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THE PERIODIC BEHAVIOR OF MORSE-SMALE

DIFFEOMORPHISMS ON COMPACT SURFACES

BY

CAROLYN C. NARASIMHAN

Abstract. Necessary and sufficient conditions are given for the existence of

Morse-Smale diffeomorphisms homotopic to the identity with prescribed

periodic characteristics on any compact 2-manifold.

An important class of dynamical systems on smooth compact manifolds

consists of the Morse-Smale diffeomorphisms. These have a relatively simple

orbit structure and this structure is preserved under small C ' perturbations. If

/ is a Morse-Smale diffeomorphism, then the nonwandering set of / consists

of a finite number of periodic orbits y¡ and each such y, has the following

invariants: p¡, the period of x G y¡; u¡, the dimension of E* for x G y¡; and

A,, the orientation type of x G y, (see §1 for definitions). If we define the

periodic data of a diffeomorphism to be the collection of triples (p¡, u¡, A,),

then it would be interesting to know when there exists a diffeomorphism with

given periodic data.

Clearly, the topology of a manifold M imposes certain restrictions on the

orbit structure of a diffeomorphism of M. For example, if M is compact, then

a Morse-Smale diffeomorphism of M has at least one source and one sink;

that is, u¡ = 0 and «, = dim M for some i and j.

Smale defines in [9] the homology zeta function tj(/) of a diffeomorphism/

of a compact manifold M by

r,0) = exp|ii   ±L{r)tA,

where L(fm), the Lefschetz number of fm, counts the fixed points of f"

algebraically. This function is always rational and is a homotopy invariant of

/. In fact, as shown in [9], if / is homotopic to the identity of M, then

v(f) — (1 _ t)~x(-M\ where x(^0 is trie Euler characteristic of M. Franks has

shown in [3] that if / is a Cx map with only n periodic orbits, all hyperbolic,
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146 C. C. NARASIMHAN

then t)(/) has the simple form

«o)- n(i-A,^)(~ir'+',
/=i

where {(p¡, u¡, A,)}"=1 is the periodic data off. Therefore, the periodic data of

a Morse-Smale diffeomorphism / which is homotopic to the identity must

satisfy the equation

n(i-A1.^)(-,r=(i-ox(w)-
<=i

The purpose of this paper is to show that when M is a compact, connected

2-manifold, these two conditions are sufficient for the existence of a Morse-

Smale diffeomorphism homotopic to the identity. Thus, we have the following

theorem.

Theorem. Let M be a compact, connected 2-manifold. There exists a

Morse-Smale diffeomorphism f of M homotopic to the identity with periodic data

{(/>/> «f, 4)}"-i if and only if
(a) w, = 0 and Uj = 2 for some i andj;

(h) n?.,(l - A,^)(-'>"' = (1 - 0X(W)-

In §1, we give definitions and background. Two general references for this

are [9] and [5]. In §2, we consider the equation

ft o - A>)<-,r'- (i - *fM)
i=i

and, using combinatorial arguments, rewrite it in a canonical form which is

useful in proving the theorem. In §3, we construct several basic

diffeomorphisms on discs and annuli in the plane and indicate how these can

be pieced together to produce the desired diffeomorphism on the given

2-manifold. Some additional results derived from the canonical form are

proved in §4.

I wish to thank my advisor, John Franks, for suggesting the problem and

for the help he has given me with this work, and R. Narasimhan, for helpful

conversations.

1. Preliminaries. Let M be a compact C°° manifold and Diff(M) the group

of C diffeomorphisms of M, 1 < r < oo. A point x G M is called a

nonwandering point of / G Diff(M) if for every neighborhood U of x, there

exists m > 0 such that/m(t/) n U ¥=0. The set of nonwandering points is a

closed, invariant set of /and is denoted by fi(/), or fi.

A hyperbolic periodic point of / is a point x G M with /" (x) = x for some

n > 1 and such that the derivative map Df": TXM —> TXM has no eigenvalues

of absolute value one. If all eigenvalues of Df" are less than one in absolute



PERIODIC BEHAVIOR OF MORSE-SMALE DIFFEOMORPHISMS 147

value, x is called a sink, and if all eigenvalues of Df" are greater than one in

absolute value, x is called a source. Otherwise, x is called a saddle. Let E" he

the subspace of TXM spanned by eigenspaces of Df" corresponding to

eigenvalues greater than one in absolute value, and Ex the subspace of TXM

spanned by the remaining eigenspaces. Then TXM = E" ® Ex, and this

splitting is invariant under Df".

Suppose y is a hyperbolic periodic orbit of / with least period p. Let x,

y G y, f"(x) = y. Then DP?: E" -* E" is an isomorphism, so dim Ex =

dim E". Also, Dfp: E" —> E" preserves orientation if and only if Df?: E" —>

E" preserves orientation, since

Dfp = (Df?)(Dfp)(Df?yx.

Define the orientation type A of y to be +1 if Dfp: Ex —» E" preserves

orientation and — 1 if it reverses orientation.

Thus, each hyperbolic periodic orbit y, of/has three integer invariants: p¡,

the least period of y,; m, = dim Ex[ for x G y,; and A„ the orientation type of

x G y¡.

Definition. If / is a diffeomorphism whose nonwandering set consists of n

hyperbolic periodic orbits, we define the periodic data of / to be the collection

{(p,,u,,A,)}?=1.

The stable manifold of a hyperbolic fixed point x of/is defined by

Ws(x) = Ws(x,f) = {vGM|¿(/"(x),/n(y))^Oasfl^oo},

where d is a metric on M, and the unstable manifold of x is W(x) =

W"(x,f) = Ws(x,f~x). These are one-to-one immersed submanifolds of M

and Tx(W5(x)) = E°x, Tx(Wu(x)) = Eux (see [8]). If x is a hyperbolic periodic

point of period p, the stable and unstable manifolds of x are defined by

¡Vs (x) = Ws (x, fi ),        W (x) = W (x, fp ).

Definition. A Morse-Smale diffeomorphism is a diffeomorphism f of M

satisfying the following conditions:

(1) fi(/) is finite;

(2) the periodic points of/are hyperbolic;

(3) for each x, y G fi(/), ^(x) and W"(y) have transversal intersection.

Condition (1) implies that fi(/) consists of periodic points. Palis and Smale

proved in [6] that for / G Diff(M) with fi(/) finite, / is a Morse-Smale

diffeomorphism if and only iff is structurally stable.

For a Morse-Smale diffeomorphism, M = \J Ws(x¡) = U ^"(x,) for x, G

fi(/). Therefore, a Morse-Smale diffeomorphism has at least one source and

one sink.

If / G Diff(M) has a finite nonwandering set consisting of periodic orbits

{Y,}í-i. then a. filtration for/is a finite sequence {Mi})=x of manifolds with



148 C. C. NARASIMHAN

boundary, of the same dimension as M, such that M = Mk D • • • D Mx D

M0 =0,f(Mi) c int(M,), and nmeZ/m(M " M-.) = TV-

In proving the theorem, we shall construct a diffeomorphism / of M whose

nonwandering set is a finite number of hyperbolic periodic orbits and such

that / has a filtration. In this case, by the fi-stability theorem (see [10]), and

the Kupka-Smale theorem (see [1] or [7]), we can find in a neighborhood of/

a Morse-Smale diffeomorphism of M which has the same periodic data as /.

2. Canonical form. To prove that a diffeomorphism / whose periodic data

satisfy the equation

no - va)<-,)"'+i -ho-(l-o
i=i

-x(M)

can actually be constructed, it is necessary to study this equation more

closely. First, note that in the case of a 2-dimensional manifold M, u¡ is 0, 1,

or 2. Furthermore, since / is homotopic to the identity, it is orientation

preserving. Thus, A, = +1 when w, = 0 or u¡ = 2, and A, may be +1 or -1

when m, = 1. Therefore, we are interested in equations of the form

1171,(1 ± f«)

nj-.o-/»)
= 1.

We shall show that such an equation imposes restrictions on the integers m, I,

q¡, and p, (which are part of the given periodic data).

Lemma 2.1. If

nr.iQ - f)wk.i(i + tr>)

n%,(i-^)
then

(a) m = I;

(b) there exist integers ax > 0, . . . , am > 0 such that

(i) the set {px,p2, . . . ,pm) equals the set {2a'qx, 2a2q2, .

(ii) the set {rx, r2, . . ., rn) equals the set

[qx, 2qx, ..., 2"<-xqx; q2, 2q2, ..., 2a^xq2; ■ ■ ■ ;q,

(If a¡ = 0 for some i, i.e., if p, = q¡, then the set of numbers q¡, . . . , 2a'~lqi in

(ii) stands for the empty set, i.e., there are no corresponding r¡.)

Thus, such an equation has the canonical form

. .,2a--x

2<i-i

n (1 - /«)(! + r«)(l + i2«) •••(! + i2"'"'*)

0 _ F**)

= 1.
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Proof. Let P(t) = Lîf.,(l - f®)HX-iO + tr*) and Q(t) = Hj.,(l - r*).
Then /*(i) has a zero of order m at < = 1 and Q(t) has a zero of order / at

t = 1. Since P(t) = Q(t), m = /.

We shall prove (b) by induction on m + n. Suppose m + n = 1. Then

either m = 0 or n = 0. In the first case, LT^ = ,(1 + tr") = 1, so n = 0. In the

second case, we have (1 - tq') = (1 - tp<). Therefore, qx = px and the

statement is true in this case.

Now assume that the statement is true for s < m + n, and that we have

m n m

n (i - r«) n (i + »*) = n (i - *«).
/=i      a=i        >=i

Reorder the g's andp's so that

ç, < q2 < • • • < q„   and   p, < p2 < ■ ■ ■ < pm.

We shall show that either pm = ^rm orpm = 2r, for some/.

Let
m n

p,(t) = no-/*),   p2o)= n(l + r*).
<=i *=i

Then Px(t)P2(t) = 0(0- Since e2m/?- is a root of Px(t), it is a root of Q(t).

Thus, there exists / such that e2mV%» = i. Therefore, qm divides pj, so

qm < p. < pm. Now e2m/'''" is a root of Q(t), so there are two possibilities to

consider:

(i) Suppose e2m/Pm is a root of Px(t). Then, by the same reasoning as above,

Pm < 9m. sopm = qm = 2°qm. In this case, we have

m— 1 « m—1

n (i - f«) n (i + r*) = n (i - r*>
i=i       *=i j=\

and the result follows by induction,

(ii) Suppose e2™,Pm is a root of -P2(0- Then there exists j such that

e2T>rj/Pm = _ i > so 2/)/pm = / for some odd integer /. On the other hand, e"i/r>

is a root of P2(t), so it is a root of (2(0 and e™p'/rj = 1 for some s. Therefore,

pjrj = 2/' for some integer /'. Thus, ps = ll'pm. But ps < pm, so / = 1 and

pm = 2/v. In this case, we have

m j ~ 1 /î m — 1

n (i - f«) n (i + /rt) n (i + r*>- (i - r'o n (i - ^).
/=i *=i *=;+! y-i

or, after a change of notation,

m n— 1 m

no- *•) n (i + <*) = n (i - »*>,
(=1 A:=l 7=1

and, again, the result follows by induction.    Q.E.D.
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3. Construction of diffeomorphisms. The technique used in proving the

sufficiency of the conditions in the theorem is to write the given 2-manifold

M as a union of 2-dimensional annuli, or annuli and discs, and to construct a

diffeomorphism of M which agrees with certain basic diffeomorphisms in

these regions. Below, we prove the existence of three mappings of regions in

the plane which, together with their inverses, will constitute these basic

diffeomorphisms. These mappings are constructed so that they agree in a

neighborhood of the boundaries of their domains, and therefore may be

easily pieced together to define a mapping of the manifold M.

In the rest of this chapter, when we say that a diffeomorphism / has

periodic data {(p¡, u¡, A,)}, we shall mean that the nonwandering set of /

consists only of the hyperbolic orbits described by this data.

We construct first a diffeomorphism of a disc whose periodic points all

have periods a power of 2. This example is due to Dennis Pixton.

Lemma 3.1. For any n > 0, there exists a diffeomorphism f of the 2-dimen-

sional unit disc onto its image with periodic data

{(2"+x, 0, + 1), (1, 1, - 1), (2, 1, - 1), (22, 1, - 1), ... , (2", 1, - 1)}.

Furthermore, for some R > 0, e > 0,/maps the annulus (x G R2\l — R < \x\

< 1} inward along radii a fixed distance e, and there exists a filtration of the

disc for f.

Proof. Let D¿ denote the unit disc and let Dx, D2 denote the two discs

with radius rx = \ and centers a\ = (- \, 0), a2 = (|, 0); i.e., D\ and D2 are

discs contained in Z)0' with radii \ that of Z)0' and centers on the x-axis at the

midpoints of the two radii of Z)0'.

In general, for 2 < k < n + 1, let Dk, Dk, . . ., Dkk denote the 2k discs

with radii/**- \ rk_x such that Dx, D2 c Dx_x; D3, D4 c D2_x; . . . ;D2k"',

Dkk c Dk_\, and such that the centers ak'~x, af of Dk'~x, Dk' respectively

are the midpoints of the radii of Dk_x on the x-axis. Choose R > 0 small

(R < ^ r„+x) and let Aq he the annulus {x G D¿\r0 — R < |x| < r0} and for

1 < k < n + l,A¿ - {x E D¿\rk - R < \x - a¡\ < rk + R) (see Figure 1).

For 0 < k < n + 1, choose a C°° function ak: R -» [0, 1] such that

Í 1,    t < (7/8)rfe

Uk{ '      \ 0,     (15/16)rfc < t.

Now define hk: Dk -» Dk in polar coordinates centered at axk to be

hk(r,9) = (r,9 + vak(r)).

Then hk is a diffeomorphism of Dk which is the identity on the annulus

Axk n Dk and is a rotation on the inner disc {x G DA'| |x — ak\ < | rk) by m.
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Figure 1 Figure 2

Note that the center of Dk is a fixed point of hk and that hk reverses the two

discs Dk+X and Dk+X. In particular, hk interchanges the centers of these two

discs. For 1 < k < n + 1, extend hk to the entire disc D0' by the identity.

Define h: D¿ -> D¿ by h(x) = h0 ° hx° • • • ° hn+x(x). Then A is a

diffeomorphism of Z)0' with the following property: for each k, 0 < k < n +

1, the centers of the 2k discs Dk form a periodic orbit of period 2k.

Let B' = D'uAl- {(D2i~xx - A2i~x) u (D2i+X - A2i+X)}, for k = 0,

1,.. ■'., ». Let pk he a flow on U 211 Bk with the following properties (Figure

2):

(a) pk maps the annuli Ak, Ak+X, and Ak'+X inward along radii a distance e

at time 1 ;

(b) pk has exactly one saddle point at the center of each Bk;

(c) pk is symmetric in B'k with respect to the center of B'k.

On the union of discs U2l+i(A!+i U A'n+X), define a flow pn+1 with the

properties:

(a) pn+, maps the annuli yl,¡+1 inward along radii a distance e at time 1 ;

(b) pn+x has exactly one sink at the center of each D'n+X;

(c) pn+x is symmetric in each D'n+X with respect to the center of D'n+X.

The flows pk have been defined so that pk and pk+x agree where they are both

defined, namely, on the annuli Ak + X. Therefore, we can define a flow p on all

of Z>0' by setting p(x) = pk(x) for x G Bk. Let g he the time-one map of p.

Then g is a diffeomorphism of Z)0' with 2"=0 2' saddle points of period 1 (the

centers of the Dk for 0 < k < n) and 2"+1 sinks of period 1 (the centers of

the D^+x). All other points of D0' are wandering under g.

Let/ = g ° h. Then/is a diffeomorphism of D¿. For any k, 0 < k < n +

1, the centers of the 2k discs D¿ form a periodic orbit of period 2k under /t

and are left fixed by g. Thus, they form a periodic orbit of period 2* under/.
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For each k, 0 < k < n + 1, let Q = {x G Z)¿| |x - a/| < | /•*}. Then A

permutes these 2k discs, so for x G C'k, h(x) G C{ for some j. Suppose

x = (r, 9) in polar coordinates centered at a'k. Then h(x) is either (/•, 0) or

(r, 9 + it) in polar coordinates centered at a¿. But p is symmetric with respect

to the centers of the Dk. Hence (g ° h)(x) = (h ° g)(x). Therefore, U2_i C'k

is a neighborhood of the points a'k in which g and h commute. Thus, in this

neighborhood,/2* = g2* ° A2*. Now, h2k maps Q to itself (since h2k(a'k) = ak),

but h2 interchanges the centers of the discs Dk + Xx and Dk'+X (since they are

points of period 2k+x). Therefore, h2k\C'k is just rotation by m, and Df2 =

Dg2 ° h. Hence, the n + 1 orbits consisting of the points a'k, for 0 < k < n,

are hyperbolic saddles and the orbit consisting of the a'nJrX is a hyperbolic

sink. All other points are wandering under/.

Let 0 < k < n, and let W"(a'k) denote the unstable manifold of ak. We

must show that f2" reverses the orientation of Wu(a'k). But in the neigh-

borhood Ck of a'k, W"(a'k) is on the x-axis, so its orientation is left fixed by g2*

and reversed by h2", which rotates C'k by tt. Therefore, /2* reverses the

orientation of W(a'k).

Note that/maps the annulus AXQ inward along radii a distance e, since this

is the effect of g and h leaves A\ fixed.

Finally, / has the filtration

2* 2" + 1

Dx D Dx u D2 D • • • D U D'k-D • • • D U AÍ+.30-    Q.E.D.
<=i i=i

Lemma 3.2. Let A = {x G R2|l < |x| < 3}. For any n > 1, m > 0, there

exists a diffeomorphism f of A onto its image with periodic data

{(2mn, 0, + 1), (n, 1, + 1), (n, 1, - 1), (2n, 1, - 1), ... , (2m~xn, 1, - 1)}.

Furthermore, for some R > 0, e > 0,/ maps the annuli

Ax = (x G A\\ <\x\< 1 + R)    and   A2 = (x G A\3 - R <\x\ < 3}

into A along radii a distance e, and f has a filtration on A.

Proof. Choose R > 0, 8 > 0 small, 0 < R < 8 < 1/3 and let a: R->

[0, 1] be a C°° function such that

[0,    t < 1 + R,
a(t) = jl,    2-8-R<t<2 + 8 + R,

10,    3 - R < t.

Define h: A -* A in polar coordinates to be

h(r,9) = (r,9 + ?f a(r)\

Then A is a diffeomorphism of A which is the identity on the annuli A, and
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A2 and which rotates the annulus {xE^|2-5-Ä<|x|<2 + 5 + Ä}

by 277/n.

Let ak = (2, 2(k — 1)tt//i) for Ac = 1, . . ., n and define sets

Dk= [x G A\ \x - ak\< 8} nndBk = {x G A\8 - R <|x - ak\ < 8 + R )

(see Figure 3).

Figure 3

Figure 4

Let B = A - U5Ui(A: — Bk) and define a flow p on B with the following

properties (Figure 4):

(a) p maps the annuli A, and A2 into A along radii a distance of e at time 1 ;
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(b) p maps the n annuli Bk inward along radii a distance of e at time 1 ;

(c) p has n saddle points at bk = (2, (2k — V)Tr/n), k = 1, . . ., n and all

other points are wandering;

(d) p commutes with rotation through 2tt/n.

Let <p be the time-one map of p. Then <p has n saddles of orientation type +1.

We shall now define diffeomorphisms gi, . • ■ , g„ on the discs Dx u

Bx, . . . , Dn u Bn. In each disc Dk u Bk, choose the diametral axis which

makes an angle of 2(k - \)tt/n with the positive x-axis. By Lemma 3.1, there

exists a diffeomorphism g, of Dx u Bx with m saddles of periods

1, 2, . . ., 2m_l respectively and each of orientation type — 1, and one sink of

period 2m, and such that the annulus Bx is mapped inward along radii a

distance e. Let c[ denote a point of period 2'. Then, as is clear from the

proof of Lemma 3.1, we can choose these 27L0 2' points so that they all lie on

the given axis of Dx u Bx. Now for 2 < k < n, define a flow pk on Dk u Bk

with the following properties (Figure 5):

Figure 5

(a) pk maps the annulus Bk inward along radii a distance e at time 1 ;

(b) at each of the S^LTo' 2' points c'k on the given axis such that \ck - ak\ =

|c¡ - ax\, pk has a saddle point;

(c) at each of the 2m points ck   such that \ck  - ak\ = |c¡" - ax\, pk has a

sink;

(d) all other points are wandering under pk.

Let   gk   he   the   time-one   map   of   pk,   k = 2, . . . , n.   Now   define   a

diffeomorphism g of A by

( \ = Í 9^'     xG B'
8{X)      |g,(x),    xGD^B,

Then g is well defined, since <p and g, agree on B n (D¡ u B,) = B¡.
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Let f = g ° h. The points bx, . . . , b„ are saddle points of g and are

permuted by h. Also, in the neighborhood Uf-i A'> A = {x G /1| |x — ¿>,|

< 8), g and A commute and h\ U A' is Just rotation by 2ir/n. Therefore,

Df" = Dg" ° h, so the points bx, . . . , b„ form a hyperbolic saddle of period

n. Furthermore, both h and g leave the orientation of W(b¡) fixed for all », so

this saddle has orientation type + 1.

Now consider the points cj. Under g, the 2™=0 2' points c¡ form m + 1

hyperbolic orbits: m saddles of periods 1, 2, . . . , 2m_1 respectively and

orientation type -1, and 1 sink of period 2m. For/ > 1, the cj are left fixed

by g. For each i, hk(c{) = ck+x, 1 < k < n - 1, and h"(c[) = c[. Therefore,

/ has the following periodic orbits: m saddles of periods n, 2n, . . . ,2m~xn

respectively, and one sink of period 2mn. As in the proof of Lemma 3.1, there

exists a small disc C\ about each c{ such that on U ¡C[, the mappings g and h

commute. Furthermore, these C[ may be chosen so that hk\C\ is just rotation

in coordinates centered at 0 by 2km/n. Therefore, in the neighborhood

Uc/u U«*(c/)
/ k,i

of the cj, g and h commute, and Dfk = Dgk ° h, 1 < k < 2mn. Hence, these

orbits are hyperbolic orbits. Finally, it is clear that the orientation type of the

saddles formed this way is — 1, since rotation of A by h does not change the

orientation of their unstable manifolds.

That/acts as desired in a neighborhood of the boundary of A is clear from

the construction.

Let At 3 Mk 3 Mk => • • • D Afj? 30 be the filtration for /|At as
described in Lemma 3.1. Then a filtration for/is given by

n n n

/<dU A3 U m¿d ■ ■ ■ d U m;o0.  q.e.d.
/fc=l A=l *=1

Lemma 3.3. Let A, Ax, and A2 be as in Lemma 3.2. For any n > 1, m > 0,

íAere ex¿s¿s a diffeomorphism f of A onto its image with periodic data

{(2mn, 0, + 1), (n, 1, + 1), (n, 1, - 1), (2n, 1, - 1), ... , (2m~xn, 1, - 1)}

and such that f maps the annulus A, along radii a distance e outside of A and the

annulus A2a distance e into A. Furthermore, there exist submanifolds

A3 NkD Nk_x D • • • d JV,D0

such   that f(N¡) C hit N¡   and D m£Zfm(N¡ - N¡_x),   i = 1, . . . , k,   and

D mez/m(^ — ^t) are the periodic orbits of f.

Proof. The proof of this lemma is almost identical to that of Lemma 3.2,

so we shall use the notation of that proof and simply indicate the necessary

changes. This consists mainly of changing the definition of the flow p defined
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on the annulus A with discs {x G A\\x — ak\ < 8 — R) removed.

Let bk m (3/2, 2(k - 1)tt/ n) and D'k = (x G A\ \x - bk\ < 8}. Note that

8 ànd R may be chosen as small as desired, so that D'k n (A U Bk) =0 and

An Ax =0. Define a flow p on B = A - U£=i(A ~ Bk) with the fol-

lowing properties (Figure 6):

Figure 6

(a) p maps the annulus Ax along radii outside of A a distance e at time 1,

and p maps A2 along radii into A a distance e at time 1 ;

(b) p maps the n annuli Bk inward along radii a distance of e at time 1 ;

(c) p has n saddle points at bx, . . . , b„ and all other points are wandering;

(d) p commutes with rotation through 2ir/n.

If / is defined as in 3.2, then/is a diffeomorphism with domain A which has

the same periodic data as the diffeomorphism in 3.2 and differs only in that it

maps a neighborhood of the inner boundary of A outside of A instead of into

A.

Finally, ,4 d U*_i A => UJ o Mx D D U^,MÍD0, where the

M'k  are as in 3.2, and these submanifolds satisfy the properties in the

statement of the lemma.   Q.E.D.

In the proof of the theorem, we shall write the 2-manifold M as a union of

annuli and discs, U A¡, and construct / G Diff(M) such that f\A¡ is one of

the examples constructed above. These submanifolds will be pieced together

so that they would give a filtration for / if f\A¡ had only one periodic orbit.

On the other hand, as seen in the preceding lemmas, f\A¡ would have a

filtration on A¡ if f(A¡) were always contained in A¡. We can combine these

subdivisions to get a filtration for/, and we state the following as a lemma for

purposes of reference.
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Lemma 3.4. Let f G Diff(M) and suppose there exist submanifolds

Mx, . . . , Mk and N{, . . . , Ar„1|, . . . , Nk, . . . , Nk of M, with boundary and of

the same dimension as M, satisfying

(1) M = Mk D Mk_x D • • O M, D0 andf(M¡) c hit M¡;

(2) for i = 1, . . . , k, M¡ - M,_, - N¿ D. »> « D N¡ 30 and

f(NJ)cmXNj,       /= 1, ...,V¡- 1,

Pi   fm{NJ-Nj_x) = Aj,      j-\,...,p„
mez

where {A¡}¡j are the basic sets off. Then f has a filtration on M.

Proof. We have

M = Mk = Mk_x u Nk d ■ ■ ■ D Mk_x U Nk D M,_,

= Mk_2 u <;,' D • • • D M2 = M, u ^ D • • • D M, U AT,2 D M,

= Nw\ D ■ ■ ■ D AT," D0,

where f(Mj u A7+1) C int(M7- u N{+x) and

n r[(^- u ay+i ) - {Mj u ay-+,' )] = n r (»r1 - a/*í ) = Ar1.
mez mez

for all /,/.   Q.E.D.
We shall now prove that the conditions of the theorem are sufficient when

M is a compact, connected 2-manifold. By the classification theorem for

compact surfaces (see Massey [4] for a reference), M is homeomorphic to a

sphere, torus, connected sum of tori, projective plane, or connected sum of

projective planes. We shall denote these surfaces by S2, T, Xn, P, and Yn

respectively.

Theorem. Let M be a compact, connected 2-manifold. There exists a

Morse-Smale diffeomorphism f of M homotopic to the identity with periodic data

{(Pi, «,, A,.)} if
(a) u¡ = 0 and Uj = 2 for some i andj;

(b) n*_,(l - A,.^"1'"' = (1 - 0x(A/)> where n is the number of periodic

orbits.

Proof. Since M is a 2-dimensional manifold, u¡ is 0, 1, or 2 depending on

whether y, is a sink, saddle, or source. Furthermore, in the case of a

diffeomorphism homotopic to the identity, A, is +1 when y, is a sink or

source, and may be + 1 or -1 when y, is a saddle. Assume that the periodic

data is

{(p„ ux, + 1), . . . , (pm, um, + 1), (qx, 1, + 1), . . . ,

{q„ 1, + 1), 0„ 1, - 1), ... , (f„ 1, - 1)},
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where m, = 2 for k indices i and u¡ = 0 for m — k indices; that is, the periodic

orbits consist of k sources and m — k sinks of periodsp,, . . . ,pm; I saddles

of periods qx, . . . , q, and orientation type +1; and s saddles of periods

rx,...,rs and orientation type — 1. Then by condition (a), k > 1 and

m - k > 1, and by condition (b),

(i - or(M)n,=,0 - f)w,ml{i + '")    ,
-=i. (*)

Lr7_,0 - tPj)

We shall consider the case of each compact, connected 2-manifold separately.

(1) M = S2. If M = S2, then x(M) = 2. After reindexing the q's, we can

write the equation (*) as

ifc.o - í«)ni_,o + n
-U7=i(l_tPj)- - 1,   where,, = ql+2 = 1.

By Lemma 2.1, m = / + 2 and there exist integers ax > 0,. . . , am > 0 such

that the set {px,...,pm} equals the set {2"<qx, . . . , 2^qm) and the set

{rx, . . . , rs) equals the set

{qx, 2qx, ..., 2">-xqx; ■ ■ ■ ;qm, 2qm, ..., 2^xqm}.

Note that in this notation, the equation is

n/t=i
(1 - /*)(! + '*)• • • (1 + t2"' '«)

= 1.
(I-/22'*)

We see that there is a natural grouping of the data for sources and sinks with

the data for saddles. In fact, we can rewrite the periodic data now as

{(2">,ux, +1),(1,1, - 1),...,(2<"-', 1, -1);

(2°»,um, + 1),(1,1, -1), ...,(2^-', 1, -1);

(2%, ut, + 1), (<?,, 1, + 1), (%, 1, - 1), ...,

(2^-^,1, - 1), i = 2, ...,m- 1}

and the idea of the proof is to construct m diffeomorphisms on subsets of S2,

each of which contributes one block to the data set.

Write S2 as a union S2 = Ax u • • • U Am, where Ax and Am are 2-

dimensional discs, A2, . . . ,Am_x are 2-dimensional annuli, and the sets

overlap in the following way: A¡ r\ Ai+X, i = 1, . . . , m — 1, are annuli of

width R (where R is small compared to the diameters of the discs and the

widths of the annuli), and all other intersections are empty. We shall

construct a diffeomorphism of S2 by piecing together suitable

diffeomorphisms/ defined on At. The/ are all special cases of the mappings

constructed in Lemmas 3.1, 3.2, 3.3 or their inverses. Thus, each such/ will
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have the property that it maps annuli of width R containing óM, n A¡_x and

dA¡ n Ai+X along normals to 6\4, a fixed distance e, where e < R, either

outside A¡ or into A¡. Therefore, in piecing together the/, the only thing we

must be sure of is that/ and/+1 both map A¡ n Ai+X in the same direction.

Below, we shall simply indicate in each case whether /• maps dA¡ n A¡_x

outside or into A¡ and dA¡ n A¡+, outside or into A¡.

Assume that thep's are indexed so thatp, = 2"^,. Thenp, = 2a',pm = 2"m

and there are three possibilities: 2"' and 2a* are periods of two sources, two

sinks, or one source and one sink.

(i) Suppose that px is the period of a source and pm is the period of a sink

(that is, we have (2"', 2, + 1) and (2\ 0, + 1) in the given data). Let/, be a

diffeomorphism of A, onto its image with periodic data

{(2">, 2, + 1), (1, 1, - 1), (2, 1, - 1), ... , (2"'-1, 1, - 1)}

and which maps dAx out of Ax. Such a diffeomorphism exists by Lemma 3.1

(taking inverses).

Also by 3.1, there exists a diffeomorphism fm of Am onto its image with

periodic data

{(2<H 0, + 1), (1, 1, - 1), (2, 1, - 1),..., (2*»"\ 1, - 1)}

and which maps dAm into Am.

Now we have one orbit which is a source and one which is a sink, and

m — 2 such orbits left to define, k — 1 sources and m — k — 1 sinks (where

k — 1 and m — k — 1 may be zero). Without loss of generality, we may

assume that thep's are indexed so that

p2 = 2^2, ...,pk-2*qk

are periods of sources and pk+\ = 2"k*'qk+x, . . . ,pm_x = 2am~,qm_x are

periods of sinks. By Lemma 3.3 (taking inverses), there exist diffeomorphisms

f2, . . . ,fk with domains A2, . . . , Ak respectively, such that / has periodic

data

{(2^,2, + \),(qi,l, + \),(qi,\, -1),

(2Qi, 1,-1),..., {V-%, 1,-1)}

and such that/ maps 304,) n A¡_x into Ai and 9(^4,-) n Ai+X out of A¡.

Also by 3.3, there exist diffeomorphisms fk+x, . . . ,fm_x with domains

Ak+X, . . ., Am_x respectively such that/ has periodic data

{(2^,0, + l),(qj, 1, + l),(qj, 1, -1),

(2qj,l, -\),...,(2"-xqj,\,- 1)}

and/ maps 9 (Aj) n Aj_x into A} and 9 (Af) n Aj+, out of Aj (see Figure 7).
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Figure 7 Figure 8

Since / and /+, agree on A¡ n Ai+X, i = 1, . . . , m — 1, we can define a

diffeomorphism F of S2 by F(x) = /(x), x G A¡. Then the periodic data of F

is the union of the sets of periodic data of the /. Therefore, F has the given

periodic data.

Let N, = Uf=i Aj. Then S2 = Nx D N2 D • • • D A/m D0, F(A/,.) c
int A7,, and for / = 1, . . . , m, N, - N¡_x = A¡ satisfies condition (2) of

Lemma 3.4. Therefore, F has a filtration on S2. By the fi-stability theorem

[10], there exists a neighborhood N of F such that any h G N has the same

periodic data as F. By the Kupka-Smale theorem [1], [7], there exists f G N

such that / satisfies the transversal intersection condition. Thus, after a small

perturbation of F, we have a Morse-Smale diffeomorphism / of S2 with the

given periodic data.

(ii) Now suppose that p, and pm are both periods of sources. Let g, = /,

and gm = f~ \ where/, and/m are defined in (i).

Then g, and gm have domains Ax and Am respectively, g, maps a neigh-

borhood of dA¡ out of Aj, and g, has periodic data

{(2% 2, + 1), (1, 1, - 1), (2, 1, - 1), ..., (2<*-\ 1, - 1)}

for i = 1 and i = m.

Assume that thep's are indexed so thatp2, . . . ,pk-X are periods of sources

andpj., . . . ,pm_, are periods of sinks. Note that k - 1 may be zero, but by

condition (a) of the theorem, there must be at least one sink, so m - 1 > k.

Let g, =/ for / = 2, ..., /c - 1, where/ is defined in (i). Then g, has domain

A¡, g¡ maps dA¡ n A¡_x into A¡ and dA¡ n Ai+X out of A¡, and g, has periodic
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data

{(2%, 2, + 1), (q¡, 1, + 1), (q„ 1, - 1), (2?„ 1, - 1), ...,

fr-%, i, -1)}.
By Lemma 3.2, there exists a diffeomorphism gk of Ak onto its image such

that gk maps both dAk n Ak_x and %Ak n Ak+X into Ak and such that gk has

periodic data

{(2*ft, 0, + 1), (qk, 1, + 1), (qk, 1, - 1), •••, (2a-V I, - !)}•

Finally, let gk+x, . . . , gm_, be diffeomorphisms with domains

Ak+X, . . ., Am_x respectively such that for i = k + \, . . . , m - \, g, has

periodic data

{(2%, 0, + 1), (% 1, + 1), (<?„ 1, - 1), ••• , {2"'-%, 1, - 1)}

and g, maps Mt n A¡_x outside of A¡ and M¡ C\ Ai+X into /!,- (see Figure 8).

Since g, and g,+, agree on ^, n Ai+ „ we can define a diffeomorphism g of S2

by g(x) = g,(x), x G ^„ and g has the given periodic data.

Let

N = j U;=/ Aj, i=\,...,k,

'      lUf-+**-y4,     / = /c+l,...,m.

Then S2 = A/, D N2 D • • • D JVm D0, and g(A^) c in^) for each /. Also,

N¡ - N¡_x satisfies the conditions of Lemma 3.4 for each /, so g has a

filtration on S2. Therefore g is fi-stable, and there exists a diffeomorphism/

of S2 which is topologically conjugate to g on fi and which has transversal

intersections. Then/ is a Morse-Smale diffeomorphism of S2 with the given

periodic data.

(hi) The case whenp, andpm are both periods of sinks follows immediately

from (ii) by taking the inverse of g (after suitable reindexing of thep's).

(2) M = T. In this case, x(^) - 0 and the canonical form of the equation

0)is

n
i-1

(1 - r«)(l + i«)(l + r2*) • • • (1 + t2"''"')

(l-t2**)

= 1,

where there are no restrictions on the q¡.

Write T as a union T = A, u • • • U Am, where the A¡ are 2-dimensional

annuli such that A¡ n Ai+X, i = 1, . . . , m - 1, and Am n Ax are annuli of

width R (where R is small as above), with all other intersections empty.

Assume thatp, = 2"<qx, . . . ,pk = 2"kqk are periods of sources andp¿+, =

2"k*'qk + x, . . . ,pm = 2"mqm are periods of sinks. By condition (a) of the

theorem, k > 1, m - k > 1.
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By Lemma 3.2, there exists a diffeomorphism /, with domain A, such that

/, has periodic data

{(2°<qx, 2, 1), (qx, 1, 1), (qx, 1, - 1), ... , (2"^xqx, 1, - 1)},

and such that /, maps the boundaries dAx n Am and dAx n A2 out of Ax.

Also by 3.2, there exists a diffeomorphism fk+x defined onAk+x with periodic

data

{(2%+'<fc+„ 0, 1), (qk+x, 1, 1), (qk+x, 1, - 1), ... ,

(2"--xqk+x, 1, - 1)}

and such thatfk+x maps the boundaries dAk+x n Ak and 9^4^+1 n Ak+2 into

¿k+i- Now let f2,-..,fk, fk+2>--->fm  De diffeomorphisms defined on

A2, . . . , Ak, Ak+2, . . . ,Am respectively with the following properties:

(i) for i = 2, . . . , k,f¡ has periodic data

{(2% 2, + 1), (q¡, 1, + 1), (ft, 1, - 1), ..., {T>-\ 1, - 1)}

and/ maps dA¡ n A¡_, into v4, and dA¡ n ^4,+, out of A,;

(ii) for /' = k + 2, . . . , m,fj has periodic data

{(2%, 0, + 1), (qi, 1, + 1), (Qi, 1, - 1), ... , (2".-V,, 1, - 1)}

and / maps 3^4, n A¡_x out of A¡ and 3^4, n Ai+X (9/lm n Ax) into A¡ (see

Figure 9).

Figure 9

Such diffeomorphisms exist by Lemma 3.3.

Let F(x) = f¡(x), x G A¡. The/ are constructed so that F is well defined.

Then F is a diffeomorphism of T with periodic data

{(2% 2, + 1), (ft, 1, + 1), (ft, 1, - 1), ... , (2û'-'ft, 1, - 1);

(2^ft, 0, + 1), (ft, 1, + 1), (ft, 1, - 1), ... , ^-'ft, 1, - 1);

i = 1, . . ., k,j = k + 1, . . . , m).
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U,"_, Aj,
m + k+l-

= *:+!

i = 1, .. ., k + 1,

J Aj,     i = k + 2, . . . , m.

Then T= Nxd N2d ■ ■ ■ D Nm D0, F(N,) c int(N¡), and the N¡ - N¡_x

satisfy the conditions of Lemma 3.4. Hence, F has a filtration on T and is

fi-stable. Then there exists a diffeomorphism f of T with the same periodic

data as F and which satisfies the transversal intersection condition. Therefore,

/ is a Morse-Smale diffeomorphism of T with the given periodic data.

(3) M = X„, n > 2. If M is the connected sum of n tori, then x(^) — 2 -

2/j and by condition (b),

n(=,(i - r*)ni.,(i + f>)

(i 02"~2n7_,(i - **)
= i.

By Lemma 2.1, after reindexing the q's, we can write this product as

(i-O
2n-2

(i-O
2n-2 n

(1 - r*)(l + r*)(l + i2*) • • • (1 + t2°'■"'«)
= 1.

(1-f*.)

Assume that p, = 2a'ç, is the period of a source and pm = 2a"*ft„ is the

period of a sink. Let Tx, . . ., T„ he n tori. By part (2), there exists a

diffeomorphism/, of Tx with periodic data

{(1, 0, + 1), (1, 1, + 1); (2a'ft, «„ + 1), (ft, 1, + 1),

(ft, 1, - 1),..., (2a--xq¡, 1, - 1), / - 1,..., m - 1}.

Again by (2), there exist diffeomorphisms f2, . . . ,/„_, of r2,. .., T„_x

respectively such that/ has one sink of period 1, one source of period 1, and

two saddles of period 1 and orientation type + 1.

Finally, let/, be a diffeomorphism of Tn with periodic data

{(1, 2, + 1), (1, 1, + 1); (2S?m, 0, + 1), (qm, 1, + 1),

(qm,\,-\),...,(2^-xqm,\,-\)}.

It is clear that the / can be constructed so that there exists discs Dx c

Tx, ...,£)„_, c Tn_, about the sinks of period 1 and discs D'2 c T2, . . . , D'n

C Tn about the sources of period 1, and an e > 0, small compared to the

diameter of the discs, such that /| D¡ is a contraction by e, /" = 1, . . ., n — 1,

and /| A' is an expansion by e, i = 2, . . ., n. Let Rx c Dx, . . . , J\„_, c

A-1> ^2 C D2, ... ,R¡,c A be annuli of width R containing the boundary

of the disc, where R is small compared to the diameters of the discs.

Now delete the discs D¡ - R¡ and D¡ - R¡ from T¡. For i - 1.n - 1,
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identify the sets R¡ and R/+, by identifying dRi n 3A with 3.R/+, n int A'+1

and dRt n int D¡ with 3/?,'+, n 3A'+1- Then Xn is the connected sum

xn = r,#r2#. •. jfr.,

where 7| is attached to r, + , by this identification. The identification is made

so that/ and/+, agree on R¡ (see Figure 10). Therefore, we can define a

Figure 10

diffeomorphism F of X„ by setting F(x) = /(x), x G 7). Then F has periodic

data

1(2%, Ui, + 1), (ft, 1, + 1), (ft, 1, - 1), ..., (2«-'ft, 1, - 1),

/= 1, ...,m; (1,1, + 1)}.

2/1 — 2 times

if TV,. = r,#r/+I#. • • #rn, then

*„ - TV, D N2 D • • • D iV„D0

satisfies the conditions of Lemma 3.4, so F has a filtration on A^. Therefore,

by the fi-stability theorem and the Kupka-Smale theorem, there exists a

Morse-Smale diffeomorphism/of Xn with the given periodic data.

(4) M = P. In this case, yfM) = 1> and after reindexing the q's, the

canonical form of the equation (*) is

n/=i
(1 - /«)(! + *•)• • • (1 + i2"'"'*)

= 1,    where qx = 1.
(1-P»)

Let S2 = (x G R3| |x| = 1}, and let ~ be the relation on S2 defined by

identifying antipodal points of S2 (so x ~ v if and only if v = x or y = — x).

Then P is the quotient S2/~, and a diffeomorphism of f is a

diffeomorphism of S2 which preserves the relation. We wish to construct a

diffeomorphism of P with periodic data

{(2"', ux, + 1), (1, 1, - 1), ... , (2<"-\ 1, - 1); (2%, Ui, + 1),

(ft, 1, + 1), (ft, 1, - 1), ... , {2a--\, 1, - 1), i - 2,.. ., m},

where w, = 2 for A: indices / and w, = 0 for m — k indices.
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Suppose ux = 2, so thatp, = 2°' is the period of a source. Then «, = 0 for

some /', say um. Write S2 as a union of subsets S2 = Ax u ■ • • U A2m_x with

the following properties:

(a) A, is a disc with center (0, 0, 1) and A2, . . . , Am_, are cylinders on the

upper hemisphere of S2 such that A¡ n Ai+X is a small annulus of width Ä,

/' = 1, . . ., m - 2;

(b) Am is a cylinder containing the equator of S2 (points (x,, x2, x3) G S2

such that x3 = 0) with the property that if x G Am, then —x G Am and such

that Am p\ Am_xis an annulus of width R;

(c) for i «■ m + 1,..., 2m — 1, A¡ is the set of antipodal points of A2m_¡.

Choose diffeomorphisms /„ ... ,fm defined on Ax, . . . ,Am respectively

such that

(i) /, has periodic data

{(2"', 2, + 1), (I, 1, - 1), (2, 1, - 1), ... , (2a<~x, 1, - 1)}

and/, maps 3^4, outside of Ax (Lemma 3.1);

(ii) for / — 2.m — 1,/ has periodic data

{(2a'ft, «,, + 1), (ft, 1, + 1), (ft, 1, - 1),

(2ft, 1, - 1),..., (2«- 'ft, 1,-1))

and/ maps dA¡ n A¡_x into A¡ and 3^4, n Ai+, out of A¡ (Lemma 3.3);

(iii)/m has periodic data

{(2°™+lqm, 0, + 1), (2qm, 1, + 1), (2qm, 1, - 1),

(22qm, 1, - 1), ... , (2a~qm, 1, - 1)}

and/m maps dAm n Am_x and dAm n Am+X into Am (Lemma 3.2). It is clear

from the proof of Lemma 3.2 that fm can be constructed so that fm(x) =

— fm( — x). In that case,/^(x) = — /£( — x) for any n. Therefore, if x, is a

periodic point of fm with period k, then

£(-■*») = -/»(*,)- -*.>

so — x, is also periodic with period k.

For   i =■ m + 1, . . ., 2m — 1,   define /   with   domain  A¡   by /(x) =

— /2m -/( — ■*)• Then the periodic orbits of/ in y4(- are the antipodal points of

the periodic orbits of /2m_, in /l2m_,.

Let .F(x) = /(x), x G A¡. Then F is a diffeomorphism of S2 such that

F(x) = - F( — x). Therefore, F induces a diffeomorphism F of F. The

periodic orbits in A¡ and A2m_¡ are identified for / = 1,..., m — 1, and in

Am/~, F has periodic data

{(2*~qm, 0, + 1), (qm, 1, + 1), (qm, 1, - 1), ... , (2"^xqm, 1, - 1)},
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since each orbit of F\Am consists of points x and their antipodal points — x.

Therefore, F has the given periodic data. Just as in (1), there is a subdivision

of P satisfying the conditions of Lemma 3.4. So there exists a filtration of P

for F, and by the fi-stability theorem and the Kupka-Smale theorem, there

exists a Morse-Smale diffeomorphism/of P with the given periodic data.

The case when ux = 0 follows in exactly the same way.

(5) M = Yn, n > 2. If M is the connected sum of n projective planes, then

X(M) = 2 - n. After reindexing the q's, the canonical form of the equation

(♦)is

(i - o    .--i
(1 - /•)(! + /«)(! + t2"') •••(! + F' "<)

= 1.
(I-/2*»)

LetP,, . . . ,Pn be n projective planes.

Assume that p, = 2"<qx is the period of a source and pm = 2°mqm is the

period of a sink. By part (4), there exist diffeomorphisms /„...,/„ of

Px, . . . , P„ respectively with the following properties:

(a)/, has periodic data

{(1, 0, + 1); (2a'ft, u„ + 1), (ft, 1, + 1),. ..,

(2a'-'ft, 1, - 1),/= 1, ...,m- 1};

(b) for / = 2, ...,«- 1,/ has one sink of period 1, one source of period 1,

and one saddle of period 1 and orientation type + 1 ;

(c)/„ has periodic data

{(1, 2, + 1); (V-qm, 0, + 1), (qm, 1, + 1),

(qm,\,-\),...,{2°™-xqm,\,-\)}.

Just as in part (3), the / can be constructed so that if we delete discs about

the sinks of period 1 in Px, . . ., Pn_x and the sources of period 1 in

P2, . . . , Pn and attach the P¡ along the boundaries of these discs, then we can

define a diffeomorphism F of Yn = P,#P2Jt ■ • • #P„ by F(x) =/(x), x G

P¡. Then F has periodic data

(2a'ft,«„ + l),(ft, 1, + l),(ft, 1, - 1), ...,

(2a'-,ft, 1, - 1), i = 1, . . . , m, (LL+1) ]•

n — 2 times

Also, it is clear that F has a filtration on Y„. Therefore, by the fi-stability

theorem and the Kupka-Smale theorem, there exists a diffeomorphism/of Yn

with the given periodic data.   Q.E.D.
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4. Further consequences of the canonical form. The canonical form derived

in Lemma 2.1 has several other consequences.

Proposition 4.1. Let M be a compact, connected 2-manifold. Suppose f is a

Morse- S male diffeomorphism of M homo topic to the identity such that the

orientation type of every saddle is — 1. Then

(a) M = S2;

(h) all the periods of orbits of f are powers of 2; in fact, there exist n > 0,

m > 0 such that the periodic orbits of f consist of one source of period 2", one

sink of period 2m, and n + m saddles of periods 1, 2, . . . , 2"~x, 1, 2, . . . , 2m_1

respectively.

Proof. Suppose px, . . . ,pk are the periods of sources and sinks of/ and

/■„ . . . , r, are the periods of saddles. Then

(1 - tfM\'i=x(\ + ,*)

n*_,o - tp')

Since / has at least one source and one sink, k > 2. Therefore, x(^0 > 2, so

x(M) = 2. Hence, M = S2, k = 2, and by Lemma 2.1, there exist n > 0,

m > 0 such that p, = 2", p2 = 2m and the set {/■„ . . ., r¡) equals the set

{1,2.r-\ 1,2,..., 2"-»}.   Q.E.D.
Note that the sphere is the only compact surface which admits a Morse-

Smale diffeomorphism with no saddles. In the case of other compact surfaces,

a Morse-Smale diffeomorphism must have a certain minimal number of

saddles. We state this as a lemma.

Lemma 4.2. Let M be a compact, connected 2-manifold and let X(M) be 0,

2n, or n depending on whether M is a sphere, connected sum of n tori (n > 1),

or connected sum of n projective planes (n > 1). Then a Morse-Smale

diffeomorphism f of M which is homotopic to the identity must have at least

X(M) saddles of orientation type + 1.

Proof. Suppose / has k sources and sinks and / saddles of orientation type

+1. Then by Lemma 2.1, k = / + x(M). Since k > 2, I > 2 - x(M). There-

fore, if M = S2,1 > 0; if M is the connected sum of n tori, / > 2 — (2 — 2n)

= 2n; and if M is the connected sum of n projective planes, I > 2 — (2 — n)

= n.   Q.E.D.

We remark that it follows from the Morse-Smale inequalities [8] that any

Morse-Smale diffeomorphism of M must have at least X(M) saddles, although

we can say nothing about the orientation type in this case.

If / G Diff(M) has no more than X(M) saddles of orientation type +1,

then we have results similar to Proposition 4.1.
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Proposition 4.3. Let M, X(M) be as above, and let f be a Morse-Smale

diffeomorphism of M which is homotopic to the identity. If f has exactly X(M)

saddles with orientation type +1 and period 1, then there exist n > 0, m > 0

such that the other orbits of f consist of one source of period 2", one sink of

period 2m and n + m saddles of periods 1, 2, . . . , 2""', 1, 2, ... , 2m_1.

The proof follows as in 4.1.

In general, given a fixed number of sources and sinks, we can construct a

Morse-Smale diffeomorphism with an arbitrarily high number of saddles of

orientation type — 1. The situation is different if we allow no such saddles.

Proposition 4.4. Let f be a Morse-Smale diffeomorphism of a compact,

connected 2-manifold homotopic to the identity, and suppose f has no saddles of

orientation type —I. If x(M) > 0, then for any saddle of period q, f has a

corresponding sink or source of the same period. If x(^0 < 0, then f has

~X(M) fixed point saddles and for any other saddle of period q, f has a

corresponding sink or source of the same period.

Proof. Supposep,, . . . ,pm are the periods of sources and sinks of/, and

qx, . . . , ft are the periods of saddles. Then

(i - oxW)nu,(i - f)
H7-1Ü - '»)

Suppose x(M) > 0. Then by Lemma 2.1, the set (p,, . . . ,pm) equals the set

I L^Ali' °1' • • ■ ' * I
x(A/)times '

and the result follows. If x(M) < 0> then the set

¡Pu ■ ■ ■ >Pm>   \z¿¿¿¿! I
-x(^)times

equals the set {qx, . . . , ft). Then we can reindex the q's so that qx = • • • =

<7-x(jw) = 1- Thus, there are ~x(A/) fixed point saddles and for / > x(M),

there exists/ such thatp, = ft.   Q.E.D.
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