 7 X A and a(m, ■), «,(m, •) E C°°(A).       (10.6)

Remark. It will be clear from the proofs that Proposition 10.1 and

Theorem 10.1 are valid if X is a discrete variable and if differentiation

' = d/dX is replaced by a difference operator.

Theorem 10.1. Let I = [0, oo) and (10.4H10.6) hold for some A, 0 < A < n.

For fixed X, let (1.1) be disconjugate on I.

(a) Let yk{m, v) = yk(m, v; X) be defined as in Theorem 7.2 and let

rj*(m) = rj*(m; X) be the kthprincipal solution o/(l.l) satisfying t]k(m) = 0/or
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0 < m < k - 1 and tj*(A - 1) = 1. Then (- \)n+kyk(m, v; X) and Tf*(m; X)

are completely monotone functions ofX G A.

(b) In particular, if k = 1 a/irf "i(w) = w,(m; X) is a first principal solution of

(1.1), //jen ux(m; X)/ux(M; X) ¿y a completely monotone function of X for

m > M > 0.

Part (b) complements a result of [9] dealing with the complete monotonicity

of a solution u = ux(m) as a function of m = 0, 1, ... .

Proof. Part (a) follows from the last proposition and Theorems 7.2 and 8.3.

The case M = 0 of part (b) is contained in (a) for tj,(w, X) =

ux(m, X)/u,(0, X). The cases M > 0 follow by replacing 7 = [0, oo) by

[M, oo).

Example. As a simple illustration, consider the recursion relations

wx+x-2Xt-lwx + wx_x=0 (10.7)

satisfied by the standard solutions wx = Jx(t) and wx — Yx(f) of the Bessel

equation of order X,

tdty/dt2 + t dy/dt + (t2 - X2)y = 0. (10.8)

For a fixed (not necessarily integral) X > 0, let

u(m) = i-x-VA+m (10.9)

to obtain an analogue of (1.1) with n = 2,

u(m + 2) - 2(X + m + l)/"2^™ + 1) + f-2t/(m) = 0.      (10.10)

Let t = y'u be the Ath positive zero of Jx(t), then u(m) = t~x~mJx+m(i) > 0

for m = 0, 1,.. ., 0 < / <y\i- Thus, by the Sturm separation theorem,

(10.10) is disconjugate on 7 = [0, oo) for fixed (X, /), X > 0 and 0 < / <y'XI.

From the Wronskian relation YXJX+X - YX+XJX = 2/-nt (cf. [20, p. 77]), we

see that Yx+m/Jx+m decreases to -oo as m-»oo; so that ux(m) =

t~x~mJx+m(t) is a first principal solution of (10.10) for fixed X, t. If we apply

Theorem 10.1 with a(m, X) = 1, we obtain

Proposition 10.2. For fixed (t, m),0 <t <jmX and m = 0, 1, . . .,

A+m+i(0/A+m(0 's completely monotone on X > 0. (10.11)

We can apply Theorem 1.1 of [8, p. 270] to the Bessel equation (10.8) to

obtain the following related result:

Proposition 10.3. If y > 0 and 0 <t < t <jyX, then J\+y(T)/Jx+y(t) is a

completely monotone function ofX2>0 and has a representation

WT)AW') -[^(t)//t(0] rexp(-X2r)I*V, U t)X > 0,
•'0

(10.12)
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where W(r) = W(r, t, t) is an infinitely divisible distribution function on 0 < r

<  00,

W{-, T„, T,) = W{-, T„, r„_,) *   • • •   * W(-, r3, T2) * W{-, T2, T.) (10.13)

for 0 < t, < • • • < t„ <yyI, If(r, /, t) /j nondecreasing in r and in r and

nonincreasing in t and, finally, W{r, t, t) -» á0(r) as tíí0, t\,t0for 0 < i0 <yY„

a«i/ 50(r) is 0 or 1 according as r = 0 or r > 0.

In view of the product representation (cf. [20, p. 498]) of Jx(t) in terms of

its zeros y^, it might be expected that we could deduce the results (10.11) and

(10.12) directly if we knew suitable monotonicity properties ofy'u. But these

are hard to come by. We mention the following:

Proposition 10.4. Let X > 0 and f(X) = Çk(X, 9) be the kth positive zero of

the solution Jx(t)cos 9 - Yx(t) sin 9 of the Bessel equation (10.8). Then

(-iy+i(d/Ç(*)dXy$(X) > 0   for n- 1,2,... and\>0.   (10.14)

In particular, ify>0 (not necessarily an integer), then

(-l)"(d/dX)Ty(X) > 0  for 0 < n < y + 1,X > 0.       (10.15)

See also [20, p. 508] and [14] for monotonicity properties of f (X).

The relations (10.14) follow by an induction on n and the fact that f = f(X)

satisfies the differential equation dÇ/dX = T(f, X)f, where

T(£, X) = 2 Ck0(2$ sinh s)e~2Xs ds,

[20, p. 508], and (- l)n+J dn+JT/d^Xn > 0, since
Jr-oo

exp( - x cosh r) dr
o

(cf. [20, p. 446]). The relations (10.15) are consequences of (10.14).

11. A positive solution. This section concerns the existence of a positive

solution of a (not necessarily disconjugate) difference equation of order

n + N of the form

[(PoA»)u](m) + (-l)n + N-1 2 (-l)kck(m)Aku(m)=0    (11.1)
*=o

on [ 0, oo). The result to be obtained generalizes Theorem (ii) of [9, p. 732] in

the same way that Theorem (f) of [9, p. 204] generalized Theorem (i) of [9, p.

731] on differential equations.

Theorem 11.1. Let (1.1) be disconjugate on I = [0, oo). In (11.1), let ck(m),

defined for m G I and 0 < A < N, satisfy

ck(m) > 0, (11.2)
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1-  2 ck(m)>0. (11.3)
* = 0

Then (11.1) has a solution u = u(m) satisfying

u>0   and   (-l)kAku > 0   for 0 < A < N, m G I. (11.4)

See also (11.8) below.

Proof. We use the factorization (5.1) for Pu and write (11.1) as a first order

difference equation

At) = -Av (11.5)

for an (n + A)-vector v = (vx, . . . , vN+„), where

vk = (-l)k-,Ak~lu   forl<A<A, (11.6)

%+, = (-irVv vN+2 = (-if+V2aí>,aH ...,

%+„ = (-ir+"-,/Jn_,A{/Jn_,A[ • • • (/>,*"«)]}.     (11.7)

Then (11.1) goes over into (11.5), i.e., to

Avk = -vk+x    for 1 < A < A,

A^ + ̂ _, = vN+K/Pk    for 1 < A < n,

/v-l

P„+\AvN+n = - 2 c*f* + i-
* = 0

In other words, the entries in the (N + n) X (N + «) matrix A (m) are zero,

except on the superdiagonal and the last row: the first N — 1 elements on the

superdiagonal are l's and the last n are \/px, . . . , l/p„, while the last row is

(c0, . . . , cN_x, 0, . . . , 0)/pn+x. Thus the entries in A are nonnegative. It is

not difficult to verify that (11.3) assures that 7 — A(m) is nonsingular and

that the entries in (7 — A(m))~l are nonnegative; cf. the proof of Theorem

3.1. It follows from Theorem (I) of [9, pp. 733-734] that (11.5) has a solution

satisfying u, > 0 and vk > 0 for 1 < A < n + N on 7. This implies (11.4),

where u = vx, and the additional inequalities

(— l)Ai-"y~,A{/7,_,A[ • • • (pxA"u)]} >0   for 2 < y < n.      (11.8)
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