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DEGREES OF EXCEPTIONAL CHARACTERS

OF CERTAIN FINITE GROUPS

BY

HARVEY I. BLAU

Abstract. Let G be a finite group whose order is divisible by a prime p to

the first power only. Restrictions beyond the known congruences modulo p

are shown to hold for the degrees of the exceptional characters of G, under

the assumptions that either all //-elements centralizing a Sylow /»-subgroup

are in fact central in G and there are at least three conjugacy classes of

elements of order p, or that the characters in question he in the principal

/j-block. Results of Feit and the author are thereby generalized.

1. Introduction. This paper proves two theorems on the possible degrees of

irreducible characters of some finite groups whose orders are divisible by a

prime to the first power only. We first set some notation and hypotheses, and

recall a few basic results.

G denotes a finite group, p an odd prime, P a Sylow p-subgroup of G. N

and C are the normalizer, resp. centralizer, of P in G, e = \N : C\ and

t = (p — l)/e. Z is the center of G. We follow the terminology of [6], [1] and

say that G is of type L2(p) if each of its composition factors is either a

p-group, a//-group, or isomorphic to PSL2(p).

Assume that |P| = p, so that t is the number of conjugacy classes of

elements of order p. Suppose that C = P X Z. Then [5] implies the follow-

ing: for anyp-block B of positive defect there is a sign 8B = ± 1 such that

the degree of all the exceptional characters in B is congruent to 8Be (mod/?).

The degrees of the nonexceptional characters in B are congruent to ± 1 (mod

p). Further, there is a one-to-one correspondence between p-blocks of positive

defect and irreducible (linear) characters 17 of Z: an irreducible character x is

in Bv if and only if p | x(l) and Xz = xO)1)- It follows that if x and £ are in

p-blocks of positive defect, then all the irreducible constituents of x£ that are

not of defect zero lie in a unique p-block, which we denote by B(xO- B\ will

mean the principal p-block.

Theorem 1. Assume that G = G' is not of type L2(p), C = P X Z,\P\ = p

and t > 3. Let x> £ be exceptional characters of G in p-blocks of positive defect,
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86 H. I. BLAU

with either x(l) = np + e and £(1) = mp + e or x(l) — np - e and £(1) = mp

— e for some positive integers n, m. Let B = -B(x£). If 8B = — 1, then there is a

function f(n, m), independent of p, such that e < f(n, m). If 8B = +1, then

there is a function f(n, m, t) (depending on n, m, and t but not on p) such that

e < f(n, m, t).

Note that [8, 1.17.13] and [6, Theorem 1] imply that when x(l) = 1(1) = e

(modp), the assumption that G is not of type L2(p) forces m and n to be

positive.

If x(l) = P — e = £(1), then if 8B = - 1 we must have e = 2 (and if x or £

is faithful, the assumption C = P X Z is redundant) [7, (4.1), (2.1)], [3,

Theorem 1 and Remark (iii)]. If 8B = + 1 then e < t — 3 [2], [3, Theorem 1

and Remark (iv)]. Theorem 1 may be considered a generalization of these

results, but the upper bounds obtained for e, namely

f(n, m) — 4n + 4m + \6nm,   f(n, m, t) = n + m + nm(t + 1)

seem far from sharp. For instance, they do not quite reach the above-

mentioned bounds when m = n = 1. Furthermore, there are no examples

known where the hypotheses of Theorem 1 are satisfied with x(l) = P ~ e =

£(1), 8B = +1, and e > 2. However, we obtain a nearly best possible result in

Theorem 2. Assume that G = G',\P\= p, and that G has an irreducible

character xeS, with (3p + l)/2 < x(l) < 2p - 1. Then x(l) equals 2p - 2

or 2p - 4.

The case x(l) = 2p - 2 occurs. For example, PSL2(25) has a faithful

character of degree 24 in the principal 13-block. However, I do not know if

there is an instance of the case x(l) = 2p — 4 under the hypotheses of

Theorem 2. The theorem is almost a "translation p units to the right" of a

special case of [7, Theorem 1], namely, that if (p + l)/2 < x(l) < P ~ 1, and

the other hypotheses of Theorem 2 hold, then x(l) = P ~ 2. Theorem 2

contains no assumption on C, but note (3.1) of the proof.

Analogs of our theorems may hold without the assumptions C = P X Z or

X E Bx. However, their proofs would involve extensions of the available

machinery which I have not yet completed. Theorems 1 and 2 are proved

below with the techniques of [7], [1], and [3].

2. Proof of Theorem 1.

Notation. R is the ring of integers in a p-adic number field F such that F

and R/J(R) are splitting fields for all subgroups of G. R' is a finite extension

of R with ramification index at least 2 [8, p. 103]. K = R'/J(R'). Y* is the

dual of a /TG-module Y, f * the complex conjugate of a complex character f.

Since C = P x Z implies N/P is abelian, the indecomposable ^TV-modules

are described in [1, §2]. We freely use the notation and terminology of [1]. In
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particular, if N = PH with H a p'-group, then char H is the set of all linear

characters: H -» K. The particular character a E char H is defined by

n-lyn=ya(h)

for all h E H, where <_>>> = P. A typical indecomposable ÄTV-module is

Vm(X), 1 < m < p, X E char H. If X is a tfrj-module with *„ = 02, ^(A,),

the H-values of * are all the \a~-/, 0 < j < d¡ - I [1, Proposition 2.11]. The

main values are the A,. Such a A, is a projective main value (pmv) of X if

d¡ — p, & nonprojective main value (npmv) if not (a given character could be

both). If X is nonprojective and indecomposable, X <-> Vm(X) means that

Vm(X) is the Green correspondent of X (so Vm(X)\XN and X is the unique

npmv of X) [S, III.5.6].

In addition to all the hypotheses of Theorem 1, we may assume e > 2. Let

L', M' be R'-free, ZTG-modules affording x> £ resp. such that L =

L'/J(R')L' and M = M'/J(R')M' are indecomposable [8, 1.17.13]. Let

v = ± 1 such that xO) — ¿(1) = ve (modp). The Green correspondence

implies that when v = 1,

LN = K(X) © 2   Vp(a),       MN = Ve(p) © 2   W

for some X, p. E char //, where S, 9" are subsets of char //, counting possible

multiplicities, with |S | = n, |3"| = m.llv = — 1,

LN = K,_e(A) © 2   Vp(a),       MN = K„_e(p) © 2   Vp(r)
oeS te5

where |S| = /i — 1, |5"| = w - 1. Then [1, Lemmas 2.4, 2.5] (and the fact

ae = 1) imply that when v = I,

(l®km)n= es r2/+1(v«1+')© 2 2 VA?™-')
1=0 oeS <=o

© 2 2 Mat«-') ©22 ^(^«-')-     (2.1)
reíT ;' = 0 S.ÍT 1=0

When r = - 1, [1, Lemmas 2.5, 2.6] yields

(L®KM)N= 0 2 V^Xpa')®" 2e     ^(^"')

/=0 ¿=o

©   2    '2      ̂  (/loa"'")
oeS    1=0

©2*2    ^(at«-')©22 ^(ora"').       (2.2)
reí   i-o s,?r 1=0

Let L, <-» V2i+x(Xfiax+') when v = \, L¡ <-» V2i+x(Xpxx') when v = -1. The
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Green correspondence implies

e-l

L®M=02A©Ô
< = 0

where Q is projective.

Now since |<a>| = e, any y £ char H can occur at most [u/e] + 1 times as

a pmv of ©2"=0I^,(pa~') (where p is fixed in char// and square brackets

denote the greatest integer symbol). Then (2.1) and (2.2) imply

(2.3) Any y E char H can occur as a pmv of L <8> M at most n + m + nm(t

+ 1) times ifv= 1, and at most t - 1 + (n - \)t + (m - l)t + (n - l)(m -

l)(f + 1) = nm(t + 1) — n — m times if v = — 1.

For each i with 0 < i < e/2 - 1 (e even), or 0 < i < (e — 3)/2 (e odd),

there is an R '-free, Ä'G-module X¡ such that

Xi/J(R')Xi « L, © Le_x_¡    [3, Lemma 2.1 ].

Also, there is an Ä'-free, Ä'G-module Y with Y/J(R')Y« Le/2 (e even) or

Y/J(R')Y«¿ Z>(e-i)/2 (^ odd). Now the exceptional characters in B occur in

the character afforded by each X¡ with total multiplicity at least 2 if 8B = 1,

and at least t — 2 if 8B = — 1. They occur in the character afforded by Y with

total multiplicity at least 1 if 8B = 1, and at least t — 1 if 8B = — 1 [3, Lemma

2.2].

Let U be an irreducible ÄYJ-module which is a modular constituent of an

exceptional character in B. Then U is a constituent of L¡ © Le_,_„ Le/2 or

L(e_ I)/2 with multiplicity at least each of the above, resp. So if 8B = +1, then

U occurs in 02*~¿A at least 2(e/2) = e times if e is even, and at least

2(e - l)/2 + 1 = e times if e is odd. If 8B = — 1, then U is a constituent of

© 2^¿A at least (t - 2)(e/2 - 1) + (f - 1) = e(t - 2)/2 + 1 times if e is

even, and at least (f - 2)(e - l)/2 + (t - 1) = e(t - 2)/2 + f/2 times if e

is odd.

Suppose 8B = 1. By the argument of [3, p. 552] (where it suffices that

e < (p — l)/3), there exists a module i/, as above, with a pmv m. Thus 7r

occurs at least e times as a pmv of L <S> M. Now (2.3) implies e < n + m +

nm(t + 1). Theorem 1 is proved in this case, with

f(n, m, t) = n + m + ww(f + 1).

Suppose 8B = — 1. The argument of [3, p. 553] shows that there exists a

modular constituent U (with npmv ß, say) of the exceptional characters in B

such that if there is an irreducible /íG-module W which absorbs ß (see [3, p.

546]), then W has a pmv y. If W does not exist, or if y = ß, then [3, Lemma

2.7] implies that ß is a pmv of L <8> M at least e(f — 2)/2 times. Then by

(2.3),
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e(t - 2)/2 < n + m + nm(t + 1)

whence

e < (n + m + nm(t + 1))(2/ (t - 2)) < 2n + 2m + 8«m

since t > 3. If W exists with y ¥= ß, then [3, Lemma 2.7] yields that y, ß occur

together as pmv's of L ® M at least e(/ - 2)/2 times. Then (2.3) yields

e(t - 2)/2 < 2(n + m + nw(í + 1)),

so that

e <(n + m + nm(t + 1))(4/ (t - 2)) < 4n + 4m + I6nm.

We take/(n, m) = 16/ww + 4« + 4m to complete the proof of Theorem 1.

Remark. The bounds may be sharpened by handling the small values of t,

or the cases v = ± 1, separately. They may also be improved if we know that

A, p, and the linear characters in S and 9" are not all identical (they usually

are not).

3. Proof of Theorem 2. Assume that G and x satisfy the hypotheses of

Theorem 2. By [5, Theorem 11], the degrees of the characters in Bx are

congruent to ± 1 or ±e (modp). Then (3p + l)/2 < x(l) < 2p — 1 implies

x(l) = 2p - e where 1 < e < (p — l)/2, so that x is an exceptional charac-

ter in Bx.

(3.1) It suffices to assume x is faithful, C = P and char H = <a>.

Proof. Let J be the kernel of x- If J 2 P, then x, one of t > 3p-conjugate

characters, is invariant under p-conjugation, a contradiction. So / is a

p'-group and BX(G/J) = BX(G) [8, IV.4.12, V.4.3]. Therefore, x E BX(G/J),

and the hypotheses of Theorem 2 are satisfied for group G/J and character

X- So we may assume J = <1>. Then C = P [8, IV.4.21]. So N/P is cyclic and

char H = <a>.

(3.2) G is simple.

Proof. Op(G) is the kernel of Bx [8, IV.4.12], so x faithful implies

Op(G) = <1>. Thus if / is a proper normal subgroup of G, then P <Z J. The

Frattini argument implies G = JN. Then G/J « N/N n / is a

homomorphic image of N/P, and hence is cyclic. Then G' Q J yields J = G.

(3.3) 77ie assumptions of Theorem 1 hold with x = £, L = M, x(l) = 2p — e,

B = Bx, and 8B = -1.

Proof. Since e < (p - l)/2, G sé PSL2(p). Then (3.2) says G is not of

type L2(p). The rest is clear.

(3.4) If L is reducible it has exactly two constituents, say U and W, where
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dim U = p — s, dim W = p — e + s, some s < e. Also, U, W are both self-

dual, and the node for x (and the other exceptionals) in the Brauer graph of Bx

appears as

x

Furthermore, if UN = Vp_s(ß) then WN = Vp_e+S(ßas).

Proof. x(1) = — e (modp) implies that each modular constituent U of L

has

sep U = — rem U

(see [1, §4] and [9]). Thus dim U > p — e. So x(l) = 2p — e forces L to have

at most two (necessarily distinct) irreducible constituents, say U and W.

Suppose there are two. Then sep U + sep W = e, so dim U — p — s, dim W

= p — e + s, some 1 < í < e — 1. x lies on the real stem of Bx, and

symmetry about the stem means that U and W are self-dual. Let UN =

Vp-s(ß), WN = Vp_e+S(r). We may assume there is an exact sequence

0-+ U-*L^>W^>0. Then [1, Proposition 4.5] implies r = ßap-e+s~x =

ßas.

(3.5) // e is even then L is irreducible and LN = Vp_e(— 1) © 1^,(1), where

- 1 = ae'2.

Proof. Suppose L is reducible. Let U, W be as in (3.4) and d = p — s.

U «¿ U* implies ß2 = ad~x [1, Lemma 2.3]. Now ß G <a>, so e even implies

d is odd. G = G' means that every representation of G is unimodular. Then

[1, Lemma 2.3] yields that ßd = ad^~X)/2. Since d is odd, ß may be found

from ß2 and ßd: namely, ß = a(</_1)/2. A similar argument for Wimplies

ßas = a0>-e+*-D/2= aw"1)/2aJae/2.

Hence, ß = aid~X)/2ae/2 so that ae/2 = 1, a contradiction.

So L is irreducible and must lie on the real stem. Let LN = ^_e(A) ©

Vp(a). Then L « L* implies A2 = ap'e~x = 1. If A = 1 then L « 10 (the

trivial one-dimensional KG-module) [1, Corollary 4.7], a contradiction. So

A = - 1. Again, G = G' and [1, Lemma 2.3] imply

1  = \P-ea-(j,-e)(j,~e-l)/2aPa-p(j,-\)/2=  Qp = Q

(3.6) Assume e is even. Let S © T denote the decomposition of L <8 L into

symmetric and skew parts, respectively. Define y E <a> to be even if y E <a2),

odd if not. Then
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SN=® 2 V2i+x(ai)®(3t-3)        2        Vp(y)
0<i <e— l;i=0(mod 2) y even; y# ± 1

©('-I)       2        Vp(y)®(3t-\)Vp(\)®xVp(-\),
y odd; y # — 1

r* = e 2 vv+1 («')©('-!)      2      ^(7)
0<i'<e-l;i'=l(mod 2) y even;y¥=±\

®(3t-3)       2       Vp(y) ©(,- \)Vp(\) ®(4t-2-x)Vp(-\)
y odd; y ̂  — 1

where x = 3t — 2 if ae/2 is even, and x = t if ae^2 is odd.

Proof. S and T are ATG-submodules of L <8> L, and 5^, 7^ are the

symmetric (resp. skew) summands of (L ® L)N. S has /{-dimension (2p —

e)(2p - e + l)/2 and

dim T=(2p - e)(2p - e - l)/2

(see [1, §3]). The //-values of LN are {a{e/2)W|0 < i < p - e - 1} u {a~'|0

< i < p — 1} by (3.5) and [1, Proposition 2.11]. Squaring each element of

this set yields every even character 4f — 2 times, plus the trivial character

twice more. Then [1, (3.1)] implies

(3.7) 77ie H-values of SN consist of the H-values of TN, together with each

nontrivial even character of ([a}, with additional multiplicity 4t — 2, and the

trivial character, with additional multiplicity 4t.

Now by (2.2),

(L®L)N= 0 2V2,+1(«')©/' 2     Vp(a~>)

; = 0 i=0

©2^2    ^(«(e/2)-')© 2 Vp(a->)
¡=o i=0

= 0 2V2l.+ 1(a')©(4/-4)   2   Vp(y)
i' = 0 Yl*±l

®(4t-2)Vp(\)®(4t-2)Vp(-\). (3.8)

The Krull-Schmidt theorem implies the summands in (3.8) are distributed

between SN and 7^. Since Vp_e(— \)\LN, [1, (3.1)] implies the symmetric

(resp. skew) part of Vp_e(- 1) ® Vp_e(— 1) is a summand of SN (resp. TN). So

by [1, Lemma 3.3],

© 2 *W«')
0</'<e-l,/=0(mod2)

SN,    © 2 V2i+X(a¡)
0</'< e-l;i' = l(mod 2)

TN-

(3.9)
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Then a dimension argument implies SN must have exactly two more projec-

tive indecomposable summands than TN does.

Now (3.9) shows that from the nonprojective summands alone, each odd y

occurs as an //-value of TN twice more than in SN, and the even characters

are balanced as //-values. Neglecting pmv's, the projective summands must

contribute 2f more of each character as an //-value of SN than as an //-value

of TN. So without the pmv's, SN has 2i more of each even y, and 2f - 2 of

each odd y, occurring as //-values than 7^ does. Now (3.7) implies for each

even y =£ 1, Vp(y) must occur in SN 2t — 2 more times than in 7^. Also, for

each odd y, Vp(y) is a summand of TN 2f - 2 more times than in SN. Finally,

Vp(\) occurs in SN 2t more times than in TN. The result follows from (3.8).

(3.10) If e is even then e equals 2 or 4.

Proof. Suppose e > 6. Let Li <h> V2i+X(a'), 0 < /' < e - 1. Then by the

proof of Theorem 1 (with L = M), L, the unique modular constituent of the

exceptional characters in Bx, is a constituent of L0 © Le_ x with multiplicity at

least f — 2. Since L0 = 10 (by the Green correspondence), L is a constituent

of Le_, at least t — 2 times.

Because e < 2e — 5 <p — e, [1, Lemma 2.6] implies the npmv's of

Vp_e(-\)® K2e_5(«*-3) are

ae/V"3a-(2e-5)+1 + ' = a<*/2>+3 + i-       0 < i < e - 1.

Hence, 1 is a npmv of L ® Le_3 « L* <S> Le_3 « Hom^L, Le_3). By [1,

Theorem 4.1], there is a nonzero ÄG-homomorphism from irreducible L into

indecomposable Le_3 sé L. Since L and Le_3 are both self-dual, [1,

Proposition 4.11] shows that L is a constituent of Le_3 with multiplicity at

least 2.

Now Le_ x © Le_3\ T by (3.6) and the Green correspondence. Hence, L is a

constituent of T with multiplicity at least t, so that 1 (the pmv of L), is a pmv

of T with multiplicity at least t. But (3.6) also implies 1 has multiplicity

exactly f — 1 as a pmv of T, a contradiction.

(3.11) If e is odd then e = 3, 9, or 15, L is reducible, and for UN = Vp_s(ß)

as in (3.4), we may assume s = 2e/3 and ß = as.

Proof. Suppose L is irreducible. L ?» L* implies Vp_e(X) « Vp_e(X)*,

hence A2 = ap~e~x = 1 [1, Lemma 2.3]. Then e odd yields A = 1. Thus

L « 10 [1, Corollary 4.7], a contradiction.

Let U, W be as in (3.4). Since x(l) is odd, we may assume 5 is even (if not,

e - s is). Then U« U* implies ß2 = ap''~l, whence ß = a~s/2. Now

\H\ = e. Since H is ap'-group, we may identify a(H) with the complex eth

roots of unity. If <f>, \p are the Brauer characters afforded by U, W resp., then
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**-♦* + **- '2 '«-<"»-'+ ' 2' 1«u/2)-'
i=0 J-O

= a~s/2 + as/2 + (2t - \)p

where p is the character of the regular representation of H.

Since e is odd, there exists an automorphism a of the field of algebraic

numbers which sends a primitive eth root of unity to its square, and fixes the

pth roots of 1. Exceptional x must be fixed by a, hence

«-' + «* + (2t - \)p = (x„)°= Xh = «_V2 + «V2 + (2t - \)p

and so a~s + as = a~s/2 + as/2. Then s = —s/2 (mod e) implies 3s = 0

(mod e), whence 3|e and e/3\s. So s even means i = 2e/3. By [3, Theorem 1]

with s = u, we have 4e/3 = 2s < e + 5, whence e < 15. Therefore, e = 3, 9,

or 15.

(3.12) 77¡e case e = 15 is impossible.

Proof. By [3, (3.9)] with s = u = 10, we have

2 = 9-[15/2] < //(/ -2),

whence f = 4. Now, [4, Theorem 2] with x = 5, j = 10 implies

5 = x < e - 2s + 2t = 15 - 20 + 8 = 3,

a contradiction. (The methods of proof of Theorem 1 will also eliminate this

case, without appealing to [4].)

(3.13) The case e = 3 is impossible.

Proof. If e = 3, then by (3.11), UN = Vp_2(a~x). Now [1, Lemma 3.3]

implies Lx (<-> V3(a)) is a skew summand of U <8> U, hence

dim Lx < (p - 2)(p - 3)/2 = ((p - 5)/2)p + 3.

But [3, Lemmas 2.1 and 2.2] show that L, lifts to an Ä'-free, Ä'G-module

whose character contains exceptional characters in Bx with total multiplicity

at least t — 1. Hence

(2f - 3)p + 4 = (t - l)(2p - 3) < dim L, < ((/» - 5)/2)p + 3,

so that 2f - 3 < (p - 7)/2 and (p - l)/3 = f < (p - l)/4, a contra-

diction.

(3.14) 77ie case e = 9 cannot occur.

Proof. If e = 9 then UN = ^^(a6), W^ = Vp_3(a3). In the symmetric

summand of U <8> £/, aJ is a pmv f/2 times if j = ± 3 or ± 1 (mod e),

f/2 - 1 times otherwise. Furthermore (if L¡*^> K2í+1(a')), L0 = 10, L2 and L4

are symmetric summands of U <8> Í/ [1, Lemma 3.3].
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As in the proof of Theorem 1, each of U and If is a constituent of L4 at

least / — 1 times [3, Lemmas 2.1, 2.2]. There exists an irreducible ÄTG-module

M which absorbs a6 (the npmv of U). Furthermore, U and M are both

incident to a common (nonexceptional) node in the graph of Bx, sep M =

rem M < 5, and the npmv of M* is a2 (see Proposition 2.6 and the proof of

Proposition 2.3 in [3]). Thus M «h» Vm(am~\ m = rem M < 5 [1, Lemma

2.3].

Since a6 is a main value (and only a pmv) of the symmetric part of U ® U

exactly f/2 times, [3, Lemma 2.7] implies M is a constituent of L4 with

multiplicity at least f/2 - 1. Now dim M > p [1, Theorem 5.7], so M has a

pmv y. Also, a6 and y together occur as pmv's of L4 at least t — \ times [3,

Lemma 2.7], so y ^ a6.

Since Vm(am~i) ® V5(a2), and hence M ® L2, has 1 as a npmv [1, Lemma

2.4], it follows by [1, Theorem 4.1] that

HomKG(M*, L2) + 0.

Therefore, M (and M*, if M sé M*) is a constituent of L2 « LJ. So f/2 <

multiplicity of M in L2 © L4 < multiplicity of y as a pmv of L2 © L4 < t/2.

Hence, M (and M*, if M sé M*) is a constituent of L2 © L4 with multiplicity

exactly f/2. Then 2^(y)} M, and 2Vp(y)\M ® M* if Af* ?é M. Also, a6 is

a pmv of L4 exactly f/2 times, due to the presence of U as a constituent, and

U must occur exactly f — 1 times in L4.

Since Vp(y)* = ^(y-1), y_1 occurs as a pmv of L2 whenever y does. So if

y = a3, then y_I = a6 is a pmv of L2 © L4 at least f/2 + 1 times, a

contradiction. Therefore, y = a*1.

Suppose M sé M*. We have the configuration

M* I U

in the Brauer graph, so m < 2. M£ = Fm(a2) © ^(a*1). Since G = G', [1,

Lemma 2.3] forces

1 = (a2a)(a±pa-p(p-x)/2) = «3±1

if w = 2, or 1 = a2±x if m = 1, in either case a contradiction. Therefore,

M « M*. Then am~3 = a2 implies m = 5, whence M« L2 and A/^ =

F5(a2) © l^(a) © ^(a_1). The Brauer graph now contains

x
•-•-•-•

M       ~     U      +      W     -
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There is also an irreducible ÄG-module X which absorbs a3 (the npmv of

W). X and W are both incident to a common (nonexceptional) node in the

Brauer graph, sep X = rem X < 2, and the npmv of X* is a5. X has a pmv,

say m. Since a6 is a pmv of L4 « L| exactly f/2 times, so is a3. Then X is a

constituent of L4 at least f/2 — 1 times. Hence, it =é a±3, a±x, as these pmv's

have been produced as much as possible by U, M and W. So X has

multiplicity exactly f/2 — 1 as a constituent of L4, hence [3, Lemma 2.7]

implies If has multiplicity exactly f — 1.

X <-> Vx(ax+3), x < 2. Suppose X sé X*. We have the picture

x

X*

r

where sep W = 3 implies x = 1.

Let Zjv = Vx(aA) © 2, K/w,), w,i= a * ', a ±3. Then

X* = VX (a5) ©2,K,(«f>).

If we identify a(//) with the complex 9th roots of unity, then $H = npH + a4

+ 2w,, « = f(f (1) - l)/p. Thus the irreducible constituents of $H determine

the main values of X.

Let a be an automorphism of the field of algebraic numbers which squares

a primitive 9th root of 1. Then f£ = npH + a"1 + 2w2. So if T = f or f*,

then a-1 is a pmv of X or X*, a contradiction. Now (f0)w = npH + a7 +

2ff,4. If Í"1 = ?*, then f* = f implies f^ = f since a has order 6. But if

r2 = f, then

f# = «P* + «7 + Sitf = npH + (a7)4+ 27T,16.

Hence, a28 = a is a pmv of X, a contradiction. It follows that f, f °, f °\ f*,

(f*)°> (f*)"2 are six distinct characters in Bx, none of which lies on the real

stem. The above configuration, with sep M = 5, shows this is impossible.

We may assume that X « X*. Then X <-» V2(a5) and the graph now

contains

+    i0 +M-u     +    w~x+y

where Y <-> Vp_x(a4).

Suppose   dim X = p + 2   and   dim Y = p — 1.   Then   I^(w) « ^(w)*

_,-,_
M (/ IV
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implies tr = 1. By [1, Lemma 2.2]

ÇH = a5 + a4 + a0 + 2tpH.

Thus, £ has two algebraic conjugates in Bx, which must also lie on positive

nodes on the real stem. But since f (1) = 2p + 1, x(l) = 2p — 9 and £(1) >

3p + 1, there are not enough nodes available. Hence, we may assume

f(l) > 3p + 1.
Let L'4 be an /«'-free, Ä'G-module with L'4/J(R')L'4 = L4. Since the

multiplicity of U and W in L4 is exactly t — 1, [3, Lemma 2.2] implies the

exceptional characters must occur in the character afforded by L'4 with total

multiplicity exactly f — 1. Then in order that M and X occur in L4 f/2 — 1

times, each of £ and f has multiplicity f/2 - 1 in the character of L'4. If A

denotes the symmetric part of U <8> U, we have

p(5f - 9) + f + 8 = (f/2 - l)(6p + 2) + (f - l)(2p - 9)

<(f/2-l)(£(l) + ?(l)) + (>-l)x(l)

< dim L4 < dim A — dim L2 — 1

= (P - 6)(P - 5)/2 - (2p + 5) - 1

= p(p-15)/2 + 9,

so that 5i - 9 < (p - 15)/2. Then (p - l)/9 = t < (p + 3)/10 and p <
37. But e = 9 and f > 4 imply p > 37, a final contradiction.
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