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SOME INFINITE FREE BOUNDARY PROBLEMS
BY

DAVID E. TEPPER AND GERALD WILDENBERG

Abstract. Let I" be the boundary of an unbounded simply connected

region ÚD, and let 6(T) denote the family of all simply connected regions

Ac1? such that 3A = T u y where y n r contains only the infinite point.

For A G S(T) we call y the free boundary of A. Given a positive constant A,

we seek to find a region Ax G C(T) with free boundary vx such that there is

a bounded harmonic function V in Ax with the properties that (i) V = 0 on

T, (ii) V = 1 on y, (iii) |grad V(z)\ = X for z G yx. We give sufficient

conditions for existence and uniqueness of Ax. We also give quantitative

properties of yx.

1. Introduction. Suppose a connected set T containing more than one point

is the boundary of a region ty which is simply connected on the Riemann

sphere and is unbounded in the complex plane. We define S(T) to be the

class of regions w with the following properties.

(a) 3« = T u a where a is a nonempty connected subset of ^ which does

not meet T in the finite plane.

(b) If T is compact, then a separates T from the point at infinity.

(c) If T is not compact, then a u T is connected on the Riemann sphere.

Given Q, a continuous positive function in 6D, we seek a region u G. Q(T)

with the property that there is a bounded harmonic function Vu in w

satisfying the following three conditions.

(1) Va = 0 on r,

(2)Va = Ion«,

(3) |grad Vj = Q on a.

For u G Q(T) the bounded harmonic function denoted Va satisfying condi-

tions (1) and (2) will be called the stream function of a and the set a will be

called the free boundary of w. For the case where T is compact, sufficient

conditions for existence and uniqueness of a free boundary such that Vu

satisfies condition (3) are given in [1], [4], [5] and [6]. Also, qualitative

properties of the free boundary a are given in these papers. It should be

pointed out that many of the ideas are outgrowths of Beurling's existence

theorem in [3].
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We say T is starlike if for w G T, pw G ^ for 0 < p < 1. We will assume

that T is either starlike or in some sense is the limit of starlike curves.

Although we will be mainly interested in the case where Q is a positive

constant, we will have to apply conformai mapping to reformulate the

problem in order to obtain some of our results; hence the problem is stated in

the more general form. We remark that many of our results remain true if we

consider the case where T is starlike and pQ(pz) is nondecreasing for

0 < p < oo ; see [1].

Since results from [4], [5], and [6] will be frequently used, we now

summarize some of the results which are either included in or are easy

consequences of the results in those papers. Let T he compact and Q a

positive constant which we denote by X, then:

(i) There exists uë6(T) such that Vu satisfies (3) on ax the free boundary

of w. Furthermore, ax is an analytic Jordan curve.

We say T is convex if C — ̂  is a convex set.

(ii) If T is convex, then ax is unique and convex, and for z G ax the

distance to T denoted d(z, T) is less than 1/X.

(iii) If T is starlike, then ax is unique and starlike.

(iv) If T, and T2 are each starlike and are each the boundary of respective

unbounded regions <3D1 and ^ with ^ c ^2 ana" if ai an<i a2 are me

respective free boundaries in (hi) corresponding to T, and r2, then a2 hes

inside a,.

In the cases where T is convex or starlike then we call ax the solution free

boundary for T. We will need the following result for the general problem.

The proof is given in [4].

(v) Suppose Q is continuous in ^ and as z G fy tends to T, let Q have the

property that:

ßi»
/ |grad u\ \

where u is any positive harmonic function defined in some ñ G ß(r) and

where u = 0 on T. Then, if there is an u'eÊ(r) with the property that for all

z G ', for which

few'

then there exists u G 6(T) such that w c w' and Va satisfies (1), (2) and (3).

2. Convexity. If T is convex, then we use facts (i)-(v) to construct a solution

which is unique in a certain sense. We begin with the following theorem.

Theorem 1. If T is convex and unbounded and X is a positive constant, then

there exists u G G(T) with the following properties:
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(a) V„ satisfies (3) for Q=X.

(b) Ifax is the free boundary of a, then ax is of distance less than 1/X from T.

Proof. Without loss of generality we suppose that T is contained in the

lower half plane and the origin hes on T. For t > 0 let H, denote the half

plane Im z < - t and <$, = H, u <3>. The unbounded region <$, will have as

its boundary the compact and convex set Tt. Let to, be the element of G(Tt)

such that a^, the free boundary of w„ is the solution free boundary for Tr

Existence and uniqueness of w, is asserted in facts (i) and (ii). We claim that

« = U («, n 6D)
/>o

satisfies (a) and (b). We note that (b) follows easily from (iv) and (ii). It

remains to show (a).

We see by (iv) that for t > s we have a^ hes inside a£°. Furthermore, for

s > t, (a) if z G us n ^, then z G w, n ^ and (b) Vu(z) is nonincreasing

with t. Therefore, as t -» oo, ^(z)-» Fu(z). Furthermore, if z G a, the free

boundary of u, then every neighborhood of z contains points from all but

finitely many of the (a,). Thus |grad Vu(z)\ = X.

For T unbounded and convex, we will call the region <o G ß(T) from

Theorem 1 the construction solution strip. We will call its free boundary the

constructed free boundary. Any other a G Q(T) where Va satisfies (1), (2)

and (3) will be called a solution. In order to prove that the constructed

solution is minimal, we will need the following lemma.

Lemma 1. Let T be convex and compact. Suppose there exists w* G Q(T)

whose free boundary a* is the union of finitely many analytic arcs. Suppose for

each z interior to one of these arcs we have

lim |grad Vu,(z)\ < X.

feu*

Then, w* contains the solution free boundary for T.

Proof. Let / be a mapping of |w| > 1 onto <$ and let f =f~l(Y). We

consider the general problem for the set f which is the boundary of the region

<3), |w| > 1, and the positive function Q(w) = X|/'(w)|. The region w* =

f~l(co*) satisfies condition (4) at all but finitely many points on a* =

f~x(a*). For |w| < 1, define Q(w) = Q(\/w) and let fl* be the region

obtained by reflecting ¿j* about the circle |w| = 1. Because of the regularity

condition on the boundary of ñ*, if H(w) solves the Dirichlet problem in the

region ñ* with boundary values log Q(w), and if g(f, w) is the Green's
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function of fi* we have:

log|grad F-.(w)| = ¿ J^ log|grad v^Ol^t^ <*
'dû*

«¿jL,-o>*gû*-«M       «
where 3/ör/ represents differentiation with respect to the inward pointing

normal. From this we obtain (4) so co* contains ax the unique free boundary

solution for T.

We now prove that the constructed solution is minimal.

Theorem 2. Let T be an unbounded convex curve. Suppose Q(z) = X, a

positive constant and a' G Q(T) has its stream function Va, which satisfies (1),

(2) and (3). Then, co' contains w, the constructed solution strip.

Proof. It follows from the Schwarz reflection principle that the free

boundary of co' which we denote by a' is an analytic curve. Using the

notation of Theorem 1, we show to, n ^ is contained inside co' for all t by

supposing there is some t such that w, n ^ does not lie inside co', and getting

a contradiction. In the family G(Tt) consider the annulus co* which consists of

all points z which can be connected to Tt by an arc which hes in the set

[a, n co'] u[<o,n (C- 6D) n »,].

Since a, and a' are each analytic curves, it follows that the free boundary of

co* consists of finitely many analytic arcs. Furthermore since Vu.(z) > Vu,(z)

and Vu.(z) > Vu(z) for z G co*,

|grad F„.(z)| < X (6)

at all regular points on the free boundary of co*. This implies that co* contains

co, which in turn implies co' contains co, n ^ for all t > 0 which is our desired

contradiction.

We now wish to study the asymptotic behavior of the constructed solution

in the case where T is convex. To do this we assume T is continuously

parametrized by the equation z = z(t), - oo < t < oo, in the following

manner;

z(0) = 0. (7)

If (z(0) is the signed arc length from 0 to z(t),
( o)

then t < s implies that (z(r)) is less than (z(s)).

lim |*(f)| = lim |*0)| = oo- (9)
/—»oo t—*oo

Rez(f)>0   fori>0. (10)

We will also need the following notation. If ß is a curve and z G C, then
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d(z, ß) is the distance from z to ß. If the ray r from the point z G C

intersects the curve ß at a furthest point f£jß, then the distance from z to ß

along r is defined as:

d(z, ß; r) =\z - ï\. (11)

We are now ready to give qualitative properties of the constructed solution

strip.

Theorem 3. Let T be unbounded and convex curve which is parametrized by

z = z(t) which satisfies (7), (8), (9) and (10) for - oo < t < oo. Let /, and l2 be

two straight lines such that

hm d(z(t), /,) =   lim   d(z(t), l2) = 0. (12)
t—»00 t—► — 00

If a is the free boundary of the constructed solution strip, then the free

boundary of any other solution is not asymptotic to a.

Proof. We suppose T is contained in the lower half plane H and rx and r2

he the rays defined by r¡ = l¡ n H for / = 1, 2. Since T is convex and for

z G a, d(z, T) < 1/X, we must have a asymptotic to a pah of rays rx and f2

with f¡ parallel to r, for / = 1, 2. Let co' be a solution with free boundary a'

which is asymptotic to a. Since a is minimal, we know that a separates a'

from T. For / = 1, 2, given e > 0 let rie and Rie he the pah of rays from the

real axis which are parallel to f¡ and are at a distance e from the ray f¡ with

r, e separating a from T. Let c and d he two rays in H, originating at 0, which

intersect R¡e and rie for / = 1, 2. Since Rie and r,e are parallel, we observe

that

¿(0, ny, c) = d(0, /•„.; d)

c/(0,/?,£;c)      d(0, *,,; d) ' K   '

If the ray c has a slope sufficiently close to the slope of f¡, we have

d(0, K^; c) > d(0, a'; c) > d(0, a; c) > d(0, r¿¿ c). (14)

Now if e' is a sufficiently small positive number and the slope of c is

sufficiently close to the slope of r¡, then we have

But then if the slope of c is sufficiently close to the slope of r„ we have:

l-e'<#^4<L 06)
d(0, a'; c)

Let R he the collection of all rays through z = 0. If

M= inf    JO, a; c)
ceR   d(0,a';c),
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then we see that M < 1 and that Ma' = {w: w = Mz, z G a'} hes inside a.

We claim that Ma' is tangent to a at some point z G a. Suppose this is not

the case. Relation (16) assures us that given 8 > 0 there exists p > 0 such that

if z' G a' and |z'| > p, then if z G a hes on the line connecting z' to the

origin we have |z/z'| > M + 8. Now suppose for z' G a' with |z'| < p we

have |Mz' — z| > 0 where z G a lies on the line connecting z' to the origin.

Then, we have |z/z'| < M for |z'| < p. Thus we see there exists z' G a' where

Mz' G a. From this it follows that Vu.(M~xz) > Vu(z) for z G to n Mco'.

Taking normal derivatives to a at Mz', we get M~'X < X which is a

contradiction.

The next theorem gives information about the asymptotic behavior of the

free boundary.

Theorem 4. Suppose T is parametrized by z = z(t) which satisfies (7), (8),

(9), (10) and (12). Then

lim d(z(t), a) =   hm    d(z(t), a) = 1/X.
t—»00 t—»— 00

Proof. We define a monotone function for — oo < t < oo by letting

9(t) = 0(z(r)) be the acute angle between any hne of support for T through

z(t) and the x-axis. Where there is more than one hne of support, one may

choose one arbitrarily. Define

9X =     sup      00),       92 =      inf      9(t). (18)
-0O</<00 -oo<f<oo

The first portion of this proof is the demonstration of the following

statement:

Fact A. For any N > 0, e > 0 there exists <0 > 0 such that for all / with

|i| > t0 there is a chord L of length N with the distance from z(t) to the

midpoint of L less than e.

In proving Fact A, we first assume s > 0; the corresponding statements

about s < 0 are essentially equivalent. Let s be chosen so that

< 8, (19)

where 8 is as yet unspecified. The existence of such an s depending on 8 is

clear from the convexity of V. Let s' he chosen so that

|z(i) - z(s')\ > N (20)

and s' > s.

Consider a chord L of length N with endpoints z, = z(sx) and z2 = z(s^

where s2> sx> s'. Let L, and Lj be lines of support of T at z, and z2

respectively and consider the (possibly degenerate) triangle formed by the

lines L, Lx and L2. Let L3 be the straight hne carrying the segment L. If Mx,

If 00
/   d9(s)
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M2 and M3 are the respective slopes of Lx, L2 and L3, then

8 > \9X — arc tan Mx\ > \9X — arc tan M3\ > \9X - arc tan M2\ > 0

because M2 < M3 < Mx. Therefore, Bx = |arc tan Mx — arc tan M3\ < 8, B2

= |arc tan M2 — arc tan M3\ < 8 where Bx and B2 are the angles made by L

and Lx and by L and L2 respectively. If L, n L2 = {z*} is the apex of the

triangle formed by Lx, L2 and L3 then the altitude to L from z* has length /t

where

h < A//2 tan 5. (21)

Note that in the degenerate case we can assume h = 0. Hence, for all

z(s) G T with sx < s < s2, we have d(z(s), L) < h.

For each z(i) with s > s' we can find a chord to T denoted L of length N,

such that the perpendicular bisector of L passes through z(s), with z(s)

between the endpoints of L. To complete the proof of Fact A, we let 5 be

small enough so that N/2 tan 8 < e and choose s' as in (20). Clearly, similar

arguments apply to s < 0. So that repeating the above argument, mutatis

mutandis, we find s" < 0. Finally we conclude the proof of Fact A by letting

i0 = Max(j', \s"\).

We now claim the following is true:

Fact B. For all r > 0, e > 0, there exists j* > 0 such that for all í with

|i| > s* there exists a chele of radius whose center depends on z(s) and e such

that (a) d(z(s), C) < e, (b) C is inside the convex domain bounded by T.

To prove Fact B, let s0 he chosen as in Fact A where N = 2r. For each s,

\s\ > sQ let the chord found in Fact A be denoted Ls. Define Cs as the chele

of radius r which is tangent to Ls at the midpoint of Ls with the property that

Cs lies outside the compact region bounded by Ls and a subarc of T. Since T

is not confined to any vertical strip, there exists s* > S0 such that Cs is inside

T for |s| > s*.

For j fixed, let z0 be the center of Cs and consider the ring region A defined

by: r < \z — z0\ < R where

Ä(log R/r) = X- (22)

Fact (hi) assures us that A n ^ C co. It is easy to show (22) is equivalent to

R - r = R- R-e-1'™. (23)

From this we see that

lim   (R - r) = 1/X. (24)
/?-»00

Since by choosing r sufficiently large we can be assured that R and |s*| are as

large as we please, the proof is now complete.

Remark. The methods give no information about the free boundary when
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T is confined to a vertical strip. For X > 0, we let cox denote the constructed

solution strip and let ax denote the free boundary of cox. We now discuss the

properties of the constructed solution strip as X varies.

Theorem 5. Let T be an infinite convex fixed boundary with T asymptotic to

a pair of nonparallel straight lines. Then, (a) X! > X2 implies cox C coX2, (b)

Ux>o«x = 6Ö-

Proof, (a) is an immediate consequence of (iv) and (v). To show part (b)

letz, G ty and define

A = A(zx) = {X: z, G cox},    B = B(zx) = {X: z, £ cox}.

We will show that neither A nor B is empty.

Given zx G <%> we show that for all r > 0 there is a chele C, inside T with

center zr and radius r. Choose X so small that l/|z,|[log(|z,|/r)] > X. By the

minimality of cox we see that zx G cox and A ¥= 0.

To show B is not empty, we recall that cox c {z G 6D: d(z, T) < 1/X).

Hence if z, G ^D choose X such that 1/X < d(zx, T) and zx & cox.

Now let fi, = D \eAU\, fi2 = U xeBcox. If fi° is the interior of fi, then

both fi° and fi2 are solutions for some X, and X2 respectively. If X[ ¥= X2, then

we apply a similar argument to that used in [5, p. 843] to obtain a contradic-

tion. From this (b) follows.

3. Other regions. We say T is an admissible curve if T is described by

x + ifix) where fix) is a continuous bounded function which has bounded

Dini dérivâtes at every point. In this section we give similar results regarding

the free boundaries for admissible curves. We let ^ = {z = x + iy: y >

fix)) and show that free boundaries do exist in ^D for admissible curves T.

Theorem 6. Let T be an admissible curve. If Q =X a positive constant in

(3), then there exists u G G(T) with the properties that Vu satisfies (1), (2) and

(3). Furthermore, if a is the free boundary of u, then every vertical line intersects

a at exactly one point.

Proof. Let R„ be the closed strip - n < x < + n and let r„ = T n R„. Let

m* = sup{/(^:^):.,?G[-n,n]},

Sf-tffM^^IEl-M]),

which are finite by hypothesis. Let

mn = max.{m* + 1, n),       m,, = min{/n£ + 1, n).

If rn is the ray with slope mn originating at the point n + ifiri) = An, then rn

does not intersect Tn except at the point A„. Similarly, if r_„ is the ray
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originating at the point —n + if(-n) = B„ with slope m„, then r_n does

not intersect Yn except at the point Bn. If Pn is the point of intersection of

lines rn and /•_„, then Pn g <$ u T. Let Q_„ and Qn denote the points of

intersection of the rays rn and r_n with the hnes x = — n and x = + n

respectively. Let T* denote the curve defined by Tn together with the line

segments [A„,Qn+x], [Q_„, Q„] and [Q_„, B„]. If P hes in the triangle

determined by the three points Q„, Q_n and Pn and Q hes on the curve T*,

then the segment [P, Q] lies outside of ty.

In the set &(T*) there is a unique solution denoted by coxn) with free

boundary axn).

Using ideas quite similar to those used in the proof of Theorem 1, we could

show that

co = U (coi70 n öD)
n

is a solution. Furthermore, since the free boundary of co is an analytic curve

and all points inside the triangle determined by the points Qn, Q_„, and Pn

are star center points for the curves axn) for each n, we see that every vertical

line intersects the free boundary of co in exactly one point.

If T is admissible, the region co G ß(r) whose existence is shown in

Theorem 6, will be called the constructed solution strip. The following

theorem gives quahtative properties about the free boundary of co.

Theorem 7. Let T be admissible and let co be the constructed solution strip in

Q(T). If T is asymptotic to the line y = 0, then, a, the free boundary of co, is

asymptotic to the line y = 1/X.

Proof. Given e > 0 and r > 0 there exists M > 0 such that for each z0

where |Re z0| > M and Im z0 = — (r + e), the chele

CÁzo) - {z- V - *ol = *■}

lies below T. Hence for z G a and |Re z| > M, we have Im z > p where

-1
(p + e + r)exp

X(p + e + r)

It follows that given 5 > 0 for |Re z| sufficiently large, |Im z| > 1/X - 8.

Since T is admissible we let T = {x + iy: y = fix)} and |/(x)| < k. Fur-

thermore since T is asymptotic to the x-axis given £ > 0 there exists R > 0

such that |Im/(z)| < £ for |x| > R. Let T* he the curve which bounds the

region

A„ =[{z: |Re z| < r, |Im z| < k} u {z: |Rez|<£}] n {z: |Rez|<n}.

Let <>D„ denote the convex hull of A„ and let kn = 3 <$),,. If un is the unique

solution in Q-(kn), then a simple apphcation of (iv) shows that if z G a and
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I Re z| = n, then

y<w - r)2 + (k- e)2
|Imz|<£ +

(n-r) x- ^
Therefore given 5 > 0 for |Re z| sufficiently large, |Im z| < 8 + 1/X.

We conclude with the remark that one can use any family which is elhptic

in the sense of [4] to study unbounded free boundary problems provided there

is some control on the free boundary as the fixed boundary becomes

unbounded. An example would be the following theorem whose proof we

omit.

Theorem 8. Let T be an infinite starlike fixed boundary such that (1) (x:

x = Re z, z G T) is unbounded above and below, and (2) {y: y = Imz,

z G T) is bounded above and below. Then, there exists a region co G S(r) such

that Vu satisfies (1), (2) and (3) where Q = X a fixed positive constant.

Furthermore, the free boundary of co is starlike.
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