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SUBGROUPS OF CLASSICAL GROUPS

GENERATED BY LONG ROOT ELEMENTS1
BY

WILLIAM M. KANTOR

Abstract. All conjugacy classes of subgroups G of classical groups of

characteristic/) are determined, which are generated by a conjugacy class of

long root elements and satisfy Op(G) < G' n Z(G).

1. Introduction. The purpose of this paper is to determine all the conjugacy

classes of subgroups G of a classical group of characteristic p, which are

generated by a conjugacy class •£ of elements of long root groups, and satisfy

Op(G) < G' n Z(G). Here, X consists of transvections in the case of special

linear, symplectic and unitary groups. In the case of orthogonal groups, if the

dimension is at least 5 then each x e S is an element of order 1 or p

centralizing A x for some totally singular 2-space A.

The resulting classification is presented in §§2 and 11. The lengths of the

lists are due to our not having assumed the irreducibility of G.

These results are a first step towards the determination of all subgroups of

Chevalley groups generated by elements of long root groups. Comments on

this general problem, along with some examples, are presented in §12.

A number of related results have already been proved. McLaughlin [18],

[19], Piper [22], [23], Wagner [34], [35], Pollatsek [26], and Key [16] have
studied irreducible groups generated by transvections, settling all but the case

in which each axis arises from exactly one nontrivial transvection. Stark [27]

studied subgroups of odd characteristic orthogonal groups generated by

entire long root groups; however, she missed one class of examples (see (I 4)

in §2). The results of Thompson [32] and Ho [13], [14] on quadratic pairs

produce a characterization of the possible groups G, provided p > 2 and G is

irreducible; however, these results do not provide information concerning

which groups can be embedded in which others. Moreover, reducibility and

characteristic p = 2 allow a number of interesting examples, related to

indecomposability and cohomological questions.

Our proof is quite different from those of the above references, in that we

start by knowing the structure of G. This is accomplished by quoting very

difficult classification theorems due to Fischer [7], Aschbacher [1], [2], and
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Timmesfeld [33]. More generally, these apply immediately to the aforemen-

tioned general problem concerning Chevalley groups. While it would perhaps

be preferable to obtain a direct approach to such problems, a significant

reduction in labor is provided by knowing G, and then studying its embed-

dings, as opposed to what is almost the reverse point of view. However, these

classification theorems are of much less value when Ox(G) > Z(G)-and in

fact we have not used them in this case, relying instead on the given module.

Another way in which the module can provide simplifications is through the

use of results of Steinberg [29]. However, we have not assumed irreducibility,

and not even the degrees of the basic modules of most Chevalley groups are

known; moreover, we are interested in embeddings in ñ( V), not just GL( V).

§§3 and 4 contain preliminary results and notation. The proof of the main

theorem occupies §§5-10.

Most group-theoretic notation will be standard. G* = G - {1}; Ox(G) is

the largest solvable normal subgroup of G; A X B is the semidirect product

of A and B, with A normal; n ■ G is an extension of G by a group of order n.

Let G act on the vector space V. If If is a subspace of V, then Gw is its

stabilizer, G$ = GW/CC(W) is the group induced on W, and [G, W] =

[W, G] = <wg — w\w E W, g E G); similar notation applies even when W

is the quotient of two subspaces. Further notation will be found in the next

section.

I am indebted to H. Pollatsek, G. M. Seitz and E. Stensholt for numerous

helpful discussions.

2. Examples. While notation for special linear groups is standard, that for

orthogonal ones is less so. Ours will be as follows. Let V = V(n, q) be an

«-dimensional vector space over GF(q). Equip V with a nondegenerate

quadratic form Q, along with the associated symmetric form ( , ). Thus,

rad V = V n V± is 0, except when q is even, n is odd, dim rad V = 1, and

Q (rad V) ^ 0. A subspace W of V is totally singular if Q ( W) = 0, nonde-

generate if Q restricted to W is nondegenerate, and nonsingular if it is

nondegenerate and either rad W = 0 or dim W = 1. A vector v E V is

singular if Q (v) = 0, nonsingular if Q (v) ^ 0.

0(V) is the group of all linear transformations preserving Q. This is

denoted 0+(n, q) or 0~(n,q) when n is even and Q has index \n resp.

\n — 1; while 0(n, q) = O +(n, q) = O ~(n, q) when n is odd (a convenient

notation for future use). Excluding the cases O ±{2, q), 0(3, q) and O ~(4, q),

a long root element is an x G 0( V) of the form (t>)x = v — (v, a)b + (t>, b)a

for a, b in a totally singular 2-space T; if T = <a, 6) then x ^ 1, and T is

denoted A (x). The group X of all long root elements corresponding to T is a

long root group. Set (X°(y)) = fi(K) (alias ß±(«, a)). PQ,(V) and Pß±(«, q)

are now defined as usual.
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(v)ta = v-(v,a)Q(a)   xa.

If q is odd, ta is a reflection; write fi±'"(K) = fi±(F)<ra> with tr = + if Q(a)

is a square, and - otherwise. Pß±,,r(F) is defined similarly; note that

Pti±+(2n, q) s Pñ±-(2n, q). The notation Pß±i,r(2n + 1, q), which is

especially redundant when -ta G ß(2n + \,q), will be used to indicate

which class of reflections is under consideration.

If q is even, then ta is a transvection and 0(V) is generated by these

transvections (except for O +(4, 2)). Also, ta G ß(K) if and only if « is odd, in

which case ß(K) = Sp(F/rad K), {r6|Z> G {a, rad K>, Q(b) ¥= 0} induces the

group of q transvections of F/rad V with direction <a, rad F>/rad V, and

the long root groups of ß(F) become short root groups of 5p(K/rad V).

There are natural isomorphisms Pß(5, q) = PSU(4, q) sending long root

elements to transvections. Also, PO±"(5, 3) = PSU(4, 2)<a> with a a field

automorphism, Pü~1'(4, 3) = S6, and PO "(4, q) a PGL(2, <72)<a> with a an

involutory field automorphism.

We will be concerned with the following examples of subgroups G of ß( V)

generated by long root elements. In each case, there are no proper G-

invariant subspaces Vx, V2 with V = Vx ± V2. In each case, we give the

number of conjugacy classes of embeddings of G in ß( V) of the stated type,

unless there is just one class.

Examples irreducible on F/rad V.

(I 1) G = ß*(n, q).

(I 2) G = ß_(2n, q) < ß+(2«, q2), obtained by extending GF(q) to GF(q2).

(Alternatively, this is the natural embedding obtained by twisting ß+(2«, q2).)

(I 3) G = SU(2n, q) < ti + (4n, q) or G = SU(2n + 1, q) < Q~(4n + 2, q).

Here, Q(v) = trace[t>, t>], where [ , ] denotes a nondegenerate hermitian form

on V(2n, q2) and trace refers to the trace map GF(q2) -> GF(q). For

SU(2n, q) there are two such embeddings, conjugate in O +(4n, q), corre-

sponding to the two possibilities for the class of maximal totally singular

subspaces for Q which contains the maximal totally isotropic subspaces for

[.]•

(I 4) G/Z(G) = Pß(7, q), \Z(G)\ =(2,q- 1), G < ß+(8, q). There are
two classes of such embeddings, conjugate in O +(8, q), arising from the spin

representation of ß+(8, q). The embeddings of G/Z(G) are conjugate to the

usual embedding Pß(7, q) < Pß + (8, q) in Aut Pß+(8, q).

(I 5) G = O ±(4, q) < ß(5, q) for q even. These are obtained by taking the
usual embedding of 0±(4,q) in ß(5, q), and then applying the graph

automorphism. The involutions of the usual embedding which are short root

elements are transformed into long root elements. (O +(4, 2) must be ex-

cluded.)

(I 6) G = G2(q)' < ß(7, q), using the standard embedding of G2(q).
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(I 7) G = 3D4(q) < ß+(8, q3), using the standard embedding.

(I 8) G = HJ < G2(4) < ß(7, 4). Here, there are two classes of embeddings

of the Hall-Janko group 77.7 in G2(4), conjugate under the field automor-

phisms of both G2(4) and ß(7, 4).

(I 9) G = 3 • Pß-'^o, 3) < GU(6, 2) < ß+(12, 2). The latter embedding is

as in (I 3). There is exactly one possibility for the former embedding (Fischer

[7, 16.1.12]).
(I 10) G = A >3 Sn < ß±(2n, q), with q even, + for n even and — for n

odd, and A the direct product of n — 1 cyclic subgroups of order a\q + 1.

This is obtained by writing V = Vx J. • • • 1 F„ with each V¡ a 2-dimen-

sional space having no nonzero singular vectors. Then let A0 be the direct

product of n cyclic groups of order a fixing the above decomposition, let Sn

permute the V¡'s, and set A = [A0, Sn].

Note that Sn splits F as Wx © W2 with W¡ totally singular, and trans-

positions thus act as long root elements. One example of such a group G

arises with n = a = 3 and \G\ = 33 • 2, 03(G) being extraspecial; in fact,

G = SU(3, 2)'.

(I 11) G = (A X E) XI Sn < ß*(2«, q), with q even, A the direct product

of n cyclic groups of order a\q ± 1, and E an elementary abelian 2-group of

order 2""1. This is obtained by writing V = Vx ± ■ ■ • J. Vn with the Vi

isomorphic nonsingular 2-spaces. Then let A be the direct product of n cyclic

groups of order a, one per V¡. Let E0 be the group generated by n transvec-

tions, one per V¡, so that AE0 induces a dihedral group on each V¡, and set

E = E0 n ß( V). Finally, S„ permutes the Vt's. A typical example is the

subgroup N of TÍA fame.

Examples having G fixing maximal totally singular subspaces Wx, W2 with

V = Wx ® W2. The actions of G on Wx and W2 are contragredient. If

dim W¡ is even, then there will be two classes of embeddings of each type,

fused in O(V).

(RT 1) G = SL(n, q) or Sp(n, q) in ß+(2«, q), or G = SU(n, q) in

ß + (2«, q2).

(RT 2) G = O ±(n, q) < ß+(2«, q), q even.

(RT 3) G = Sn, n > 6, embedded in ß+(2« - 2d, 2), d = (2, n).
The action of G on Wx can be described as follows. Regard G inside

SL(n, q), consisting of permutations of a basis ux, . . . ,un of V„ = V(n, 2).

Then transpositions are transvections. There are exactly two proper invariant

subspaces: Vx = <2«,> and V„_x = {'2aiui\2ai = 0}, where Vx < V„_x iff n

is even. Now Wx = Vn_x/(V„_X n Vx).

Note that this even embeds G in an orthogonal group on Vn: define the

quadratic form Q' by Q'(u¡) = 1 and (u¡, uf) = 1 for i ¥=j, and note that G
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preserves Q '. Hence, G < O *(F„), the sign depending on the residue class of

n (mod 4).

Note also that G acts indecomposably on Vn if n is even. This leads directly

to (RT 4):

(RT 4) G = S2„ < ß+(4«, 2) and ß+(4/i - 2, 2), 2n > 6.

(RT5)G = 3  A6< ß+(6, 4).

(RT 6) G = SL(2, 5) < SL(2, 9) < ß+(4, 9).
(RT 7) G = 3 • Pß" "(6, 3) < GU(6, 2) < ß+(12, 4) as in (I 9).

(RT 8) G = Sí/(4, 2) < GL(5, 4) < ß+(10, 4). To construct this, let x G L

= 3 • Pß~"(6, 3) < GU(6, 4) as in (I 9), with x a transvection. Then CL(x)

= <x> X G0 X Z(L), with <x> X G0 generated by transvections and G0 =

SU(4, 2). Now regard G as G0 acting on the axis Wx of x. By Fischer

[7, 16.1.10], there is just one class of indecomposable embeddings G <

GL(5, 4).
Note that this embedding is equivalent to its contragredient: an element of

ß+(10, 4) interchanging Wx and W2 can be chosen to normalize G and hence

induce its graph automorphism.

(RT 9) G = A XI S„ < SL(n, 2') < Ü+(2n, 2'), corresponding to (I 10). A

typical example is a monomial subgroup of SL(n, 2'). Note that A has an

element inducing a scalar transformation on W¡ of order (a, ri).

Examples having G reducible on K/rad V in which G is contained in no Levi

factor.

(RL 1) G = ß(2/i - l, q) < ß±(2/i, q), q even and n > 3.

(RL 2) G = 0±(4, q) < ß(5, q) < ß±(6, q), q even, the former embedding

being (I 5).

(RL 3) G = G2(q)' < ß±(8, q), q even.

(RL 4) HJ < ß±(8, 4). There are two classes, conjugate by a field automor-

phism.

(RL 5) G = SU(4, 2) < ß+(10, 2). This is obtained by taking a trans-

vection x in L = 3 • PQ-"(6, 3), regarding L < Gl/(6, 2) < ß+(12, 2) as in

(I 9), and letting G = CL(x)' act on W1-/W for a 1-space IT of ^(x). Note

that F ®GF(2) GF(4) yields (RT 8).

(RL 6) G = SU (4, 2) < ß+(10, 4). This is more complicated. There are

exactly two totally singular invariant 5-spaces Wx, W2, with Wxf\ W2 = 7? of

dimension 1 and G acting on R x/7? as in (RT 1). There is a single class of

embeddings in O + (10, 4) (two in ß = ß+(10, 4)), constructed as follows.

Set P = 02(ßÄ). Let L = 517(4, 2) act on R^/R as in (RT 8), with L

centralizing a nonsingular 2-space of F = F(10, 4). Let L fix the totally

singular 4-spaces WJR of R±/R, and let P, < P correspond to W^/T? as in

(4.6). Then |P,| = 44 and P = Px X P2. Since the P, are contragredient for L



352 W. M. KANTOR

(i.e., are obtained from one another by a field automorphism), dim HX(L, P¡)

= 1 by Fischer [7, (16.1.10)]. Thus, dim HX(L, P) = 2. There are then 42

classes of complements to P in LP. Note that C = Ca¡¡(L) has order 9 and

acts on HX(L, P). (One group of order 3 occurs inducing scalars on 7? L/R,

and another occurs centralizing 7? and inducing scalars on Wx/R.) Since C

normalizes LP¡, it has just 4 orbits on 77 '(L, P), of lengths 1, 3, 3, 9. The first

yields L; the next two both yield (RT 8); the last yields the desired example.

In order to demonstrate that a group G obtained in this manner is

generated by long root elements of ß, we only need to explicitly construct one

such group. Set U = V(\2, 4), and let Ux, U2 be totally singular 6-spaces for

ß+(i/) with U = {/, © U2. Let K = <x> X SU(4, 2) act as a subgroup of

ß+(C/), fixing Ux, U2, and acting indecomposably on each as a group

generated by transvections, with the representations Ku' contragredient;

7), = [x, U¡] is the direction of the transvection xu'. (For the existence of

these representations, use 3 • PQ~'"((>, 3) again.) Let D denote any 1-space in

Dx + D2 = CV(K). Then K acts on the 10-spaces D ±/D as SU(4, 2), and is

generated by long root elements. In each of them, 7? is (Dx + D2)/D. The

cases D = Dx or D2 are just (RT 9). Assume D ^ Dx, D2. Then (D + U¡ n

D ±)/D, i = 1, 2, are the only fixed 5-spaces in D±/D, and both contain 7?.

This produces the desired example.

Our main result is

Theorem I. Let G be a subgroup of ß(F) = ß±(w, s) generated by a

conjugacy class of long root elements, such that Op(G) < G' n Z(G) for p\s.

Assume that either dim V > 5 or ti(V) = ß+(4, s), and that V = Vx J. V2

with Vx, V2 invariant under G and V2 centralized by G implies that V2 = 0.

Then G acts on V as one of (I 1-11), (RT 1-9), or (RL 1-6), tensored with

GF(s).

Note that the indicated tensor product merely amounts to extending the

field of definition of G, V, and the form on V.

Since SL(m, s) is contained in ß+(2m, s), fixing totally singular m-spaces

as in (RT 1-9), we obtain

Theorem II. Suppose G is a subgroup of SL(W) generated by a conjugacy

class of transvections, such that Op(G) < G' n Z(G) with p the characteristic

of W. Then W = W0 © T with G trivial on T and indecomposable on W0, such

that G acts on W0 as one of the following tensored with GF(s).

(T 1) G = SL(n, q) or Sp(n, q) in SL(n, q), or G = SU(n, q) in SL(n, q2).

(T 2) G = O ±(n, q) < SL(n, q), q even.

(T 3) G = S„ < SL(n - d, 2), d = (2, ri).

(T 4) G = S2n in SLÇLn — 1,2) fixing a l-space or a 2n-space, or in

SL(2n, 2) fixing a l-space and a 2n — l-space.
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(T 5) G = 3 • A6 < SL(3, 4).

(T 6) G = SL(2, 5) < SL(2, 9).

(T 7) G = 3 • PQ~-'(6, 3) < SL(6, 4).
(T 8) G = 517(4, 2) < 5L(5, 4) fixing a l-space or a 4-space.

(T 9) G = A XI 5„ belongs to a Borel subgroup of SL(n, 2').

Note that there are six classes of embeddings (T 7), all conjugate in

iL(6, 4). Similarly, there are three classes for (T 5), fused in GL(3, 4).

3. Long root groups of Chevalley groups. The following useful lemma is

essentially (12.1) of [3].

Lemma 3.1. Let G be any Chevalley group of rank at least 2, other than

2F4(q). Let X and Y be centers of distinct long root groups, of order q. Then one

of the following holds:

(i) {X, Y} is elementary abelian, and {X, Y} is the union of q + 1 long root

groups;

(ii) (X, Y} is elementary abelian, and X u Y is its set of long root elements;

(iii) (X, y> is isomorphic to a Sylow subgroup of order q3 in SL(3, q),

Z = Z((X, Y/) is a conjugate of X, and XZ is the union of conjugates of X; or

(iv) {X, Y} s 5L(2, q) (or PSL(2, q) if G is Pß + (4, q)).

Theorem 3.2. Let M be a Chevalley group defined over a field of

characteristic p; exclude the Suzuki and Ree groups. Suppose G is a subgroup of

M generated by a conjugacy class 3E of elements central in long root groups. Let

N = 0(G) if p > 2, and N = Ox(G) if p = 2, and assume G > N. Then

G/N and X = X.N/N are one of the following:

(i) A Chevalley group of characteristic p, with 3i a class of central elements of

long root groups (or, in the case of Sp(4, 2'), F4(2') or G2(3'), short root

elements);

(ii) 5L(2, 5) or PSL(2, 5), with M defined over GF(9), I the class of

elements of order 3;

(iii) 0±(n, 2'), where 3E consists of all transvections, p = 2;

(iv) ß + (8, 2') • 53, where the S3 is generated by the triality automorphism and

a transvection x, and 3£ is the conjugacy class of x; or Pß+(8, r) ■ 53, r = 3 or

5, obtained similarly using a reflection x;

(v) PÖ*'"(/!, /■),/• = 3 or 5, p = 2, with 3¿ the class of reflections corre-

sponding to w,

(vi) S„, n > 6, 3¿ the class of transpositions;

(vii) F22, F23, F24, £ the class of 3-transpositions;

(viii) A6, X the class of involutions;

(ix) 77/, H the class of central involutions of the Hall-Janko group HJ;

(x) PSL(2, q)^Sn, X consisting of preimages of transpositions in this wreath

product.
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Proof. If p = 2, this follows easily from Fischer [7], Aschbacher [1] and

Timmesfeld [33]. We therefore assume that p > 2, and also that M is

universal.

Let 5 be an SL(2, s) of M generated by central elements of long root

groups, with J = S n G as large as possible. Then J is SL(2, q), where q\s, or

else q = 5 and s = 9' [9, p. 44]. Eachp-element of J is in a unique center of a

long root group, so NG(J) = NG(S). It follows that G satisfies Hypothesis ß

of Aschbacher [2]. Moreover, G = <X> = </G>. Thus, by [2], G = G/N is

one of the groups on the above list, or else one of the following holds for G

and 36: (a) G is a Chevalley group over GF(5), and X is a class of elements of

orderp = 3; (ß) G = Mxx, X is the class of elements of orderp = 3; or (y)

G = G2(q) or 3D4(q), and 36 consists of all short root elements.

(a)_Suppose there is x G (G — J) n X such that L = <x, /) satisfies

L = P X / for a 5-group P £ Z (L). Choose y G J n 3E and a 5-element

g G P with [j>, g] G A. Then (y,yg/ contradicts (3.1).

Thus, G can only be SL(2, 5'), and (3.1) again fails if i >_1.

(ß) Here there exist two elements of order 3 generating G.

(y) The commutator relations contradict (3.1) except for the case G2(3').

Corollary 3.3. With the hypotheses of (3.2), if p > 2 then Ox(G/Op(G))

= Z(G/Ox(G)), except possibly if p = 3 and 02(G/03(G)) { Z(G/03(G)).

Proof. We continue with the notation of the preceding proof. If x G 3E and

n E N, then L = <x, x"> < <x>A and (3.1) imply that either L is ap-group

or elsep = 3 and L is SL(2, 3).

Remark. Assume in (3.3) thatp = 3 and 02(G) 4* Z(G), where —< denotes

images modulo 03(G). Further assume that G is minimal subject to Gï

5L(2, 3), set R = 02(G), and pick r E R, x E 3Ë with <x, r> = <x, xr) s

SL(2, 3).
We claim that G = <x, xr, xJ> for some s E R with <x, xs> s 5L(2, 3).

Suppose first that G ^ <x>7L Then there is a v G ï with <x, v> an SL(2, 3)

not in <x>7?. Now minimality forces G = <x, v, /■>, so 02(G) > 7?. Thus,

G = <x>7L Then s E R - (x, r) exists with <x, i> = <x, xs} an 5L(2, 3),

and clearly G = <x, xr, xJ>.

We have not checked that such a group G, generated by three long root

elements, cannot occur in the exceptional Chevalley groups. Anticipating

some very elementary results of the next section, we can, however, deal with

all other cases using an argument which will occur frequently:

Corollary 3.4. Assume that G in (3.2) is a subgroup of a classical group or

a rank 2 group. If p > 2 and Ox(G) =£ Z(G) for G = G/Op(G), then G is

SL(2, 3).
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Proof. Choose a minimal counterexample G. Then G can be generated by

3 elements of 3£. We may assume, initially, that G < ß( V) for some V. Then,

in the notation of (4.3), dim â>(G)/rad tS-(G) < 6. Here, A(x) G &(G) im-

plies that rad &(G) E A(x)-L for x G 3¿. Consequently, G centralizes both

rad &(G) and V/&(G), inducing on #(G)/rad &(G) a group having G as a

quotient. We may thus assume dim V = 6.

Now Pß(K) = PSL(4,q) or PSU(4,q) implies that we could have as-

sumed G < SL(4, s) for some s, with G generated by a class 3£ of transvec-

tions. By (4.3), we may then assume G < SL(3, s). However, SL(3, s) has no

subgroup generated by transvections of the desired type (Mitchell [20]).

4. Classical groups. Let V = V(m, s), let p be the prime dividing s, and

consider ß(K); exclude the cases m < 3 and ß_(4, s). The following

elementary lemmas will be used very frequently.

Lemma 4.1. 7/x ^ 1 is a long root element, and x fixes a subspace W, then

either A(x) G W, W G A(x)-1, or A(x) n rad W =£ 0.

Lemma 4.2. If X and Y are distinct long root groups, then one of the following

holds:

(i) (X, y > is abelian and consists of long root elements, and A (X) + A ( Y) is

a totally singular 3-space;

(ii) (X, y) is abelian, X u Y is its set of long root elements, and either

A(X) + A(Y) is a totally singular 4-space or a 3-space with radical A(X) n

A(Y);

(iii) (X, y> is the Sylow p-subgroup of an SL(3, s), A(X) n A(Y) = 0 ^

A(X)1- nA(Y);or

(iv) (X, y> is SL(2, s), and A(X) + A(Y) is a nonsingular 4-space.

(4.2) should be compared with (3.1).

Definition. Write ffi(G) = [G, V] for G < ß(F). This notation is motiva-

ted by the following

Lemma 4.3. If G < ß(F) is generated by long root elements x,, . . . , xk, then

(i) &(G) = A(xx) + • • • + A(xk) and

(ii) dim â(G) < 2k.

Proof. A(x¡) = [x„ V].

The corresponding result for transvections is

Lemma 4.4. If G < GL(W) is generated by transvections xx, . . . , xk, then

the subspace ^(G) spanned by the directions D(x) of all transvections x G G

satisfies öD (G) = [G, W] = D(xx) + • • • + D(xk)and dim ^(G) < ac.

Lemma 4.5. Let L < ß(K) ¿>e generated by a set di of long root elements, and

let x G ß( V) be a long root element.
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(i) If [x, L] = 1, then either &(L) Ç A(x)1- or A(x) n A(y) ¥=0for some

v G X. (Inparticular, i/X is a class and containsy,y' with A(y) n A(y') = 0,

then either &(L) Q A(Xy or A(x) ç &(L).)

(ii) Suppose L fixes a totally singular subspace W with A(y) n W ^ Ofor all

v G X, and dim Cw(x) > dim W — 1. Then there is an <x, Ly-invariant

totally singular subspace W + R for some l-space R of A(x).

Proof, (i) Assume &(L) ¡Z A(xy and apply (4.2).

(ii) By hypothesis, W^ P\ A(x) contains a l-space 7?. By (4.1), W + R is

fixed by both L and x.

Lemma 4.6. Suppose R is a singular l-space of V, and set ß = ß(K) and

P = Op(QR). Then P is elementary abelian of order sm~2. The group Ca(R)

acts on P precisely as it does on R±/R, with long root elements in P

corresponding to singular vectors in R^/R.

Proof. [5, (3.1)].

Corollary 4.7. T^i L be a subgroup ß±(w - 2, s) of ß = ß±(w, s),

centralizing the nonsingular 2-space T. Let R < T be a singular l-space,

G < L with CV(G) = T, P = Op(QR), and Gx < tiR. Assume P0 is a G-

invariant subgroup of P such that CP,P (G) — 1, and Gx is a complement to P0

in P0G not conjugate to G in P0G. Then G and Gx are not conjugate in ß.

Proof. Suppose Gf = G, b E ß. Then Rb is fixed by G, so Rb = Rc~' for

some c E Ca(L) < Ca(G). Hence, be E tiR = PLH (H a diagonal

subgroup). Since (LH)T consists of scalar transformations, it follows that we

may assume be E PL, say be = al with a E P, I E L. Here G = Gx' implies

that Gf < L n PG = G, so G," = G. Now [G, a~x] < P n GP0 = P0, and

hence a G P0 by hypothesis. This contradiction proves that G and G, are not

conjugate in ß.

Lemma 4.8. Let Wx and W2 be isomorphic irreducible G-modules over GF(s).

Assume that <w,> is the only fixed l-space of Cc(wx) on Wxfor some wx G Wx.

(i) V = Wx® W2 contains exactly s + 1 nontrivial submodules.

(ii) If V is equipped with an orthogonal geometry making Wx and W2 totally

singular, then C^V)(G) induces at least PSL(2, s) on the set of submodules in

(0-

Proof, (i) Any two such submodules W clearly meet trivially, and W s

Wx. Since dim Cv(CG(wx)) = 2, there are at most s + 1 choices for W. On the

other hand, iff: Wx -» W2 is a G-isomorphism and a is a fixed scalar, then G

fixes [aw + wf\w E Wx).

(ii) Suppose W' =£ Wx. Then there exists an element h G ß(K) with Wx =

Wx and W2 = W. Since üw w induces GL(W) on W, we can modify h so as
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to induce a G-isomorphism W2 -» W. Consequently, C^y-^G) is 2-transitive

on the s + 1 submodules in (i).

In view of (4.3), the next result will be crucial for us.

Theorem 4.9. The following table gives numbers of elements of long root

groups which can generate the indicated groups.

Group   I Sp(2n, q), n > 1 I SL(n, q), n > 3 I Q + (2n, q), n > 4 I ü(2n + 1, q), n > 3

Number | 2« - 1 + (2, q)*

U~(2n, q),n>4

n + 1 n + 1

SU(n, q)', n > 3 G2(q)'        3D4(q) Sz(q)

n + 1

*       Exception:     SL(2,9)     requires     3     root elements.

**     Exception:     5(7(4, 2)     requires     5     elements.

Proof. If G = SL(2, q) = Sp(2, q) with q odd, use [9, p. 44]. For q even, G

is generated by a dihedral group 7) of order 2(q + 1) along with any

involution in G — D; the case Sz(q) is very similar.

If G = SL(3, q) or Si/(3, ç)', then for a suitable long x, G = <SL(2, ç), x>

or <7), x> with 7) as above or D = SL(2, 5) when q = 9 (Mitchell [20],

Hartley [12]). Inducting along the Dynkin diagram now settles the cases

SL(n, q) and ti+(2n, q).

Since ß(2n + 1, q) = (SL(n - 1, q), x) and ß~(2n, q) = <ß + (2/i -

2, #), y> for suitable long root elements x, y, these groups are generated as in

the table.

Similarly, Sp(2n, q) = <Sp(2/i — 2, q), x,y} for transvections x, y with

(Sp(2n — 2, 9), x> of index 9 — 1 in a maximal parabolic.

Also, G2(q) and 3D4(q) can both be written <SL(3, q), x>.

Finally, SU(n, q) = (SU(n - 1, ç), x> handles every situation except for

St/(4, 2) and St/(5, 2) (since St/(3, 2) is not generated by transvections).

Four transvections in SU(4, 2) can generate the monomial subgroup L = 33 •

S4 of SU(4, 2), and one further transvection yields SU(4, 2). Similarly,

if G = St/(5, 2) then G = <L, x> for L (as above) fixing a nonsingular

4-space If of V(5, 4) and a suitable transvection x moving W.

Lemma 4.10. (i) S„ can be generated by n — 1 transpositions.

(ii) For q even, O ±(n, q) can be generated by n + 1 transvections.

Proof, (i) This is elementary.

(ii) For n odd, 0(n, q) = Sp(n — 1, q) can be generated by n transvections

by (4.9). Since O ±(n + 1, q) = <G(n, q), x> for a suitable transvection x, this

proves (ii).
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Lemma 4.11. Let K be a finite extension of the field k, and let G act on the

k-space V.SetW = V <8>kKandVx= V ® 1. Then

(i) dimKHx(G, W) = dim* 77 X(G, V); and

(ii) two complements to Vx in GVX are conjugate in GVX if they are conjugate

in GW.

Proof, (i) Let ax = 1, . . . , a„ be a Ar-basis of K. Then W = ©2 V ® a¡

with G acting on V ® a¡ as it does on V. Consequently, dim* 77 X(G, W) =

2 dim*(G, V 0 a,) = [7C : k]dimk HX(G, V), as required.

(ii) Suppose Gx and G2 are complements to Vx in GVX, and Gx = G2,

w G H7. Write w = v + « with v E Vx and m G ©S^F ® a, = t/. Then

G," < GF,. If g G G, then g" = g(u~x)ht G GXU. Thus, G," < G,F, n G,t/

= G,, and hence G2 = Gx  = Gx.

5. Preliminary reductions. Throughout §§5-10, G and V will satisfy the

hypotheses of Theorem I. We will induct on dim V + |G|. Letp denote the

characteristic of V = F(m, j). Let ß = ß±(F) preserve the quadratic form

Q. Let X denote a class of long root elements of G generating G. By (4.1),

/I (x) n rad V = 0 for x G X. Throughout the proof, the letters x and y will

always stand for suitable elements of X.

An 3¿-subgroup AT of G is a subgroup K = <7C n X>.

Set G = G/Z(G) and V = F/rad V. For L ç G we will write L =

LZ(G)/Z(G), and L = L/Z(L) if L is a group.

Since the various possibilities occurring in (3.2) will frequently be dealt

with separately, Table 1 is provided both to fix notation for X and to indicate

where a given case for G is studied.

The cases in which G has a noncentral solvable normal subgroup are dealt

with in §9. Note that we are using notation distinguishing the cases of the

identical groups ß(2£ + 1, 2') and Sp(2k, 2') = O (2k + 1, 2'); of course, no

such distinction is needed when k = 2, in view of the graph automorphism.

We will also use the following additional conventions.

1. If the embedding of G in ß arises as in (I k), (RT k) or (RL k), by simply

extending the base field as in Theorem I, we will say that (I k), (RT k) or (RL

k) holds.

2. We may assume that G fixes no nondegenerate hyperplane of V. In view

of the V = Vx L V2 condition of Theorem I, such a hyperplane 77 can occur

only if V has both even dimension and characteristic. Such an 77 arises only

in (I 1, 5, 6, 8), accounting for (RL 1, 2, 3, 4), respectively.

The last convention has a very useful consequence:

Lemma 5.1. 7/ ffi(G) is nondegenerate, then V = &(G).
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Table 1

PSL(n, q)

PSp(n, q)

PSU(n,q)', n>3

Pft^n, q), n>l

G2(q)'
3D4(q)

F4(q),2E6(q),En(q)
0±(2n, q), q even

Pn+(8,q)-S3

Sn,n>7
A6

HJ

PSl±'n(n,q),q = 3oi5

F22'F23,F24

PSL(2, q) 2 S„

Sz(q)

transvections

transvections

transvections

long root elements

long root elements

long root elements

long root elements

transvections

conjugates of

transvections or

reflections

transpositions

involutions

long root elements

ofG2(4)

reflections

3-transpositions

pre-images of

transpositions

involutions

(6.1,9), (7.1,2,7), (10.1,4)
(6.1),(7.1,5,6),(10.1,2,3,4)

(6.1), (7.2,7, 8), (10.1, 5)
(6.8), (10.1)
(8.2), (10.1)
(8.2), (10.1)
(6.1)
(6.1), (7.4,9), (10.1,3)
(5.6)

(6.1,10), (7.9), (10.1, 3)

(7.2)

(8.2), (10.1)

(5.5), (6.1), (10.1)

(5.4)
(7.4, 10)

(7.2)

Proof. Since each A(x) C &(G), necessarily (1(G)1- cA(x)-1. Then G

centralizes (£(G)X. If dim &(G) > dim V — 1, apply convention 2. If

dim &(G) < dim V — 2, then (£(G)X contains a nonsingular 2-space T, and

V = Í1 T1- with GT± = 1. This contradicts one of the hypotheses of

Theorem I.

Lemma 5.2. If G fixes a singular l-space R, then &(G) G 7? x ¥= V and the

only G-invariant decomposition Rx/R = W/R J. T/R with Gw/R ¥= 1 has

W = Rx, T = R. Moreover, G fixes no nondegenerate hyperplane of R^~ / R.

Proof. Since 7? ç A(xy for all x G X, clearly â(G) Ç/?1. By (4.1),

GT/R = 1 and hence GT = 1. Since T/R is nondegenerate, T contains a

nondegenerate subspace T0. By (4.1) and one of the hypotheses of Theorem I,

T0 cannot be nonsingular. Hence, if T/R ^ 0 then T/R = md(R±/R) and

W/R is a nondegenerate hyperplane of R±/R. Hence, it suffices to prove

the final assertion.

Let W/R be a G-invariant nondegenerate hyperplane of R±/R. Since

R <Z A(x), necessarily A(x) C W by (4.1). Thus, G centralizes V/W. Write

W = W0 ± rad W, so  V = W0 _L W¿. Then  W0L has a nondegenerate
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hyperplane U D rad W, and W + U = W0 ± U is a nondegenerate hyper-

plane of V. This contradicts convention 2.

Lemma 5.3. If G can be generated by k elements of X, and if 2k is the

smallest dimension appearing for 6E(G) in (I 1-11), (RT 1-10), then V = &(G).

Proof. Suppose V d &(G) = &. By (5.1), Q~x(0) n rad & = R * 0.

Then R Ç^(x)x for each x GX implies that GR = 1 and # Ç 7?x.

Induction applies to GR±/R by (4.1) and (5.2). Thus, by (4.3) and our

hypothesis, 2k > dim â = 1 + dim &/R = 1 + dim[G, Ä X/Ä] > 1 + 2k.

Lemma 5.4. G =£ F22, 7^, F24.

Proof. None of the examples in §2 is a central extension of PSt/(6, 2) by a

group of even order. (While the proof of the latter fact in §6 is not difficult, it

is perhaps worth noting that the corresponding assertion for Theorem II is

easy. For assume G = G' < SL(W), G = PSt/(6, 2), and Z(G) contains an

involution z. By (4.4), dim ^ < 6, where ty = [G, W\. Clearly z fixes the

direction of each transvection in G, so <$> Ç C^(z). Since G centralizes

W7/^, we may assume that Cw(z) is a hyperplane. Then G fixes the l-space

D(z) = [z, W] < [G, W] = ÖD, and hence induces G on the space 6Î>/D(z) of

dimension < 5.)

Lemma 5.5. G> Pß±7r(«, 3)/or n > 7, Pß±,r(«, 5) for n > 4.

Proof. If one of these groups can occur, then so can Pß"(7, 3) or

Pü^'r(4, 5). In either case,/» = 2. By (4.3), dim &(G) < 16 resp. 8. However,

according to Landazuri-Seitz [17], each nonlinear irreducible constituent of

&(G) has dimension at least 72 resp. 12.

Lemma 5.6. G ^ Pß+(8, q) ■ S3, q = 2', 3 or 5.

Proof. Deny! By induction, G has an X-subgroup M = O +(8, 2'), and

&(M) = Wx © W2 for totally singular A/-invariant 8-spaces W¡. Clearly,

&(G") = &(M') = &(M) is G-invariant, so (4.1) yields &(G) = &(M').

However, the normalizer of M' in GL(16, q) does not induce an S3 on M'.

6. The inductive step. In this section, all cases of Theorem 1 of high rank

will be handled (assuming, inductively, that the smaller rank situations have

been dealt with).

Theorem 6.1. Assume that V = &(G).

(i) G *J4(q), 2E6(q), E„(q).
(ii) If G = PSL(n, q) ^ PSL(5, 2), PSL(5, 4), where n > 5, then (RT 1)

holds.

(iii) If G = PSp(n, q) with n > 6, then (RT 1 or 2) holds.
(iv) If G = PSU(n, q) with n > 5, r/ie« (I 3) or (RT 1) /iotó.
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(v) If G = 0±(2n, q) ^ 0+(6, 2) with 2n > 6 and q even, then (RT 2)

holds.

(vi) If G_= Sn with n > 10 even, then (RT 3 or 4) holds.

(vii) IfG = PÜ-"(6, 3), r/re/i (I 9) or (RT 7) /lo&fc.

These groups G have the following common properties. There are conju-

gate commuting X-subgroups S, = SL(2, r), where r = 2 in (v)-(vii). There is

an X-subgroup L, < CG(S¡) with G = <L„ L2>, L, = <S/i,>, and L, n L2 not

ap-group.

Clearly, for (6.1 i) we need only consider the case G = F4(q). With this

understanding, the possibilities for suitable quotient groups of L, and L, n L2

are as follows: (i) PSp(6, q), PSp(4, q); (ii) PSL(ai - 2, q),

PSL(n - 4, q); (iii) PSp(n - 2, q), PSp(n - 4, q); (iv) PSU(n - 2, q)',

PSU(n-4,q); (v) 0±(2n-2,q), 0±(2n-4,q); (vi)_S„_3, S„_6; (vii)

33 • S4, S3 (where the S3 is an X-subgroup meeting 03(LX); note that this

involves a choice of S^.

Lemma 6.2. &(LX) is nonsingular.

Proof. Suppose rad &(LX) contains a singular l-space 7?. Then L, must be

as in (RT 2, 8) or (RL 5, 6).

In (RT 2), 7? is the radical of both &(LX) and &(LX n L2), and hence also

of &(L2). Then G fixes R, so &(G) Q R± c V.

In (RL 5, 6) and (RT 8), L, is SU(4, 2) and G = PSt/(6, 2). There is an

X-subgroup K = SU(5, 2) containing L, in the natural manner. By induction,

K acts on &(K) as in (I 3) or (RT 1). But this contradicts the assumed action

of L,.

Suppose next that rad &(LX) is nonsingular. The only relevant case is (I 5).

But there, &(S2) = &(LX n L2) is a nonsingular 4-space. Then L2 = <(L, n

Lt)Li> < CG(S2) implies that &(L2) = ^(S^ = #(L, n Lj) = (£(L,) =

&(G), which is absurd.

Lemma 6.3. &(S2) G (£(S,)X for some S2 G S,G n CG(SX).

Proof. This follows easily from an examination of the possible actions of

Lx on &(LX), except in the following cases: Lx = PSL(4, q), PSU(4, q),

PSp(4, q), PSL(3,q), PSU(3, q), O ±(4, q), 33 • S4.

If L, = PSL(4, q) or PSU(4, q), then G = PSL(6, q) resp. PSt/(6, ^), so

there is an X-subgroup SL(5, q) resp. SU(5, q) yielding the desired pair of

elements of SXG by induction. If L, = PSp(4, q), then G = PSp(6, q), so there

is an X-subgroup SXS2S3 with the S,'s commuting conjugate X-subgroups, so

&(S,j =£ &(Sj) for some i ¥*j.

Suppose L, = PSL(3, q) or PSU(3, q), so G = PSL(5, ^) resp. PSt/(5, q).
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There are at least two conjugate X-subgroups K > L, of G with K =

PSL(4, q) resp. PSU(5, q). If dim &(K) > 8, the lemma holds. Assume

dim &(K) = 6. Then &(K) = &(LX) for two such TCs generating G, from

which the contradiction &(G) = &(LX) follows.

Finally, suppose L, = 0±(4, q) or 33 • S4, so G_= 0±(6, q) resp.

Pü~^(6, 3). There is an X-subgroup K > L, satisfying 7C s <*> X Sp(4, q)

resp. <x> X St/(4, 2), x G X. Induction applies to the action of K on

A(xy /A(x). We may assume that dim[7cT, A(x)-1 /A(x)] = 5 resp. 6. Then by

(6.2), dim â(Lx) = 6 and Lx acts irreducibly on &(LX) as in (I 11). Since S,

centralizes Lx, it follows that S, must act trivially on &(LX), as required.

(Note that this proves that any S2 will work in this case, which is needed in

view of the nature of CL (S2) = L, n L2.)

Lemma 6.4. V = &(LX n L2) L $(S,) ± <£(S2) w/i/i L, trivial on &(S¡) and

&(L,) = &(LX n L2) ± &(S3_,.).

Proof. Since L,. = (S/l,-), ffi(L,) ç #(S,)X by (6.3). By (6.2), &(L¡) is

nonsingular. An easy examination of the cases shows that &(L¡) =

&(LX n L2) ± &(S3_¡).  Now

F = &(G) = S«L„ L2» = &(LX n L2) L &(SX) ± â(S2).

Note that the preceding lemma fails for such excluded cases as G =

PSL(5, q), q = 2 or 4, in which L, n L2 = 1.

Lemma 6.5. If L, /ixes IoIa//v singular subspaces Wf of 6E(L,) with @.(L¡) =

H7/ © W2, then G fixes totally singular subspaces Wx, W2 with V = H7, © W2

and W¡ D Wf for each i, j.

Proof. Here &(L¡) is nonsingular. By (4.8), (6.3), and an examination of

the possibilities for L,, Lf*-1^ and (L, n L2)m-L'nLl) fix the same numbers of

maximal totally singular subspaces (namely, 2 or s + 1). We may thus assume

that W{ n &(LX n L2) = ^ n S(L, n L2) fory = 1, 2. Now (6.4) shows

that Wj = (W{ n &(LX n l2)) ± (1F{ n &(S2)) i (W{ n &(SX)), j = l, 2,

satisfy the desired requirements.

Lemma 6.6. If L, acts on &(LX) as in (I 3), then V can be regarded as a

GF(s2)-space on which G acts as G F (s2)-transformations preserving a nonde-

generate hermitian form.

Proof. By (6.4), there is an element c E 0(V) of order s2 — 1 such that

c' = c^L,nL2) centralizes ¿1 n ¿^ while c®-^ is the unique element of

0(&(L¡)) centralizing L, and restricting to c'. This proves the first part. The

second is also clear from (6.4): the desired form is uniquely determined by the

form on 6E(L, n L2).
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Lemma 6.7. 7/G = PQ~"(6, 3), then either

(i) V = Wx © W2for totally singular G-invariant subspaces, or

(ii) the conclusions of (6.6) hold.

Proof. By (6.5), we may assume that L, acts on &(LX) as in (I 9). The

proof of (6.6) can then be repeated.

At this point in the proof of (6.1), we have reduced to the corresponding

situations in Theorem II. Thus, we may now assume that G < SL(W) is

generated by a class X of transvections of the G F (j)-space W.

The argument in this situation is quite similar to the one used in (6.4).

Recall that ^(K) was defined in (4.4) to be [K, W] for K < G. We have

W = 6D(L, n L2) © <5D(S,) © ^(S2), where dim <%(S,) = 2. (Note that G

cannot fix a l-space of W, and hence L, cannot fix a l-space of ffi(L,) by

(6.2).) Forms on &(L¡) can then be extended to ones of W.

Fields are also not hard to deal with. Consider, for example, the case

G = Pa~-"(6, 3). Here, let D(x) = <» for an x E Lx n L2 n X. Then w is

in a unique L, n L2-invariant GF(4)-subspace T0 spanning é£(L,). Thus,

T0 c 7,, T2, so we may assume that s = 4. Now G < PSt/(6, 2) since forms

have already been extended. This case is then completed using Fischer

[7, (16.1.12)].
The remaining possibilities for G are handled in a very similar manner,

thereby completing the proof of (6.1).

Remark. The proof of (6.1) also handles Pß±(/i, q) for n > 10. However,

we will use a different approach which allows us to deal with n > 1.

Proposition 6.8. If V = &(G) and G = Pß±(n, q) for n > 7, then (I 1, 2,
or 4) holds.

Proof. By (4.3, 9), V = â(G) has dimension < n + 1. There is an X-

subgroup A/ with M = PÜ+(n - 1, <?). Set & = £(M). By Griess [10],

p\\Z(G)\. Let P be any abelian group of order qn~2 as in (4.6), chosen so

\P n M\ = ?"-3. There exist x„ x2 G X with x, G M, G = <M, x2>, and

<x„ x2># c X. Thus, dim V < dim (£ + 1.

We first show that, without loss of generality,

D {A(x)\xEP}  isa l-space P* . (*)

If n - 1 > 8, fi {-4(x)|x G P n Af} is a l-space P*, by induction. Here, we

can pass to an X-subgroup ß±(n - 2, q), and then up to a conjugate M, of M

meeting P in ç""3 elements, in order to deduce (*) for P = <P n A/,

r n A/,). Assume «-1=6. Then (*) will again hold for ? n M replacing

P, unless M acts as SL(4, q) on the 8-space ($,. Since dim V < n + 1 = 8, in

the latter case V = 6B and we can apply triality in order to arrive at a
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situation in which (*) holds. Assume n — 1 = 7. This time we may also

assume dim 62 = 8 (with M& as in (I 4)) and dim V = 9. Then M has

commuting X-subgroups Sx, S2 = SL(2, q) with ^(S^ = 6B(S,) X 62(5^

= 6? and C = CG(SiS2) = O ±(4, q)Z(G). Since C fixes 62 (S,) necessarily C

fixes 62. Thus C centralizes 62, whereas dim 62 = dim V — I.

We may thus assume (*). This singles out an orbit P*G of singular 1-spaces

of V, along with our orbit A (x)G of 2-spaces. Clearly, the maximal parabolic

NG(P) fixes P*. Thus, x G P iff A(x) d P*. This can be viewed as producing

an isomorphism from the geometry of totally singular 1- and 2-spaces of

V(n, q) into that of V.

In particular, if P¡* G P*G, i = 1, 2, 3, then some conjugate A/0 of M meets

each P, n X, i = 1, 2, 3, and hence each Pf E 62(A/0).

Fix distinct conjugates Mx, M2 of M with Af, n M2 > ß±(n — 2, <?).

Choose Af,-invariant GF(ç)-subspaces W¡ spanning 62(AL) such that Wx n

W2 spans 6E(M, n A/2). We claim that JFi + W2 is invariant under G =

<Af„ A/2>, and that Q(WX + JF2) = GF(q). For, pick x G (AL - Af, n A/^)

n X with A(xx) n 62(A7, n A/2) = yl(x2) n &(MX n A/2) ̂  0. Then pick v¡

G 4(x,.) n (IF, - IF, n W2). It suffices to show that v^ E Wx + W2 and

Ö(t>, + t>2) G GF(q). But both of these follow from the preceding paragraph.

(For example, CM(x¡) has a subgroup SL(2, ç) transitive on the set of

nonzero elements of A(x¡) n W¡. Since A(xx) + ^4(x2) Ç 62(A/3) for some

conjugate Ai3 of M, it follows that vx2 lies in the A/3-invariant GF(^)-sub-

space spanning &(M3) which contains vx.) It follows that (I 1 or 2) holds.

Proposition 6.9. If G = PSL(n, q), n > 5, then (RT 1) holds.

Proof. By (5.3), V = 6E(G). There is an X-subgroup K = SL(n - 1, 9) (or

possibly ß+(6, q) if n = 5), with 7C acting on & = 6E(ÄT) as in (RT 1) or (I 1).

There are x, G X (1 = 1, 2) with <7C, x,> = KE¡ t> 7?, for elementary abelian

Ei■ c X u {1} of order ç"-1, such that G = <7C, x„ x2>. Here dim &(KE¡) <

dim & + 1.

By (4.2), either all ^4(x), x G E*, contain a l-space F„ or all /l(x) are

contained in a 3-space. The latter case is impossible, in view of the KE¡-

composition factors of (£(KE¡). For the same reason, F, = rad &(KE¡), so

V = & ± (Vx® Kj).

Suppose n = 4 and dim & = 6. Then ß(F) = ß+(8, 5), and we can apply

the triality automorphism in order to reduce to the dim & = 8 case.

Thus, we may assume dim 6£ = 2(n - 1), so dim V = 2n. Write & = Wx

© W2 for totally singular 7C-invariant (n - l)-spaces Wy By (4.1), E¡ fixes

F(    +     Wy

Pick any conjugate K* of 7C such that |7C* n E¡\ = í"-2 and x, G 7C* n £,

for i = l, 2; L = <7C* n 7C n X> is SL(n - 2, <?). Set AL = L(7C* n £,).
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Then

&(M¡) = ((62(L) n Wx ) © (&(L) nW2))  1   Vt.

From 62(A/,) Ç 62 (Tí*) we conclude that K* n Ex centralizes one of the

subspaces 62 (L) n W- and K* n £2 centralizes the other. Since there are at

least three choices for K*, it follows that (after possibly relabeling Wx, W2) x,

centralizes two hyperplanes of W3_¡ for i = 1, 2. Thus, x, centralizes W3_¡.

Since x3_, centralizes a hyperplane W¡ of W¡ + V¡, from (4.5 ii) we

conclude that KE3_¡ fixes a totally singular subspace 7^ D W¡ + V¡. Since x,

already fixes T¡ by (4.1), so does <7C, x„ x2> = G. This easily implies the

result.

Remark. Of course, (6.10) is only needed for PSL(5, 2) and PSL(5, 4), by

(6.1 ii). Note that PSU(n, q) can also be dealt with by employing

PSU(n - 1, q) instead of the PSU(n - 2, q) used in (6.1).

Proposition 6.10. If G = S2k+X, k > 3, and V = 62(G), then (RT 3) holds.

Proof. There is an X-subgroup K = S2k. Then G = (K, x> with L = K n

K* < CG(x). Set 62 = &(K), so F = 62 + A(x). Since any pair of elements

of X can be conjugated into K, the standard generators and relations for

S2k+X are easily obtained, so Z(G) = 1.

Suppose V = 62. Then K acts as in (I 1) or (RT 3). The first case leads to

the contradiction S7 = G < ß(5, s). If (RT 3) holds, then both K and L fix

exactly s + 1 totally singular (2k — 2)-spaces by (4.8). Since x centralizes L,

it fixes one of these (2k — 2)-spaces W. Then G also fixes W. But L is

irreducible on W, so x centralizes W, and hence so does G. Thus, V ¥= 62.

Suppose K acts on 62 as ß(5, 2). Then L = S5 must act on 62 as in (I 5). But

this implies that 62 = 62(L), and hence that V = 62(7C).

Thus, 62 = Wx © W2 for totally singular /(-invariant subspaces W¡ with

dimensions in {2k — 1, 2k — 2). If dim W1, = 2k — 2 for i = 1, 2, then

62 = 62 (L) again yields a contradiction. Thus, we may assume dim Wx = 2k
- 1.

Since x fixes the nonsingular space 62(L), either A(x) c 62(L) or A(L) C

A(xy. In the former case, x fixes 62, and hence so does G. Thus, x

centralizes 62 (L). In particular, x centralizes hyperplanes of Wx and W2. By

(4.5 ii), G fixes totally singular subspaces T¡ D 1F„ where dim T¡ < dim W¡ +

1 and A(x) n 7]^ 0 for i = 1, 2. Then F = T, © r2, and hence dim Tx =
dim T2. It follows that either dim T,, = 2k - 1 or 2¿.

If dim Tx=2k - I, then 7, = H7, c A(x)L, and hence G centralizes Tx.

Consequently, dim 7, = 2k. Let 0 ^ « 6 T, n 62x. Then \uG\ = \G : K\ =

2/c + 1, and it is easy to complete the proof.
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7. Low rank cases. In this section, we will consider most of the initial cases

needed in §6.

Lemma 7. If G = PSL(2, q) and V = 62(G), then (RT 1) holds.

Proof. By (4.2, 9), we may assume that q = 9 or p = 2, and that a Sylow

p-subgroup P of G is contained in no root group of ß. There then exist x, v,

z G X with G = <x, y, z>, x and v in P, and v4 (x) ^ A (y). By (4.2), dim A (x)

+ A(y) = 3. Thus, dim 62(G) < 5 by (4.3). But then V = 62(G) cannot
contain a totally singular 3-space A(x) + A (y). This contradiction proves the

lemma.

Lemma 7.2. If G = PSL(3, q), PSU(3, q), A6 or Sz(q), then (I 3), (RT 1) or
(RT 5) holds.

Proof. Since dim 62(G) < 6 by (4.3, 9), V = 62(G) by (5.3). Thus, G is in

Pß(5, s) = PSp(4, s), Pß+(6, s) = PSL(4, s), or Pß~(6, s) = PSU(4, s),

generated by transvections.

Now G acts on W = V(4, s) or F (4, s2). By (4.4), G fixes the proper

subspace ^(G), of dimension > 1. Then clearly dim ^(G) = 3 and G acts

irreducibly on ^(G). The dual of (4.4) thus produces a complementary fixed

subspace of ^(G). By Mitchell [20] and Hartley [12], this situation corres-

ponds to (I 3), (RT 1) or (RT 5).

Corollary 7.3. If G is a Chevalley group containing an di-subgroup K =

PSL(3, q), SL(3, q), PSU(3, q) or St/(3, q), then long root groups of G are
contained in long root groups of ß( V).

Lemma 7.4. If G = 0±(4, q) with q even, then (I 5) or (RT 2) holds.

Proof. Let S be an X-subgroup of CG(x) with \S\ = 2(q + 1). Then

62 = 62(S) is a nonsingular 4-space. There exist v' G S n X and v G Cx(y')

with G = <x, >>, S>. Note that <x, v'> and <y, y') are conjugate.

By (4.5 i), either (i) A(x) c 62 or (ii) 62 G A(x)x.

Assume (i). Then A (y) n A(y') ^ 0, so 62(G) = 62 + A(y') has dimension

5. (Dimension 4 would imply X c ß*(4, q).) Suppose V = 62(G). Apply a

graph automorphism to G and obtain a subgroup G* of ß(5, s) generated by

short root elements, that is, transvections. By (4.4), dim ^(G*) < 4. It is now

easy to obtain (I 5). Suppose V ̂  62(G). Clearly dim 62(G)/rad 62(G) > 4.

Thus, R = rad 62(G) is a singular l-space. By (5.2), dim 7?x/7? = 5 and

[G, R ±/R] = R ±/R. Then dim V = 7 and rad V Q [G, R x] + R = 62(G),

which is not the case.

Assume (ii), so A(x) G 62x and A(y') G A(y)-1. Let 0 ¥= v E A(y). Then

vx n 62 contains A (y') and meets A (z) nontrivially for each z E S n X;

here each pair of A(z)'s meets only at 0. Thus, rad ux n 62 is a l-space in
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A (y), and vx n 62 contains a totally singular 2-space T meeting each A (z).

Here, S fixes T. Thus, W = <t>, T, ux n ^(x)> is totally singular and

G-invariant by (4.1). Since Gw is generated by transvections, by the preced-

ing paragraph dim W = 4 and G ̂  is uniquely determined. As v was arbi-

trary, we can find another such W, say W*, with 0 ^ W* n A(y) ^ <t>>. The

irreducibility of Gw implies W7 n IF*X = 0, so W + W* = W ® W* is

nonsingular of dimension 8 and contains A(y). Consequently, V = W © IF*,

and we are led to (RT 2).

Lemma 7.5. If G = PSp(4, 9), 9 odd, and V = 62(G), then (I 1) or (RT 1)
holds.

Proof. Here V = 62(G) has dimension < 8. Let S,, S2 be X-subgroups

isomorphic to SL(2, q), with [S„ S2] = 1. Then dim 62 (S,) = 4 by (7.1).

Either (i) 62(S,) = 62(S2), or (ii) 62(S2) G &(Sxy. Let x G G n X with G =

\SXS2, x).

In (i), commuting x, y G X have ^ (x) n ^ (/) =£ 0. Thus, dim F < 5 by

(4.3), so G < ß(5, s). Then G can be regarded as a subgroup of Sp(4, i)

generated by transvections. Consequently, (I 1) holds.

In (ii), V = &(SX) ± &(S2), so ß(F) = ß+(8, s). Regard G < Pß+(8, i),

apply triality, and obtain a group G* containing an X-subgroup 7C = ß+(4, q)

with dim 62 (K) = 4. By case (i), 62 (G*) is a nondegenerate 5-space on which

G* induces ß(5, q).

Since G* centralizes F/62(G*), it follows that G* fixes a nonsingular

6-space W D 62(G*) with ß(IF) = ß+(6, i). Thus, G* is uniquely determined

up to conjugacy, and hence so is G.

Lemma 7.6. If G = PSp(4, q), q even, and V = â(G), then (I 1) or (RT 1)

holds.

Proof. By (7.4), G has an X-subgroup M = 0~(4,q), and either (i)

dim 62 = 5 or (ii) dim 62 = 8, where 62 = &(M). Write G = (M, x> with

L = CM(x)_ an X-subgroup of order q\q + 1)2. (This is accomplished by

regarding G as acting on F (4, q), and letting the direction of x be singular for

A/.)

In (i), 62(L) = 62. Thus, x fixes 62, and hence so does G. We can then

proceed as in (7.5) to obtain (I 1).

Suppose (ii) holds. Here 62 = Wx © W2 for A/-invariant totally singular

4-spaces Wx, W2. Also, dim 62(L) = 6 and dim rad 62(L) = 2. By (4.5 i),
62(L) G A(xy or 62(L) D A(x). In the latter case, G fixes 62, so dim V = 8

and we can proceed as in (7.5). Assume A(x) g 62(L) G /l(x)x. By (4.5 ii),

G = <A7, x> fixes totally singular subspaces U¡ D W¡. Since V = 62(G), nec-

essarily V = Ux © U2. Let G0 be an X-subgroup Sp(4, 2) s S6 of G such that
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Af0 = M n G0 is S5, L0 = L n G0 is S4, and x G G0. Since 62(L0) Ç A(x)x,

we may assume q = 2. Now G = S6 acts on t/„ where dim t/, = 4 or 5, fixing

no nonzero vector. It follows that U¡ = W¡, and G acts as Sp(4, 2) in the

natural manner. But then A(x) c 62(L) yields a contradiction.

Lemma 7.7. If V = 62(G) a/wf G ¿s PSL(4, q) or PSU(4, q) *= PSU(4, 2),
then one of (I 1, 2, 3) or (RT 1) holds.

Proof. By (4.9), F = 62(G) has dimension < 8. Let K be an X-subgroup

with K = SL(3, q) or SU(3, q). Then 62(7C) is a nonsingular 6-space. If

V = 62 (7C), then G < ß±(6, s) implies that G produces a subgroup of

SL(4, j) or SU(4, s2) generated by transvections. These yield (I 1, 2). We may

thus assume dim V = 7 or 8.

Let S, and S2 be X-subgroups isomorphic to SL(2, q) with [S„ S2] = 1.

Conceivably, 62(S,) = 62(S2). But G = (SXS2, x> for some x, which then

implies that dim 62(G) < 6.

Thus, 62(S,S2) = &(SX) J. 62(S2) must be V. Now apply triality and

reduce to the case of a 6-dimensional V.

Lemma 7.8. If G = SU(4, 2), a«íf none of (I 1, 2, 3), (RT 1) holds, then
62 = 62(G) satisfies the following conditions:

(i) dim 62/rad 62 = 8, dim 62 = 9 or 10, and rad 62 is totally singular; and

(ii) there is an Si-subgroup M = Sp(4, 2) with 62 = &(M).

Proof. There is an X-subgroup M = Sp(4, 2). Then 62(A/) has dimension

6, 8, 9, or 10, and G = <Af, x> for some x G X. The proof of (7.7) shows that

we may assume that V =£ 62 (A/), and that dim V > 8 if V = 62.

Suppose dim 62(Af) = 6. Then for S,, S2 as in (7.7), we obtain 62(S,) =

62(S2) and hence dim 62 < 6, 62 = 62(M), and K = 62 by (5.1).

Thus, dim 62 (Af) > 8. There is an elementary abelian X-subgroup E of

order 24 with \E n X| = 5 and NG(E)/CG(E) inducing S5 on E n X. Every

triple of elements of E n X can be conjugated to a triple x,, x2, x3 in

E n M n X. If dim 62(Af) = 8 or 9 as in (RT 3 or 4), then ^4(x3) c A(xx) +

A(x2). Thus, 62(7i) = A(xx) + v4(x2) and 62 = 62«M, £» = 62(A/), which
proves (i) and (ii) in this case.

Suppose 62(A/) is as in (RT 4) with dim â(M) = 10 and dim rad 62(A/) =

2. There is an X-subgroup L of G with L = 33 • S4 as in (I 10) and (RT 9).

Then dim 62(L) = 8 and G = <L, x) for some x G X, so dim 62 < 10. It

follows that & = 62 (Af) once again.

Lemma 7.9. If G = Ss = O +(6, 2), and V = 62(G), then (RT 3) Ao/ds.

Proof. There is an X-subgroup K = S7. Then G = (K, x> with L = K n

TC* < CG(x). Set & = 62(70, so V= & + A(x). Then 62 = Wx © IF2 for
totally  singular  7C-invariant  6-subspaces   W¡.  Also,  dim 62(L) = 10,   and
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dim rad 62(L) = 2. Note that x fixes the nonsingular 8-space 62(A/) for each

X-subgroup Af = S5 of L. If A(x) c 62(M), then A(x) G fl {62(Af')|/ G L)

= 0. Thus, x centralizes hyperplanes of the 6-spaces W¡, so by (4.5 ii) there

are G-invariant totally singular subspaces T¡ D W¡ with V = Tx © T2. Here

dim Tx = dim T2 E {6, 7}.

If dim T¡ = 6, then A (x) meets T¡ = W¡ nontrivially, and x induces a

transvection on W¡ with axis W¡ n 62(L). Then x also centralizes W¡/((W3_¡

n #(L))X n IF,), and hence has direction (W3_¡ n 62(L))X n H7,. =

rad 62(L) n W¡. It follows that A(x) = rad 62(L) is uniquely determined

from K and L. Moreover, a AT-invariant GF(2)-subspace F0 spanning F will

meet rad 62 (L) in 2-space. Thus, the action of G is uniquely determined and

(RT 3) holds. It remains to eliminate the case dim T¡ = 7. Pick 0 ^ v E Tx n

62x. Then |üg| = 8 implies that GT< is as in (T 4). But then 62(G) =£ V.

Lemma 7.10. G ¥= PSL(2, q)^Sk with k > 2.

Proof. Deny! We may assume that k = 3 and F_= 62(G). Let Af be an

X-subgroup with M = PSL(2,q)^S2. Then M = Af behaves as in (7.4):

either (i) 62 = 62(Af ) is a nondegenerate 5-space, or (ii) 62 is a nondegenerate

8-space. Let x G X with G = <Af, x>. Set R = rad V.

The structure of Af forces Z(G) = 1. Let G l> L, X L2 X L3 with L, s

SL(2, q), G inducing S3 on [Lx, L2, L3}, M \> LXL2, and L* = L3. Then L3

fixes 62. The action of M on 62 yields F ^ 62 and Lf = 1. (In (ii), Com(M)
does contain an SL(2, q), but no S3 is available to permute the three

SL(2, <7)'s.)
In (i), dim V < 7, so dim 62 n 62* > 3. Thus, L3 centralizes a 3-space of

62* = 62(L2L3), which is not the case.

In (ii), dim V < 10 and dim 62 n 62* > 6. Since M fixes two complemen-

tary totally singular 4-spaces Wx, W2 of 62, and L3 = Lx fixes no nonzero

vector of W¡, this case is also impossible.

8. Generalized hexagons. In this section we will consider the cases G =

G2(q)', 3D4(q) and 777, assuming that V = 62(G). There is an X-subgroup Af,

where Af = SL(3, q) in the first two cases and Af = 3 • A6 in the last one.

(For properties of 777, see [11], [32].) Here, 62 = 62(Af) is 6-dimensional, and

62 = Wx © W2 for Af-invariant totally singular 3-spaces Wx, W2 on which Af

acts in the obvious way.

Let % denote the generalized hexagon associated with G. Set £ * = A (x)G

for x G X; then £* is in 1-1 correspondence with the root groups of G (see

(7.3)). Let 9 denote the set of maximal abelian subgroups P c X U {1} of G;

here \P\ = q2, where q = 2 for 7L7. By (4.2), H {A(x)\x G P*} is a l-space

P*. Set 9 * = P*G.
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Lemma 8.1. (i) Define <p: (<?*, £*, c)^> % be letting A(x)9 be the unique

line of % fixed by CG(x), and P*'p the unique point fixed by NG(P). Then m

preserves order and is 1-1; <p is even an isomorphism if G ^ 777. If % is

regarded as embedded in V(l, q), F(8, q), or V(7, 4), respectively, then <p

preserves the relation of orthogonality on "Jp* u £*•

(ii) dim F is 7 for G2(q) and HJ, and 1 or i for 3D4(q).

_ Proof. The definitions, along with (4.2), yield (i). For (ii), consider first

G = G2(q)' or 777. Here, G = {M, x> with x G X, where CMn3t(x) ¥=0.

Thus, V = 62(G) has dimension m < 7. Using 62 and (i), Af must be 7.

Similarly, if G = 3D4(q) then G = (K, x> for an X-subgroup K = G2(q) and

an x G X having CKnX(x) =^0.

Proposition 8.2. If G = G2(q), 3D4(q) or HJ, then (I 6, 7 or 8) holds.

Proof. For G2(q)' and 3D4(q), it is not difficult to show that any two

embeddings of % into F as in (8.1) are equivalent under ß(F); we omit the

proof. (For G2(q)', this is essentially contained in Schellekens [27, pp. 31-33].)

Alternatively, the method about to be used for 777 also applies to G2(q)' and

3D4(q) (using M to get to G2(#)',_and G2(q)' to handle 3D4(q)).

Let Af and x be as before for G = 777. Let S = S3 be an X-subgroup of Af.

Set <$> = 62(S) and C = CG(S). Then C » A4, M n C = Z(Af) has order 3,

and C n£ = 0. We have V = 9> J. ®x and dim <®x n $ = 2. Since

G= <M, 02(C)>, it follows that 02(C) is nontrivial on ÍBX. Hence, C

induces A4 on ©x. Pick a Z(Af)-invariant GF(4)-space W spanning ®x n

62. There are unique Af- and C-invariant GF(4)-spaces spanning 62 resp. ®x

and containing W7. Thus, G = <A/, x> fixes a GF(4)-space spanning IF. We

may now assume s = 4, and then apply Wales [36].

In fact, it is straightforward to uniquely describe ^P* n <^>'L at this stage,

thereby avoiding [36]. Alternatively, 777 can also be handled by combining

(8.1), [36], and the 2-modular information in Hall-Wales [11].

9. Solvable normal subgroups. Throughout this section, we will assume that

G has a normal /-subgroup L < Z(G), where I =£ p. We may assume that L

is minimal subject to this restriction. By (3.4), we may assume p = 2.

Proposition 9.1. 7/L is abelian, then one of (I 10, 11), (RT 9) holds.

Proof. Here L is even elementary abelian. Using <x)L and (4.2), we find

that l\s ± 1. Each irreducible constituent of L thus has dimension 1 or 2.

Case 1. G is irreducible. By Clifford's theorem [9, p. 70], V = F,

© • • • © Vk with each V¡ a direct sum of isomorphic irreducible L-modules,

irreducible L-submodules of Vi and Vj being nonisomorphic for i ¥=j, and G

is transitive on 2 = { F„ . . . , Vk).

If k = 1, extend the field in order to make L consist of scalar transforma-
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tions. Then x G X inverts L, and hence must be acting as an involutory field

automorphism on V. But then dim Cv(x) = \ dim V forces dim V = 4. This

is just (RT 9).

Consequently we may assume k > 2. Suppose Ff = V2. Then dim [x, F, +

V2] = dim Vx, so dim Vx < 2, with equality only if A(x) c F, + F2.

Moreover, we may assume k > 3.

If dim F, = 1, then (4.1) implies that (F, + F2) n /l(x) is a l-space of

radii7, + V2). Since L fixes only two 1-spaces Vx, V2 of Vx + F2, necessarily

rad(F, + F2) = Vx + F2. Since x does not centralize V3 + • • • + F¿, we

may assume F* = F4, so L<x> fixes H7 = F, + F2 + F3 + F4, H7 D ^4(x),

and W is not totally singular. Since L<x> fixes radNJF, it follows that W is

nonsingular. Then WL = F5 ffi • • • © F¿, and we may assume F,x =

S,^3F, and V2 = S,^!7,. Since F3 is then the unique L-complement to Vxx,

necessarily Gv = Gv. We can therefore write V = Wx ± • ■ • J_ Wn with

n = k/2, dim H7, = 2, Wx = Vx + V3, and G acting transitively on 2' =

{IF,, . . . , Wn). Since x induces a transposition on 2', G induces S„ on 2'. By

the transitivity of G, there is g G G with Vf = F3. Using S„, we can force

g2 = 1 to also hold. Thus, if K is the kernel of the action of G on 2', then G

acts on the nontrivial elementary abelian 2-group 7 = 02(K/ O (K)) of order

at most 2n_1. If x acts nontrivially on J, then the composition factors of 7

indicated in example (RT 3) show that |7| = 2"_1, and hence that (I 11)

holds. Suppose G centralizes J. Then K = (g}0(K) with g an involution

fixing no V¡, and G/0(K) is a nonsplit central extension of S„ by Z2. Clearly

G = CG(g)0(K). Since Ff = F3, L < CG(g). Consequently, induction

applies to CG(g). However, no such group occurs, so this situation is impos-

sible.

Next suppose dim Vx = 2. This time G induces Sk on 2. Since GK| is

transitive on 2 — {F,}, necessarily F, is nonsingular and V =

Vx _L  • • •   L Vk. It is now easy to obtain (I 10) or (I 11) as above.

Case 2. G is reducible. Clearly G permutes the irreducible constituents of L.

Suppose G fixes a singular l-space R. By (5.2) and induction, CR±/R(L) =

0, so rad V = 0 and dim CK(L) < 2. By (5.1), CK(L) cannot be a nonsingular

2-space. Thus, CV(L) = 7? has a unique L-complement 7, necessarily fixed

by G. Then G fixes the l-space rad T i= R, which is a contradiction.

Thus, CV(G) = rad F. Assume that CV(L) = 0, and let W be a minimal

G-invariant subspace. Then IF = rad W has dimension > 2. Note that ,4 (x)

ÇZ W1- since IF £ ^l(x)x. Thus, G ^ is an irreducible group generated by

transvections. Proceeding as before, we find that G = A X S„ with |^4| =

an~x, a\s - 1, and n = dim IF. Also, Gw± is a group generated by trans-

vections, with G centralizing W^/W. Since L centralizes IFX/IF, CW±(L)

= 0 implies that IFX = IF. Write IF = F, © • • • © F„ with G acting on
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[Vx, . . . ,Vn) as in (T 9). Then n > 2 implies that no V¡, Vj are

contragredient for L. It follows that F = F, © • ■ • © V2n with G permuting

the nonsingular subspaces V¡ + Vn+i, 1 < i < n. This yields (RT 10).

Finally, assume W = CV(L) =£ 0, and let W' = [L, V] be its unique L-

complement. Then G fixes W. By (5.1), rad IF ^ 0 ^ rad IF', and then

dim rad W' > 2 since L w is faithful. Also, dim W > 2, as otherwise U7 =

CV(G) would be nonsingular and IF' nondegenerate, contradicting (5.1).

Then Gw ¥ I ^ Gw' and (4.1) imply that A(x) meets both rad W and

rad W nontrivially. Consequently, Gw and Gw' are both groups generated

by transvections. Temporarily replacing V by the direct sum of W' and its

dual allows us to revert to a previous situation. Thus, G has the form A X S„

with |^41 = a""1 and n = dim H7', and G acts irreducibly on H7'. Then IF' is

totally singular. However, L fixes 77x n IF' for each hyperplane 77 of IF,

whereas L fixes exactly n hyperplanes of IF', and these are independent. This

proves the impossibility of CV(L) =£ 0, and completes the proof of (9.1).

Proposition 9.2. (I 10, 11) or (RT 9) holds.

Proof. Let G be a minimal counterexample. Then any choice for L is

nonabelian. Certainly Z (L) < Z(G).

The minimality of G implies that whenever x G NG(Q) — CG(Q) for a

¿/-group Q, q > 2, necessarily Q is abelian or q = 3. (The latter case occurs in

(I 10) when n = 3 and a = 3'.)

Lemma 9.3. [x, L] is either cyclic or nonabelian of order 27 and exponent 3.

Proof. Let x invert g, h E L with < g, h) noncyclic and of maximal order.

Viewing <x, g, h} in SL(3, s2) as usual, we find that it is dihedral or

SU(3, 2)'. Consider the latter possibility. It suffices to prove that <g, A> =

[x, L], so suppose x inverts k E L — (g, h}. Then G = <(x, xg, xh, xk/. As

usual, we can push G into SL(4, s2) = SL(IF) as a group generated by

transvections. The 3-group L cannot act irreducibly on the 4-space IF. Since

<g, h) is nonabelian, L must fix unique complementary /'-spaces W¡ of W

(i = 1, 3). Now the group induced by G on W3 cannot exist.

Lemma 9.4. [x, L] is noncyclic.

Proof. Suppose [x, L] is cyclic. By the minimality of L, we have L =

<[x, L]|x G X>. Thus x, v G X exist having <Tx, L], [y, L]> nonabelian. By

(4.2), | xy | is 2 or odd.

If xv induces an automorphism of even order on L, then |x'v'| = 2 for any

x' E x[x, L], _y'Gy[y, L], and then [x, L] and [ v, L] commute. This

situation cannot occur.

Suppose |xy| is odd. Then F = <x, [x, L], y> is, as usual, a subgroup of
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SL(3, s2) generated by transvections and having a normal nonabelian /-

subgroup F n L. Then F = SU(3, 2)' has [x, F n L] noncyclic. This proves

(9.4).
In order to complete the proof of (9.2), we now assume [x, L] is noncyclic.

Suppose there is a y E X with \xy\ odd and <x,_y> ^t <x>L. Then G =

<x, [x, L],^). As usual, this is a subgroup of SL(4, s2), generated by a class of

transvections, and having a nonabelian normal 3-subgroup L. This leads to

the same contradiction as in (9.3).

Thus, y G X — <x>L implies that |xy| = 2. (Since G > <x, [x, L]>, such a

v exists.) Then also y centralizes <x, [x, L]> n X, and hence even [x, L\.

Consequently, distinct subgroups of the form <x, [x, L]> commute. Since X is

a class, some y G X must move <x, [x, L]>, which we have seen cannot occur.

This proves (9.2).

10. Singular 1-spaces. The only case remaining in the proof of Theorem I is

that in which rad 62(G) contains a singular l-space 7? (cf. (5.1)). By (5.2), G

centralizes R.

Set K= CG(R±/R). If K¥ 1 then ([7C, V] + R)/R is a G-invariant

l-space of 7?X/7L

Write G* = G/K= GR±/R.

By (4.2) and (5.2), induction applies to G*. By §9, we may assume that

Ox(G) = Z(G). Note that a few possibilities for G have been handled in §7.

Set P = Op(ÜR). If K t¿ 1, let B < P correspond to ([AT, V] + R)/R as in

(4.6). Note that K = B n G.

Since ßÄ = (ßÄ n ßr)P for a nonsingular 2-space T D R, necessarily

GP = LP for some L < ßj-. By (5.1), G and L are not conjugate in ß, and

hence not in LP. Note, however, that GP is not a semidirect product unless

K = 1. In any event, C0(V)r(Tx) s GF(s)* acts on 77'(L, P).

While this leads to cohomological questions, a number of cases can be

handled directly (a necessity, since Jones [15] did not deal with twisted groups

of small characteristic).

Lemma 10.1. G is not PSL(n, q) for n > 4, PSp(n, q) for q odd and n =£ 4,

PSU(n, q) for n > 4, PSU(4, q) for q > 2, Pß±(n, q) for n > 6, 3D4(q),

0±(2n, q)for n > 3 (excluding 0+(6, 2)), S2n+X, Pß""(6, 3), G2(q)', or HJ.

Proof. By (4.9, 10), we can apply (5.3) except in the cases Pß±(n, q) for

n > 6 (excluding Pß~(6, 2) = PSU(4, 2)), 0±(2n, q), G2(q)', HJ, or

PSp(2, q). (Note that PQ,~''"(6, 3) can be generated by 6 elements of X.)

Suppose G = Pß±(«, q). Then G* acts as in (I 1, 2 or 4). There is an

X-subgroup Af with M/Z(M) = PQ+(n — 1, q); moreover, 62(Af) is

nondegenerate, so 7? n 62 (Af) = 0. There exist x, y G X with y G M, G =

(M, x>   and   <x, y}*  c X.   Thus,   dim 62(G) = dim(62(Af) + ^(x)) <
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dim &(M) + 1, from which â(G)/R = (62(M) + R)/R follows. This im-

plies that neither (I 1) nor (I 2) can occur on R±/R, so G* must act as in (I

4). However in that case dim 62(G) < 8 = dim 7? x/7? by (4.3, 9), and this is

a contradiction.

Suppose G=0±(2n,q) with n > 3. There is an X-subgroup Af =

O ±(2n - 2, q) such that G = <Af, x,y} for some x, y G X. This time,

dim 62(G) < 2(2« - 2) + 4 = dim &(G)/R produces the desired contradic-

tion. (Note that the case « = 2 was handled in (7.4).)

If G = G2(q)' or 777, then dim 62(G) < 7 exactly as in (8.1), whereas

dim 62(G)/ R = 7 by induction.

Finally, if G = PSp(2, q), q odd, then dim 7? ±/R = 4, K = 1 and G* =
SL(2, q). Consequently, G = CGP(Z(G)) implies that 77'(G, P) = 0.

Lemma 10.2. (i) G* does not act on R x/7? as ß(5, q). (ii) G is not PSp(4, q)

with q odd.

Proof, (i) Here we would have dim F = 7. Embed G < ß(F) < ß+(8, s)

= ß(F + ), apply triality, and obtain a group G+ < ß(F+) fixing a 4-space.

Then 62(G+) = V+ implies that G + is as in (RT 1). It follows that [G, F + ]

is a nondegenerate 5-space in V. This contradicts (5.1).

(ii) If G is PSp(4, q), then dim 62(G) < 8 by (4.9). But then dim 62(G)/7?
< 7, so (i) applies.

Remark. Note that we have avoided dealing with such cohomological

oddities as ß(5, 3) and ß+(6, 2) (cf. Jones [15]).

Lemma 10.3. If G = S2n, then (RT 3 or 4) holds.

Proof. Let 7? x = Vx + F2 for G-invariant totally isotropic subspaces V¡

with F, n V2 = 7?. Set W¡ = [G, V¡]. Then X induces transvections on V¡, so

dim IF,- < 2/j - 1 by (4.4).
Suppose (RT 4) holds for G*. Then dim F, = 2/i + 1 or 2/i and dim 62(G*)

= 4/i—l or 4/j — 2. We may assume dim[G, Vx/R] = 2n — I, and then

7? g Wx and 62(G) = IF, © IF2. Now

dim(IF, © W2)/R = dim &(G*)

= dim(Wx + R)/R + dim(W2 + R)/R

= dim IF, + dim(IF2 + R)/R

implies that 7? c IF2. Then dim[G, V2/R] = 2n - 2, dim RL/R = 4n - 2,

and dim Wx (B W2 = 4n — 2. Since IF, is contained in one totally singular

2«-space IF, + R, it is contained in a second one t/„ necessarily G-invariant.

Similarly, IF2 is in a G-invariant totally singular /i-space t/2 with t/2 n IF, =

0. Since t/, + t/2 d 7? x, necessarily F = t/, © t/2. The action of G on t/2

uniquely determines the action on t/,. There is an X-subgroup Af = S2„_,,
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and t/2 = (t/2 n 62(A/)) © (U2 n 62(Af)x) by induction. Note that Af n K

= 1, and that every pair of elements of X is conjugate to a pair of elements of

Af. The usual generators and relations for S2„ can then be obtained, so

G = S2„. Now pick u E U2n 62(Af)x with u G 7?. Then \uG\ = |G : A/| =

/i, and it follows easily that (RT 4) holds for G.

Now suppose (RT 3) holds for G*, so dim V¡ = 2n — I and K = I. Since

F,/7? and F2/7? are L-isomorphic (by the construction in (RT 3)), by (4.8)

there is a subgroup C of CQr(L) inducing SL(2, s) on the set of proper

L-invariant subspaces of R x/7?. Moreover, dim 77'(L, P) = dim 77'(L, P,)

+ dim H X(L, P2) = 1 + 1 by (4.11) and Pollatsek [24]. It follows that C is

transitive on H X(L, P) - {0}, and hence that (RT 4) holds.

Lemma 10.4. If G = Sp(2n, q) i= Sp(4, 2) with q even, then (RT 2) holds.

Proof. By (10.2), we have R x = F, + V2 for G-invariant totally singular

subspaces V¡ with Vx n V2 = R.

First suppose (RT 1) holds for G*, so dim V¡/R = 2n and K = 1. Let

P, < P correspond to VJR as in (4.6). Then P = Px® P2 with P, and P2

isomorphic L-modules. Precisely as in the last part of (10.3), we obtain both

dim HX(L, P) = 1 + 1 (Pollatsek [25]) and the existence of a subgroup of ßÄ

centralizing L and transitive on 77 '(L, P) — {0}. Hence, (RT 2) holds for G.

Now suppose (RT 2) holds for G*, so dim VjR = 2n + 1. With P, as

above, P, and P2 are contragredient, so dim 77'(L, P) = 1 + 0 =

dim 77'(L, P/7i). Hence, GB/B = MB/B for a complement Af to P in LP.

Then G = (G7?)' = M and 7C = 1. Consequently, there is (up to conjugacy)

just one possible candidate for G. Such a candidate is obtained by embed-

ding 0(2n + 1, q) < 0+(2n + 2, q) < ß+(4« + 4, o). However, this

0(2n + I, q) induces no transvections on its invariant 2/i + 2-spaces. Conse-

quently, this case cannot occur.

Lemma 10.15. If G = SU(4, 2), then (RT 8), (RL 5) or (RL 6) holds.

Proof. This time R x has G-invariant totally singular subspaces V¡ Z) R

with dim VJ F, n F2 = 4 for i = 1, 2. Set IF, = [G, V,], so dim W¡ < 5 by

(4.4, 9).
Assume (RT 8) or (RL 6) holds for G*. In each case, 62(G) = IF, © IF2 as

in (10.3), with dim W7 = 5 and G fixing a l-space of W¡. Also as in (10.3), W¡

is contained in a G-invariant 6-space U¡, with V = t/, ffi t/2. It suffices to

prove that G cannot act on t/, as an indecomposable group generated by

transvections. We may assume R G Wx. Then the action of G* is known on

Ux/R, and hence on E = 02(SL(Ux)R). Note that 7C < C = Q(G). By

(4.11) and Fischer [7, (16.1.10)], dim 77'(L, E/C) = 1. Then dim 77'(L, £)

= 1. (If LC = AfC with M n C = 1, then L = (LC)' = Af.) It follows that
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G* = MK/K for some complement Ai of Tí in LE. Now GTs = LE and

dim H X(L, E) = 1 imply that there is at most one choice for G (up to

ßÄ-conjugacy). We will describe a realization of a complement G, to E in L7i

which contains no transvections of t/,. Regard 3 • Pü~'"(6, 3) as a subgroup

of SL(UX) generated by transvections. The derived group G, of the centralizer

of a transvection is then an SU(4, 2) containing no transvections and acting

indecomposably on t/,. (See the discussion in (RT 8).) Thus, G cannot be G„

and neither (RT 8) nor (RL 6) can occur for G*.

If (RL 5) holds for G*, extend the field and find that (RT 8) holds for G*.
If (RT 1) holds for G*, then F, + F2 = Rx with F, n V2 = 7?. Let

P, < P correspond to Vi as in (4.6). By (4.11) and Fischer [7], dim 77'(L, P)

= 1 + 1. (Note that GF(4) G G F (s) by induction, so the L-modules P, are

isomorphic via a field automorphism since they are contragredient for L =

SU(4, 2).) Then LP contains s2 classes of complements to P. Precisely as in

the discussion in (RL 6), these classes fall into orbits of length l, s — l, s — 1,

(s - I)2 under Ca¡t(L), and hence (RT 8) or (RL 6) holds.

Finally, if (I 3) holds for G*, then dim V = 10, dim T7'(L, P) = 1, and
(RL 4) is easily obtained.

Remark. A few parts of the proofs of the preceding lemmas could have

been slightly simplified using properties of covering groups of G (Griess [10]).

On the other hand, heavier use of 77 '(L, P) (Cline-Parshall-Scott [4], Jones

[15]) seems to produce more complicated proofs.

11. Subgroups of Sp(2«, s), SU(m, s), G2(s), 3D4(s). We have now com-

pleted the proof of Theorem I, and hence also of Theorem II. From these

results, and their proofs, it is easy to determine all conjugacy classes of

subgroups G of the above groups, generated by a class X of elements of long

root groups, and having Op(G) < G' n Z(G). We shall merely list all such

subgroups, leaving the proofs to the reader. In the symplectic and unitary

cases, we may assume that G centralizes no nonsingular subspace of V.

Symplectic groups.

l.Sp(2n,q) < Sp(2n,q').

2. 0±(2n, q) < Sp(2n, q') for q even.

3. S2„ < Sp(2n, 2'), Sp(2n - 2, 2').

4.S2„+,< Sp(2n,2').

5. SL(2, 5) < Sp(2, 9').

6. Dihedral subgroups of Sp(2, 2').

Unitary groups.

1. SU(m, q) < SU(m, q').

2. Sp(m, q) < SU(m, q').

3. 0±(m, q) < SU(m, q'), for m and q even.
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4. S2„ < SU(2n, 2'), SU(2n - 2, 2').

5.S2n+,< SU(2«, 2').
6. SL(2, 5) < St/(2, 9).

7. 3-/»ir-* (6, 3) < St/(6, 2').

8. A X S„ < St/(/i, s), \A\ = a"-1, a|j + lleven.

9. Dihedral subgroups of SU(2, 2').

G2(s)' and 3D4(s).

1. 3D4(q) < 3D4(q').

2. G2(q)' < G2(q')' < 37»4(o')-

3. SL(2, o) < G2(o').

4. SL(2, 5) < G2(9').

5. G(3, q) < G2(q'), q even.

6. SL(3, ?) < G2(q').
7. St/(3, ?) < G2(q>).

8. St/(3, 9) < SL(3, q2) < G2(q2i).

9.3-^6<G2(4').

10. 777 < G2(4').

11. A X S„ < G2(j), /i = 2 or 3, \A\ = a"-1, a|s ± 1, s even.

12. Concluding remarks. (A) Let ß denote any finite Chevalley group, not a

Suzuki or Ree group. As noted in the introduction, the problem we have

considered is a special case of the situation in §3. We may assume ß has

rank > 3, and G is as in (3.2) with Op(G) < G' n Z(G).

Let 7, be a subgroup of G maximal with respect to being contained in a

long SL(2, q) of ß, as in the proof of (3.2). Set A/, = CG(7,), let 72 < A/, be

conjugate to 7,, and set Af2 = CG(J2). The embeddings of A/, in the

appropriate Levi factors L, of ß are known, by induction. The commutator

relations between M, and M2 are known; so are those between L, and L2

(because of (3.2)). In general, G = <Af,, Af2>. Thus, an exhaustive check of

commutator relations should be able to verify whether or not a given

possibility for G can occur in a given ß. This is essentially what was done in

§6, where linear algebra made these commutator relations particularly easy to

check.

Since groups of type E% contain all possible ß's, only Es(q) needs to be

handled. However, for induction, smaller ones will be needed.

It is perhaps of interest to mention some examples of such embeddings

G < ß not arising from parabolic subgroups. Examples 1-5 are in Stensholt

[30], [31],, while 6 is in Fischer [8].

l.B4(q), 3D4(q) < F4(q).

2. 2D5(q), F4(q) < 2E6(q).

3. F4(q), C4(q) for q odd < E6(q).

4.A7(q), 2A7(q), 2E6(q)< E7(q).
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5. As(q), Ds(q), 2As(q)< Es(q).
6. 2 • PSU(6, 2) < F22 < 2E6(2).

(B) Finiteness. In Theorems I and II, both G and V were assumed finite.

The finiteness of G is certainly essential: just consider subgroups of SL(2, Z)

< SL(2, Q) generated by transvections. However, if G is finite but V is not,

then the obvious extensions of Theorems I and II (and the the lists in §11)

remain valid.

To see this, consider first Theorem II. By Curtis-Reiner [6, (70.24)], if

IF = V(m, K) then there is a finite extension L of K, and a finite subfield k

of L, such that W ®KL has a spanning A>subspace U invariant under G.

Now Theorem II applies to G u. An easy induction yields k G K. (Note that

SL(2, k) < SL(2, K) implies that k G K; similarly, St/(3, q) < SÍ/(3, K) im-

plies that GF(q2) G K.) Now [6, (29.7)] implies that W is already G-isomor-

phic to U 0k K over K.

The corresponding sort of argument for Theorem I seems to break down.

However, given Theorem II, the proof of Theorem I did not use finiteness in

any essential way, and in fact goes through almost verbatim.

(C) Normalizers. Let G < ß(F') be generated by a class of long root

elements, and have O (G) < G' n Z(G), for p the characteristic of V.

According to Theorem I, V = V ± T with V and T invariant under G,

G T = 1, and G v as in Theorem I unless dim V is small (in which case G y is

easy to determine). In this situation, it is straightforward to determine

A0(^,)(G), and hence this is left to the reader.
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