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THE BEHAVIOR OF THE SUPPORT OF SOLUTIONS OF
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ABSTRACT. We consider the Cauchy problem in one space dimension for a
nonlinear degenerate parabolic partial differential equation. The connec-
tedness of the support of the solution and estimates of the growth of the
support as ¢ — oo are established.

1. Introduction. In this paper we consider the parabolic Cauchy problem
u =[o(u)], . — ¥(u) inR'Xx (0, o), (1.1)
u(x,0) = yy(x) inR', (1.2)
where uy(x) is a bounded continuous nonnegative function whose support is a
bounded interval. The functions ¢ and ¢ are smooth nonnegative functions
satisfying @(0) = ¢’(0) = ¢(0) = 0, and ¢'(u), 9" (u), ¥'(u) > 0if u > 0. Thus
equation (1.1) is nonlinear and degenerates when u = 0. According to [8],
equation (1.1) occurs in the theory of nonlinear heat conduction with
absorption.
Existence and uniqueness of continuous bounded nonnegative solutions
possessing bounded weak derivatives dgp(u)/dx was established in [8].
If ¢ = 0 then (1.1) is called the porous medium equation and this equation
has been studied by many authors [1]H{5], [7}H{15], [17H21]. The special case

u = (u*),  — Cu” (1.3)

where C > 0, p > 1, and » > 0 has been studied in [9].

§2 is devoted to stating the assumptions about the functions ¢ and ¢ in
(1.1) and defining a useful transformation of the solution . Some of our main
results for problem (1.1), (1.2) are given in §3. There we establish the
connectedness of the open set P[u] = {(x, f) € R? X (0, o0)|u(x, 1) > 0}.
We also prove that, under certain conditions on ¢ and y, the open set
Plu]l N {t = 7} is an interval (§\(7), (7)) for each 7 >0, where the
functions §; belong to C0, 00) N C*!(0, ), §,!, and ¢{,1. In the special case
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(1.3) the conditions on ¢ and y are that p > 1 and » > 1. It was proved in [8]
that P[u] is a bounded subset of R! X (0, o) forp > land0 < » < 1.

It follows from results established in [9] that in the special case (1.3) the
functions §;(7) are bounded if 1 < v < p and unbounded if v > p. In §4 of
this paper we treat the borderline case » = p for equation (1.3). We prove
that the functions |¢;(7)| (i = 1, 2) approach infinity faster than Vin¢ but
slower than V¢'/2 as t — co.

In [15] it was shown that for the porous medium equation the interface
functions |{;(7)| become infinite as ¢ — oo and growth estimates were derived.
For the special case

U = (u*),,
it was shown that |{;(7)| - oo like t'/0*® as 1 — o0. In view of the results of
[7], [8], and [9], the addition of the term — Cu” has a profound effect on the
growth of the interface curves for » € (0, p). Indeed, for equation (1.3) with
0 < » < p the interface curves are bounded. In §5 we derive growth estimates
as t — oo for the interface in the problem (1.1), (1.2) under conditions on ¢
and ¢ which correspond to » > p in the special case (1.3).

2. Preliminaries. Consider the parabolic equation
u =[p(u)]  — ¥(¥) inG=R'X(0, ). 2.1

We assume throughout this paper that the following conditions are met by the
functions ¢ and ¢, and the inverse function of ¢, denoted by ®:

B(v) € C2[0, M] forallM >0 (0<a<]l), 22
p(u) € C'**[0,M] n C***[m, M], forall M >0,
forallme (0, M) (0<a, <1), (23)

e®(u) >0 fork =0,1,2whenu >0, 24
¢(0) =0 and ¢'(u) >0 foru >0, 2.5)
’ s ” S
fl( v ) ds< oo and sup ii—)- < o0, (2.6)
0 s se@1) ¥(5)

Y(u) € C[0,M] N C'**2[m, M], forallM >0,
foralme (O,M) (0<a,<1)(27)
Y'(u) >0 foru>0, ¢(0)=0. (2.8)
In this paper we will consider the Cauchy problem for equation (2.1) with the

initial condition

u(x, 0) = uy(x) forx € R (29)
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About u, we assume that:

uy € Co(R"), (2.10)
uy(x) > 0if |x|< a and uy(x) =0if |x|> a >0, (2.11)
o(%) € C*'(R"). (2.12)

Because of the translation invariance of equation (2.1), assumption (2.11)
is, of course, equivalent to the assumption that the support of u, consists
precisely of a bounded interval. We remark that assumptions (2.2)(2.8) are
valid if we take @(«) = u* and Y(u) = cu” where ¢ >0, » >0 and p > 1.
With this choice of functions ¢ and ¢, equation (2.1) becomes

u = (u*)_— cw’ inG = R'X (0, ). (2.13)

It will sometimes be advantageous to change variables in (2.1) through the
transformation

o(x,t) = 0(u(x,t)) inG (2.19)
where
0(s) =f0’( %(—9 ) dt. (2.15)
This transformation takes equation (2.1) into the equation
v, = o(v)v, + V2 — k(v) inG, (2.16)
where
o(v) = @'(u), @17)
k(v) = ¥(u)(¢'(v)/u), (2.18)
u=20""(v). (2.19)
With the special functions ¢(u) = u* and Y(u) = cu’, equation (2.14)
becomes
o(x, 1) = (u/ (b = D)t~ (x, 1) (220)
and equation (2.13) becomes
v, = (p — oo, + 02 — c*o? (221

where 8 = (v + p — 2)/(p — 1) and ¢* = cp((p — 1)/ )%

Kalashnikov [8] defines a weak solution u(x, f) of the Cauchy problem
(2.1), (2.9) as follows: a bounded function u(x, 7) > 0, satisfying a Holder
condition, is said to be a weak solution of (2.1), (2.9) if u satisfies equation
(2.9) and if the integral identity

[ Lo L+, ved) s i [“up ] - [“ptas,

=0

Xo

(2.22)
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holds whenever 0 < t, < 1, and xo < x, and for all f € C'(G) such that
fix € C(G) and f = 0 for x = x4, x;. If ¢ = 0 then equation (2.1) is called
the porous medium equation, and our notion of a weak solution agrees with
the definition given in [19]. Kalashnikov [8] proved that the unique weak
solution u(x, £) of (2.1), (2.9) is, in fact, given by ®(w) (recall that ® = ¢~ ')
where w is the pointwise limit in G of a monotone decreasing sequence
{w,(x, 1)} of positive functions in C(G,) N C*'(G,) which satisfy the
equation

(Wn) e = B(Wa)(W,),— ¥(®(w,)) =0 in G, =(—n,n) X (0,n) (2.23)

and are bounded uniformly with respect to n as follows:
supw,(x, 1) < C, sup| D (x, t)| <cC (2.24)
G, G, dax

Also, the weak solution u(x, ) is smooth in the open set {u > 0} (see [8]).

3. The interface. The following lemma is useful for comparing solutions of
(2.1) with solutions of the porous medium equation (equation (2.1) with
Y = 0). The proof is similar to the proofs of comparison theorems in [8], [18],
[22]. We include a proof here for completeness.

LeMMA 3.1. Suppose that a function u(x, t) is a weak solution of the Cauchy
problem

U = (9()),,— ¥(u) inG, (€2Y)
u(x,0) = uy(x) inR', (32

and suppose that another function u(x, t) is a solution of the Cauchy problem

u = (p(u)) , inG, (3.3)
u(x,0) = uy(x) inR!, 34

where
y(x) > uy(x) in R 3.5)

Then i > u in G.

ProoF. Recalling the discussion surrounding equation (2.23), we see that
there exist sequences {w”"} and {w"} of positive functions in C (G)n
C?!(G,) which converge respectively to @(i) and @(u) in G, and such that
w” > w" on the parabolic boundary of G,. In fact, the boundary data can be
chosen so that w” € C>!(G,) (see [16]). Letting £ denote the nonlinear
operator given by £z =z, — ®'(z)z, we see, from equation (2.23) that
£(w") » 0in G, and £(w") = 01in G,.
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One then easily deduces that the inequality
P! — a"(x, )P" — ®'(w"(x,1))P} >0 inG" (3.6)
holds for P" = w” — w” and

a"(x,0) = 750 [ "o (05" (x, 1) + (1 — O)w"(x, 1)) dB.  (3.7)

The function a”(x, t) is bounded in G,, due to (2.3) and the boundedness of
w in G,, and, by virtue of (2.4) and (2.5), the coefficient of P in (3.6) is
negative and bounded away from zero. Set Q" = e~ *P" where a is a positive
constant which we will choose sufficiently large. From inequality (3.6) we get
the inequality
o, (x, )05 + B, (x,)Q" — @' >0 inG, (3.8)
where a,(x, ) = (®'(w"(x, £)))"! and where B,(x, 1) = — a"(x, )/ a,(x, 1)
— a. Thus, for sufficiently large « > 0 we have the inequality
B,(x,ty <0 inG,. 3.9

Since Q" < 0 on the parabolic boundary of G,, it follows from the maximum
principle (see, for example, [6]) that 0" < 0in G” and therefore that

w'(x,t) < w"(x,t) inG,. (3.10)
Letting n — oo produces the desired conclusion.
Now recall that (—a, a) is the support of u, and let N = sup 8 (ug). Then,

Theorem 8.4 and Corollary 9.3 [15] and Lemma 3.1 together give the
following result.

THEOREM 3.2. If u(x, t) is a weak solution of (2.1), (2.9), then u(x, t) = 0 if
t>0 and |x| > a+2VNt. If u is a weak solution of (2.13), (2.9) then
u(x, ) =0ift > 1 and |x| > 0t"/*P where @ > 0 is a constant depending on
uy and p.

If, for arbitrary constants 7 > 0 we apply Theorem 3.2 to the function
#(x, 1) = u(x, t + 7), it is easy to see that if the support of u(-, ¢) is mono-
tone increasing in ¢, then the boundary of the support consists of Holder
continuous monotone functions of ¢ (exponent 3). Since a better result is
forthcoming (see Theorem 3.9) we shall not prove this.

Another immediate consequence of Lemma 3.1 is the following. Recall that
v = 0(u) (see (2.14)). In this theorem we do not necessarily assume that the
support of u is the interval (—a, a).

THEOREM 3.3. If for some x, € R,
v(x,0) < b(x — xp)> for |x — xo|< 8

for some constants b, 8 > 0, then there exists a constant T > 0 such that
Uu(xp ) =0for0< t < 1.
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PrOOF. Theorem 8.2 of [15] establishes this result in the case x, = * a.
However, a careful reading of that proof shows that the result is valid for any
Xo € R'. Now use Lemma 3.1.

Let ¥(s) = y(®(s)) and let f(s) = ¥(s)/(sP'(s)).
LEMMA 3.4. Suppose f(s) € L0, 1). If (x¢, 7) € P[u] and if u(xo, 7) > O,
then u(xy, t) > 0 for all t > 7.

PROOF. Since f is bounded, it follows that [{(®'(s)/¥(s)) ds = oo. It is
possible, therefore, to define a function ¢(7) by the equation

1 @ (s)
fqm ¥ b=t fort>0. (3.11)
We also define a function z(x, #) by
z(x, £) = yg(H)e ™ sin( B (x — xp) + 7/2) 3.12)

where v, A and B are positive constants which will be specified later.
Let R denote the rectangle

(xo_f%’ B)x("" 1)
and let T denote its lower and lateral boundary. Also let £ denote the
nonlinear operator given by

n = ne — (), — ¥(n) (3.13)
which occurred previously in equation (2.23). It can easily be checked that
Bz = [ (M'(2) - B7) + ®()(f(a) - F(2))]. (3.14)

Because of (2.4), we know that ®” < 0 and that ®'(z) > ®'(sup z) > ¥'(y) >
0. We shall now choose our parameters 8, A and y so that £z > 0 in R. First
choose B so large that

w(x,7) >0 forx,— < x< x+ (3.15)

7 7
2B 2B
This is possible because, by hypothesis, w is continuous, and pointwise at
(x> 7). Next, choose y < 1 so small that

z(x,7) < y < w(x,7) forx E[xo (3.16)

2% * 25 |
Now, since f is bounded on (0, 1) and ®’(z) is bounded below by a positive
constant independent of A, we can clearly choose A so large that

£z >0 inR/T. (3.17)
Indeed, by equation (3.14) we have

£z = 2[(3A®(2) - B2) + ¥ (2)(5A + f(q) — f(2))]
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and we can first choose A sufficiently large that the first term on the right is
nonnegative in R, and then choose A still larger, if necessary, so that the
second term is nonnegative in R.

Now, using the fact that z(x, ) = 0if x = x, = 7 /2 we have the relation

z<w onl. (3.18)
Theorem 5 [8] then implies that
z<w inR (3.19)
and therefore that
u(xp,t) >0 forr <t <t (3.20)

The result then follows from the arbitrariness of ¢,.

The comparison function z(x, t) defined by equation (3.12), and the main
idea in the above proof are both due to Kalashnikov [8].

REMARK 3.5. If ¢(s) = s* and y(s) = cs” then f(s) = cus® Y/, and
Lemma 3.4 is applicable if » > 1 and p > 0. Since we are only interested in
p > 1 (see the paragraph containing equation (2.13)) the essential restriction
here is that » > 1. Theorem 10 of [8] shows that Lemma 3.4 fails if » < 1.

THEOREM 3.6. If for all s € (0, sup v) we have k'(s) > O (where k is defined
by equation (2.18)), then, for the function v(x, t) defined by equation (2.14), the
Jollowing estimate holds:

I%v|< C(r) onP[u]n {t> ).
If sup|(3/9x)v(x, 0)| < oo, then
()
lgx-v|< C onP[u]
where C depends on sup|(d/9dx)v(x, 0)|.

ProoF. This is a straightforward generalization of Aronson’s proof of this
very useful result in the case Y = 0 (see [3]). In fact, if we merely follow
Aronson’s argument without change, we find that the only difference is that
an extra term, (—k’) times a nonnegative factor, is acquired in Aronson’s
inequalities, and this term can be deleted on the basis of its sign alone.

REMARK 3.7. If @(u) = u* and y(u) = cu’, then k(s) = c*s? where B8 = (»
+ p — 2)/(p — 1) (see equation (2.21)). Thus |v | is bounded if » > 2 — p
and p > 1. Kalashnikov [9], using the same technique, proved this and a
better result in this special case, namely, that |(3/9x)u°| is bounded, where
o=(p—-»)/2ifr<2-—p.

Recall that Plu] = {(x, /) € Glu(x, f) > 0} and suppose that the
functions @ and ¢ satisfy conditions (2.2)~(2.8). Then we have the following
theorem.
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THEOREM 3.8. For any constant 0 < v < oo the open set P,[u] = P[u] N {0
< t < 7} is connected. Also for T < 'oo, P,[u] is bounded.

PRrROOF. Let 7 € (0, o0) and suppose that P,[u] contains two components Q,
and Q,. First we shall prove that Q; N {¢ = 0} is nonempty for i =1, 2.
Suppose, therefore, that Q, N {¢ = 0} =& for i = 1 or for i = 2. Since Q, is
compact, by Theorem 3.2, it follows that the function w(x, #) = @(u(x, 7))
must attain a positive maximum at some point (x,, #;) € Q;. However, the
function w(x, f) satisfies the parabolic inequality (1/®'(w))w,, — w, > 0 in
Q;, so, by the maximum principle it follows that (x,, #5) €9Q;. There are no
boundary points of Q; on the line {¢ = 0} by hypothesis, so therefore ¢z, > 0.
Moreover, since w(x,, ;) > 0 it follows that there is a ball B centered at
(xps 1p) and contained in P[u] so that B* = B N {t < t,} C Q,. Applying the
maximum principle again, we derive another contradiction. This proves that
OnNn{t=0)#Bfori=1,2.

We now prove that 9Q; N (a,, a,) is nonempty fori = 1,2.If 9Q, (i = 1, 2)
intersects the line {¢ = 0} only at one or both of the points {a,, a,}, then we
can derive the same contradiction derived above with the aid of the maxi-
mum principle. _

Thus 9Q; N (a,, ay) #< for i = 1, 2. But then, because ¥ € C(G) and
because each Q, is maximal, it follows that (a,, a,) C9Q; for i = 1, 2. But
then, again by maximality, Q, = Q,. This proves that P, [u] is connected for
each 7 € (0, o0). Thus P[u] is also connected. The final assertion follows
from Theorem 3.2.

THEOREM 3.9. If the hypotheses of Lemma 3.4 and Theorem 3.6 are fulfilled,
then there exist functions {,(t) € C[0, c0) N C*'(0, ) (i = 1,2) such that
SN, $A(D 7, 8(0) = —a, $(0) = aand

Plu] = {(x 1) € G[§, (1) < x < § (1))
If |o,(x, 0)| L=(rry < 0, then §; € C%0, ) fori =1, 2.

PROOF. Let I, denote the open set P[u] N {t = 7} where 7 € (0, ) and let
(X1, T),(x3, 7) € I,. We will first show that I, is an interval. Because P, [u] =
Pluln {t < 7} is connected (Theorem 3.8) it follows that there exist
continuous arcs B, and B,, connecting (x,, 7) and (x,, 7) to the interval
(a;, ay) lying on {¢ = 0}, and these arcs must lie in P,[«] except at the initial
and terminal points. Indeed, this is easily seen by first connecting points
(x*, ) (i = 1, 2) to (a,, a,) where 7* < 7 and (x*, 7*) is sufficiently close to
(x;, 7) (i = 1, 2). But then there clearly exists a continuous arc B8 lying in
P,[u] U (a,, ay) connecting (x,, 7) to (x,, 7). Since B is continuous it follows
that for any x € (x,, x,) there must be a point (x, #) on B for some
1, € [0, 7). But since w(x, 7)) > 0, Lemma 3.4 implies that w(x, ) > 0 and
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therefore that (x, 7) € I,. It follows from the arbitrariness of x, x,, and x,
that 7, is an interval which we shall denote by (§,(7), §,(7)).

As an obvious consequence of Lemma 3.4 it follows that {,(f)\ and
$2(9) ~. In order to establish the Lipschitz continuity of §;(¢) (i = 1, 2) let ¢,
and ¢, be arbitrary nonnegative distinct real numbers. Without loss of
generality we can assume that 0 < ¢, < ¢, < oo. Let u*(x, ) denote the
solution of the Cauchy problem for the porous medium equation on the half
plane R' X (¢,, o0) with initial data given by u*(x, t,) = u(x, t;). Theorem
3.1 implies that u(x, £) < u*(x, ) for (x, f) € R' X (t,, ). Theorem 6.1 of
[15] and Theorem 3.6 then imply that

@) =L)< C(t—1t) fort >t
where C is a positive constant depending on ¢, unless |v.(x, 0)],« < o0.
Using the monotonicity of {, we then have:
0< &) —6H(M)<C(k— 1)
or
[$2(22) — & ()| < Clt, — ).

The Lipschitz continuity of {,(#) follows similarly, and the fact that §,(0) =
— a and {,(0) = a is an easy consequence of Theorem 3.2 and Lemma 3.4.

COROLLARY 3.10. If p(u) = u* and y(u) = cu® where p. > 1 and ¢ > 0, then
the conclusions of Theorem 3.8 are valid if v > 0 and the conclusions of
Theorem 3.9 hold if v > 1.

4. A borderline case. In this section we examine the Cauchy problem (2.13),
(2.9) with p = ». The cases » > p and » < p were considered in [8] and it was
there proved that the support is localized in space if » < p and that it is not if
v > U

During the typing of this manuscript the author received from Robert
Kershner [22] a copy of his doctoral dissertation in which, in addition to
several other interesting results, it is proved that P[u] cannot be bounded
when p = ». In fact, Kershner proves that the support must grow faster than
some power of In(ln ). In Theorem 4.1 below we obtain the improved
estimate |{(#)] > 8,VIn¢ and provide a (sharp) upper estimate as well.

THEOREM 4.1. If v = p > 1, then there exist constants 0,, 8, > 0 such that
0,Vint <|§,(1)| < 02V/¥+D (i =1,2)
fort > 1.

Proor. The right inequality is an easy consequence of Lemma 3.1 and
Theorem 9.2 of [15]. Equation (2.21) now becomes

o, =(p— Doo, + vf — c*v? 4.1)
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where ¢* = ¢(p — 1)>)/p > 0. Our strategy is to show that some transfor-
mation of an explicit solution of the porous medium equation satisfies an
appropriate parabolic inequality so that the maximum principle can be used
to show that this transformed solution, whose support grows no slower than
Vin ¢, is dominated by 8(u) given by (2.14) and (2.20). Now we shall define
this comparison function which we will call v(x, 7). Let v(x, t) be given by

o(x, 1) = s(tyn(x, g(s(t))) onG 42)
where
n(x, 1) = no(Lx, L¥) on G, (4.3)
no(%, £) = ﬁ)\""(t){l ~ xA2(1)}" onG, (4.4)
A(?) = D(t + DI fors >0, (4.5)
2w+ 1)\ D

D—(T—l—-) >0, L—g—]. (46)

The constants §,, £, > 0 are chosen so that
8(u(x,0)) > &X1-¢,61(x) onR, @7

where x is the characteristic function. The functions s and g will be specified
later. We remark that the function ny(x, 7) is due to Barenblatt [4], [S] (see
also [15]), and that n satisfies

o= (1 — Dmy +
whenever n > 0.
Now we shall specify the functions s and g. First, let £ denote the
nonlinear operator given by

Lz =(p— zz,, + 22— c*z* — ¢, 4.8)
(see (4.1)). Then, from (4.2) and (4.8) we get

Po = (s — s'g’)m, —[s'n + c*s™?]
where the arguments of s, g, and 7 are ¢, s(¢) and (x, g(s(¢))), respectively. In

order to have £v > 0 whenever v > 0 we shall require that s and g be
positive and satisfy the conditions:

(d/dt)g(s(?)) = s(t) fort >0, (@)
- 57X ()5’ (1) > c*n(x,g(s(r))) forz>0. (ii)

Since it is easily seen that n(x, g(s(?))) < 7(0, g(s(9)) for all (x,?) € G,
condition (ii) can be replaced by the condition

— s2(0)5'(1) = (1 + Li%(s())" TP (ii)
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where we have used equations (4.3) and (4.4) and when

LR
cz=c‘( D u). 49)

We now define the function g(w) by
(1+p)/2

— 2
1+L2g(w)=[——2—L—-(ln ﬁ)+1 forw >0 (4.10)

e (1+ p) So
and we define the function s(7) to be the solution of the initial value problem

212 a-p/2
s = ‘—(mi)+1 fort>0 (411
2[ o(l+p)\ s @10
with initial condition
-1
5(0) = s = ( -“T )gzm-l 4.12)

(see (4.6), (4.7)). It is not difficult to verify formally that conditions (i) and
(ii)’ above are satisfied by our choice of the functions g and s.

We claim that a positive solution s(¢) of (4.11), (4.12) exists for all ¢ > 0,
and that s strictly decreases to zero as ¢ — o0. Indeed, local existence and
uniqueness, for small ¢ > 0, is standard, and monotonicity is obvious from
equation (4.11). To see that s cannot vanish for finite values of ¢ we observe
that equation (4.11) implies that

s(t) = 5o exp[ - fo ‘&S(®)E®) d£} (4.13)

where
(1-p)/2

E(®) =[ —2L° (m @) ) +1 (4.14)

(1 +p) So

The nonvanishing of s then follows from the boundedness of E and equation
(4.13). From this observation, the monotonicity of s, and equation (4.11) it is
obvious that s decreases to zero as ¢ approaches infinity.

We have thus shown that a unique positive solution of (4.11), (4.12) exists
and that

s(1) <0 and s(¢) >0 fort>0 (4.15)
and
lim s(¢) = 0. (4.16)
1—>00

Since conditions (i) and (ii)’ hold, we have also established that
Lo >0 wheno >0. (4.17)
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Equations (4.2)4.5) imply that v(x, #) > 0 iff |x| < §(¢) where

¢ = % (1 + L%(s(9))" "™ fort >0, (4.18)
Thus (4.17) can be restated as
o >0 if [x|<{(f)and ¢ > 0. (4.19)

We will now show that v(x, £) < 8 (u(x, £)) = v¥(x, ?) in G. Let {w,} be
the decreasing sequence of smooth positive functions satisfying (2.23)+2.25)
and converging to ¢(u). Let 0" = (8 o ®)(w"). Then the functions v” satisfy
the equation

Lo" =0 inG,. (4.20)

For arbitrary T > 0, let D; be the domain D; = {(x, #)| |x| < {(¢) and
0 < ¢ < T}. Henceforth we assume that n is large enough so that D, C G,.
It is easy to show that (4.19) and (4.20) imply that the function P" = v" — v
satisfies the inequality

(r = Do"PL + (v + v )P; — f(x, )P" — P <0 (4.21)
in D, where

f(x, ) = c*(v"(x, 1) + o(x, 1)) — (. — Do, (x,1).
Since it is easily verified that d%),/3x2? < 0 (see (4.4)) it follows that v, < 0
and that f(x,7) > 0 in D;. Because v” >0 and v = 0 when |x| = { () it
follows that P" > 0 on the lateral boundary of D;. Equation (4.10) implies
that g(s(0)) = 0 and thus by equations (4.2)(4.4) we have that

o(%,0) = sy &

so that, by equations (4.6), (4.7) and (4.12) we have
n

o(x, 0) < 5p —— ] D'"r=¢,  x ER], (4.22)
and
o(x,0)=0 for|x|> D/L =¢,. (4.23)
Hence equation (4.7) yields the inequalities
v(x,0) < v*(x,0) < v"(x,0) forx € (—n,n). (4.29)

Applying the maximum principle we see from (4.21) and the above

observations that P” > 0 in D;. Letting n approach infinity we see that
v* > v in Dy for arbitrary T > 0 and therefore that

v*¥(x, 1) > o(x, 1) for |x|< {(¢), t>0. (4.25)

We shall now obtain a lower bound for { (f) as t — 0. Equations (4.10) and
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(4.18) together yield
1/2
_ D -2 L2 S(t )
s0- 2| 5+
or that
1/2
() > Const[ —ln( s )] fort > 0. (4.26)
[]
Let
s(1)
£t) = —In = fort > 0. (4.27)
[\]
Equation (4.11) implies that the function £ satisfies
¢ = Be~t0(At + )P/ fort >0, (4.28)

where B = syc, and A = 2L%/(c,(1 + p)). By (4.14) and (4.27) we have that
¢ > 0 and that &(¢) » o0 as t — co. Hence there exists a positive constant T*
such that &¢® > [§(1))*~ /2 when ¢ > T*. Thus we obtain from equation
(4.28) the inequality

g >we % fort> T* (4.29)
where w = ¢,50(4 + 1/&T*))* ~¥/? and this immediately implies that
&1r) > In(r — T*) + 1 In[20] (4.30)

for t > T*. The result now follows for ¢t > T* from (4.26) and (4.30). The
result then follows for ¢ > 1 by redefining #,, if necessary, so that
6, < $,0)/VinT*.

5. The growth of the interface as 1 — co. In this section the functions o and
k are again given by equations (2.17) and (2.18) and u(x, f) is a weak solution
of (2.1), (2.9).

THEOREM 5.1. Suppose that for some constants c* >0, ¢ >0, p > 1 and
2< B< 2u/(pn — 1) such that
o(s) K(p—1)s for0<s<e 5.1
and
k(s) < c*s? for0<s<e. (5.2)

Then there exist positive constants 0,, depending on p. and B, and 0, depending
on p. such that

glt((r—»)/(v—l))ﬂ < |§i(‘)| < 02,1/2 (i=12) (5:3)
holds for all t > 1, where v = (p — DB — p + 2.
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If @(u) = u* then we can replace t'/2 by t'/0+# in (5.3).

ProOF. The right inequality of (5.3) follows directly from Theorem 3.2.
Since we shall prove the left inequality by the same technique used to prove
Theorem 4.1, we will only sketch the proof. By Theorem 4 of [8], we may
assume without loss of generality that

o(x, 1) =0(u(x, 1)) <e/2 inG (54)

where ¢ is the constant occurring in (5.1) and (5.2). Now let ¢ be given by the
condition

p-1)*
e 221Y 59
As in the proof of Theorem 4.1 it is possible to show that
o(x, 1) < o(x, 1) for(x, 1) €G, (5:6)
where
o(x, ) = s()n(x, g(s(?))) inG, (5.7
and where

g(w) = % {[48(w 2 -5 +1]"° =1} forw>0, (58)

$(1) = —esf[a8(s() ™" = s378) + 1], (59)

5(0) = s, (5.10)
where s, and L are suitably chosen positive constants and where c, is given by
(4.9), n is given by (4.3)(4.6), § =2 + p — »)/(1 + p) and 4, = L*/(c(B
— 2)). In carrying out the calculations, it is useful to observe that § < 0 and

that 1-1/6=(1-»)/Q2+p—»)<0. It is also useful to note that,
instead of (4.21), we now get the following inequality for P” = v — v" in D,

o(v")Pp, + (v, + Of)P! — c*oP + k(v") + (p — Do, P" — P
> (o(v") — (p — Do, (5.11)
Using (5.1), (5.2) and (5.4) and the fact that v, < 0 we get the inequality
o(0™)Pg, + qi(x, t)P] — q,(x,t)P" — P! > 0 in Dy, (5.12)
where
01(x, 1) = v,(x, 1) + 07 (x, 1)
and

@)= ~(k = Do, + c*ﬁfol(ov +(1-0)0m)" " ap.



BEHAVIOR OF THE SUPPORT OF SOLUTIONS 423

Because g¢,(x, f) is bounded, we can apply the maximum principle to the
function Q"(x, ) = e P"(x, t) for sufficiently large F > 0 and conclude
that inequality (5.6) is valid. From (5.9) and (5.10) one obtains the estimate

s(1) <[(o* = Deylt + 537717 fort >0 (5.13)

where / is a positive constant and where 0* = 8+ 2 — 8X1—-1/8) > B >
2. This estimate, together with (4.16) and (5.8)—(5.10) implies that fori = 1, 2
we have

&) > %P'/O—')[(O* - Deylt + s‘;-o‘](('—ll)/("—l))/z (5.14)
for ¢t > 0, where P > O is a constant, and this establishes the result.

REMARK 5.2. Theorem 9 of [8] gives conditions on ¢ and ¥ so that
[$;(f)] > 0 as ¢ — co. Although these conditions are not the same as
conditions (5.1) and (5.2) of this paper, and the proof is different, nevertheless
Theorem 9 of [8] shows that the interface grows faster than some power of ¢
where that power depends upon ¢ and y. In the special case ¢(#) = u* and
Y(u) = cu®, the left inequality of (5.3) can also be obtained by a careful
reading of the proof of Theorem 9 of [8].

COROLLARY 5.3. Suppose that the hypotheses of Theorem 5.1 hold with a
constant B € [2u/(p — 1), ). Then, for every e, > O there exist a constant 8,
depending on €, and a constant 0, such that

011(1/(l+l‘»—¢o<|§i(t)| < 0211/2 (i=12) (5.15)
Jor t > 1, and if p(u) = u", then,
0LV (O] < GV (=10 (516)

holds for t > 1.

PrOOF. Since we assume that (5.2) holds for some B > 2p/(p — 1), it
follows that it holds for each B € (2, 2p/(p — 1)). Since
B 2u/(p— D=rv p+2=1(v — w/(» — D21/(1 + p), the result
follows.
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