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THE BEHAVIOR OF THE SUPPORT OF SOLUTIONS OF

THE EQUATION OF NONLINEAR HEAT CONDUCTION WITH
ABSORPTION IN ONE DIMENSION

BY

BARRY F. KNERR

Abstract. We consider the Cauchy problem in one space dimension for a

nonlinear degenerate parabolic partial differential equation. The connec-

tedness of the support of the solution and estimates of the growth of the

support as t -* oo are established.

1. Introduction. In this paper we consider the parabolic Cauchy problem

"/ = !>(«)]„-*(")   in/?'x(0, oo), (1.1)

u(x,0) = uo(x)   inR\ (1.2)

where u0(x) is a bounded continuous nonnegative function whose support is a

bounded interval. The functions <p and \p are smooth nonnegative functions

satisfying (p(0) = <p'(0) = ^(0) = 0, and cp'(u), <p"(u), \P'(u) > 0 if u > 0. Thus

equation (1.1) is nonlinear and degenerates when u = 0. According to [8],

equation (1.1) occurs in the theory of nonlinear heat conduction with

absorption.

Existence and uniqueness of continuous bounded nonnegative solutions

possessing bounded weak derivatives 3<p(t/)/8x was established in [8].

If \p = 0 then (1.1) is called the porous medium equation and this equation

has been studied by many authors [1]—[5], [7]-[15], [17]-[21]. The special case

"< = («*)**" Cu> (1.3)

where C > 0, p > 1, and v > 0 has been studied in [9].

§2 is devoted to stating the assumptions about the functions <p and \p in

(1.1) and defining a useful transformation of the solution u. Some of our main

results for problem (1.1), (1.2) are given in §3. There we establish the

connectedness of the open set P[u] = {(x, t) G R2 X (0, oo)\u(x, t) > 0}.

We also prove that, under certain conditions on <¡p and \p, the open set

P[u] n [t = r) is an interval (^(t), f2(T)) f°r eacn T > 0, where the

functions f, belong to C°[0, oo) n C0,1(0, oo), f,|, and f2|. In the special case
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(1.3) the conditions on <p and xp are that p. > 1 and v > 1. It was proved in [8]

that P[u] is a bounded subset of R ' X (0, oo) for ¡i > 1 and 0 < v < 1.

It follows from results established in [9] that in the special case (1.3) the

functions f,(r) are bounded if 1 < v < p and unbounded if v > p. In §4 of

this paper we treat the borderline case v = p for equation (1.3). We prove

that the functions |?,-(t)| (/ = 1, 2) approach infinity faster than Vin t but

slower than V/1/2  as / —» oo.

In [15] it was shown that for the porous medium equation the interface

functions |Í,(t)| become infinite as / —* oo and growth estimates were derived.

For the special case

«< = (»")«

it was shown that |Í,(t)| -» oo like /1/(1+'1) as / -» oo. In view of the results of

[7], [8], and [9], the addition of the term -Cu" has a profound effect on the

growth of the interface curves for v G (0, /x). Indeed, for equation (1.3) with

0 < v < p. the interface curves are bounded. In §5 we derive growth estimates

as t -^ oo for the interface in the problem (1.1), (1.2) under conditions on <p

and \p which correspond to v > p. in the special case (1.3).

2. Preliminaries. Consider the parabolic equation

», =[<P(")]XX-H")   inG = RlX(0,oo). (2.1)

We assume throughout this paper that the following conditions are met by the

functions <p and $, and the inverse function of <p, denoted by 4>:

$(ü) G Ca[0, M]    for all M > 0       (0 < a < 1), (2.2)

<p(«) G Cl+a>[0,M] n C2+a'[m,M],   for all M > 0,

for all mG(0,M)       (0 < a, < 1), (2.3)

<pik)(u) > 0   for k = 0, 1, 2 when u > 0, (2.4)

<p(0) = 0   and   <p'(") > 0   for u > 0, (2.5)

r'/<*>'(*) \  . ^ . V'(*)    . „^
1      - \ ds< oo    and      sup    —-——  < oo, (2.6)

jol     í     / ,e(0,l)   <P(J)

>//(«) G C[0, M] n Ci+a*[m, M],   for all M > 0,

for all m G (0, M )       (0 < a2 < 1) (2.7)

,//(«) > 0   for u> 0,       ^(0) = °- (2-8)

In this paper we will consider the Cauchy problem for equation (2.1) with the

initial condition

u(x, 0) = u0(x)   for x G R '. (2.9)
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About u0 we assume that:

«o G C0 (/?'), (2.10)

u0(x) > 0 if \x\ < a   and   u0(x) = 0 if |x| > a > 0, (2.11)

V(«o) G C01 (/?'). (2.12)

Because of the translation invariance of equation (2.1), assumption (2.11)

is, of course, equivalent to the assumption that the support of u0 consists

precisely of a bounded interval. We remark that assumptions (2.2)-(2.8) are

valid if we take <jp(w) = u11 and \j/(u) = cu" where c > 0, v > 0 and p > 1.

With this choice of functions <p and ip, equation (2.1) becomes

ut = (k*)^- cu"   in G = Rl X (0, oo). (2.13)

It will sometimes be advantageous to change variables in (2.1) through the

transformation

v(x, t) = 9(u(x,t))   in G (2.14)

where

-s;(m*(,)=Jo\~rr{' (2-15)
This transformation takes equation (2.1) into the equation

vt = a(v)vxx + v2 — k(v)   in G, (2.16)

where
o(v) = <p'(u), (2.17)

k(v) = *(«)(9'(«)/k), (2.18)

u = ff~i(v). (2.19)

With the special functions <p(u) = mm and \p(u) = cu", equation (2.14)

becomes

v(x,t) = (p/(p-\))u^(x,t) (2.20)

and equation (2.13) becomes

v, = (p-l)wxx + v2x-c*vß (2.21)

where ß = (v + p - 2)/(p - 1) and c* = c/i((/i - \)/p)ß.

Kalashnikov [8] defines a weak solution u(x, t) of the Cauchy problem

(2.1), (2.9) as follows: a bounded function u(x, t) > 0, satisfying a Holder

condition, is said to be a weak solution of (2.1), (2.9) if u satisfies equation

(2.9) and if the integral identity

f" r [*(«)/„ + »/, - «K«)/] <**«*- pv«k| - r'v(«)/x *
'o     -^0 -^o

= 0

(2.22)
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holds whenever 0 < t0 < tx and x0 < xx and for all / G Cl(G) such that

fxx G C(G) and / = 0 for x = x0, xx. If \f/ = 0 then equation (2.1) is called

the porous medium equation, and our notion of a weak solution agrees with

the definition given in [19]. Kalashnikov [8] proved that the unique weak

solution u(x, t) of (2.1), (2.9) is, in fact, given by <J>(w) (recall that í> = <p_1)

where w is the pointwise limit in G of a monotone decreasing sequence

{wn(x, t)} of positive functions in C(Gn) n C21(Gn) which satisfy the

equation

(wn)xx-$(wn)(wn)-t(<i>(wn)) = 0   in Gn =(-«,«) X(0,«)    (2.23)

and are bounded uniformly with respect to « as follows:

supw„(x, /) < C,        sup
g„ G„ £*"(*•')

< C. (2.24)

Also, the weak solution u(x, t) is smooth in the open set [u > 0} (see [8]).

3. The interface. The following lemma is useful for comparing solutions of

(2.1) with solutions of the porous medium equation (equation (2.1) with

\(/ = 0). The proof is similar to the proofs of comparison theorems in [8], [18],

[22]. We include a proof here for completeness.

Lemma 3.1. Suppose that a function u(x, t) is a weak solution of the Cauchy

problem

«< * (*(«))«.- *(")    inG> (31)

u(x, 0) = u0(x)   inR\ (3.2)

and suppose that another function u~(x, t) is a solution of the Cauchy problem

ü, = (9(ü))xx   in G, (3.3)

ü(x, 0) = ü0(x)   inR\ (3.4)

where

ü0(x) > u0(x)   inR1. (3.5)

Then ü > u in G.

Proof. Recalling the discussion surrounding equation (2.23), we see_that

there exist sequences {wn} and {w"} of positive functions in C(Gn) n

C2,l(G„) which converge respectively to <p(i7) and <p(t/) in G, and such that

vv" > w" on the parabolic boundary of Gn. In fact, the boundary data can be

chosen so that w" G C21(G„) (see [16]). Letting Ê denote the nonlinear

operator given by £z = zxx — ̂ '(z)z, we see, from equation (2.23) that

£(w") > 0 in G„ and t(wn) = 0 in G„.
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One then easily deduces that the inequality

P;x - a"(x, t)P" - &(wn(x, t))P," > 0   in G" (3.6)

holds for P" = w" - w" and

a"(x, t) = w,"(x, t) Çq>"(9w~"(x, t) + (1 - 9)w"(x, t)) d9.      (3.7)
•'o

The function a"(x, t) is bounded in Gn, due to (2.3) and the boundedness of

w" in G„, and, by virtue of (2.4) and (2.5), the coefficient of P," in (3.6) is

negative and bounded away from zero. Set Q" = e~a'P" where a is a positive

constant which we will choose sufficiently large. From inequality (3.6) we get

the inequality

an(x,t)Qx"x + ßn(x,t)Q»-Qt">0   in Gn (3.8)

where a„(x, t) = (&(w"(x, /)))"' and where ß„(x, t) = - a"(x, t)/an(x, t)

- a. Thus, for sufficiently large a > 0 we have the inequality

ßn(x,t}<0   inG„. (3.9)

Since Q" < 0 on the parabolic boundary of G„, it follows from the maximum

principle (see, for example, [6]) that Q" < 0 in G" and therefore that

wn(x,t) < w"(x, t)   inCv (3.10)

Letting « -» oo produces the desired conclusion.

Now recall that ( — a, a) is the support of u0 and let N = sup 9 (u0). Then,

Theorem 8.4 and Corollary 9.3 [15] and Lemma 3.1 together give the

following result.

Theorem 3.2. // u(x, t) is a weak solution of (2.1), (2.9), then u(x, t) = 0 if

t > 0 and \x\> a + 2VÑt . If u is a weak solution of (2.13), (2.9) then
u(x, t) = 0 if t > 1 and \x\ > 9tx/(X+li) where 9 > 0 is a constant depending on

u0 and p.

If, for arbitrary constants r > 0 we apply Theorem 3.2 to the function

ü(x, t) = u(x, t + r), it is easy to see that if the support of u(-, t) is mono-

tone increasing in /, then the boundary of the support consists of Holder

continuous monotone functions of t (exponent 5). Since a better result is

forthcoming (see Theorem 3.9) we shall not prove this.

Another immediate consequence of Lemma 3.1 is the following. Recall that

v = 9(u) (see (2.14)). In this theorem we do not necessarily assume that the

support of u is the interval ( — a, a).

Theorem 3.3. If for some x0 G R ',

v(x, 0) < b(x — x0)2   for \x — x0\ < 8

for some constants b, 8 > 0, then there exists a constant t > 0 such that

u(xq, t) = Ofor 0 < t < t.
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Proof. Theorem 8.2 of [15] establishes this result in the case x0 = ± a.

However, a careful reading of that proof shows that the result is valid for any

x0 G R '. Now use Lemma 3.1.

Let *(j) = >K<ï>(.s)) and let/(j) = V(s)/(s<i>'(s)).

Lemma 3.4. Suppose f(s) G L°°(0, 1). If (x0, t) G P[u] and if u(xq, t) > 0,

then u(x0, t) > Ofor all t > r.

Proof. Since / is bounded, it follows that f¡)(^'(s)/'ir(s)) ds = oo. It is

possible, therefore, to define a function q(t) by the equation

• i   V(s)
ds= t   fort>0. (3.11)

jqU)

We also define a function z(x, t) by

z(x, t) = yq(t)e~x' sin(/?(;c - x0) + -rr/2) (3.12)

where y, À and ß are positive constants which will be specified later.

Let R denote the rectangle

(^-JL.Xo+JLjxfri.)

and let T denote its lower and lateral boundary. Also let £ denote the

nonlinear operator given by

£r, = Vxx - V(V)Vt - *(t,) (3.13)

which occurred previously in equation (2.23). It can easily be checked that

£z = z[{\V{z) - ß2) + V(z)(f(q)-f(z))]. (3.14)

Because of (2.4), we know that í>" < 0 and that 4>'(z) > <I>'(SUP z) > ^'(v) >

0. We shall now choose our parameters ß, X and y so that £z > 0 in R. First

choose ß so large that

w(x, t) > 0   for x0 - y= < x < ^:0 + Yß ■ (3-15)

This is possible because, by hypothesis, w is continuous, and pointwise at

(x0, t). Next, choose y < 1 so small that

z(x, t) < y < w(x, r)    for x G  x0 - j~ , x0 + j=   .        (3.16)

Now, since / is bounded on (0, 1) and i"'(z) is bounded below by a positive

constant independent of X, we can clearly choose X so large that

£z>0   in R/T. (3.17)

Indeed, by equation (3.14) we have

£z = z[(±\V(z) - ß2) + tf(z)(¿A +f(q) -f(z))]
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and we can first choose X sufficiently large that the first term on the right is

nonnegative in R, and then choose X ¿till larger, if necessary, so that the

second term is nonnegative in R.

Now, using the fact that z(x, t) = 0 if x = x0 ± ir/2ß we have the relation

z < w   onT. (3.18)

Theorem 5 [8] then implies that

z < w   inR (3.19)

and therefore that

u(x0, t) > 0   forr < / < /,. (3.20)

The result then follows from the arbitrariness of tx.

The comparison function z(x, t) defined by equation (3.12), and the main

idea in the above proof are both due to Kalashnikov [8].

Remark 3.5. If <p(s) = s» and xp(s) = cs" then f(s) = cps^-W», and

Lemma 3.4 is applicable if v > 1 and ju > 0. Since we are only interested in

it > 1 (see the paragraph containing equation (2.13)) the essential restriction

here is that v > \. Theorem 10 of [8] shows that Lemma 3.4 fails if v < 1.

Theorem 3.6. If for all s G (0, sup v) we have k'(s) > 0 (where k is defined

by equation (2.18)), then, for the function v(x, t) defined by equation (2.14), the

following estimate holds:

9
dx

< C(t)   onP[u] n {f > t}.

If sup\Cd/ dx)v(x, 0)| < oo, then

3
dx

< C   onP[u]

where C depends on sup\(d/dx)v(x, 0)|.

Proof. This is a straightforward generalization of Aronson's proof of this

very useful result in the case \p = 0 (see [3]). In fact, if we merely follow

Aronson's argument without change, we find that the only difference is that

an extra term, ( — k') times a nonnegative factor, is acquired in Aronson's

inequalities, and this term can be deleted on the basis of its sign alone.

Remark 3.7. If <p(u) = u* and \¡/(u) = cu", then k(s) = c*sß where ß = (v

+ p — 2)/(p — 1) (see equation (2.21)). Thus \vx\ is bounded if v > 2 — p

and p > 1. Kalashnikov [9], using the same technique, proved this and a

better result in this special case, namely, that |(8/3x)t/°| is bounded, where

o = (p — v)/2 if v < 2 — p.

Recall that P[u] = {(x, t) G G\u(x, t) > 0} and suppose that the

functions <p and xj/ satisfy conditions (2.2)-(2.8). Then we have the following

theorem.
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Theorem 3.8. For any constant 0 < r < oo the open set PT[u] = P[u] n {0

< t < t} is connected. Also for t < oo, PT[u] is bounded.

Proof. Let t G (0, oo) and suppose that PT[u] contains two components Qx

and Q2. First we shall prove that Q¡ c\ {: = 0} is nonempty for /' = 1, 2.

Suppose, therefore, that g, n {f = 0} =0 for / = 1 or for /' = 2. Since Q¡ is

compact, by Theorem 3.2, it follows that the function w(xL t) = <p(u(x, t))

must attain a positive maximum at some point (xq, t0) G Q¡. However, the

function w(x, t) satisfies the parabolic inequality (i/®'(w>))wxx — w, > 0 in

Q¡, so, by the maximum principle it follows that (x0, t0) G 3g(. There are no

boundary points of Q¡ on the hne {/ = 0} by hypothesis, so therefore t0 > 0.

Moreover, since w(x0, t0) > 0 it follows that there is a ball B centered at

(x0, tQ) and contained in P[u] so that B* = B n {t < t0) C Q¡. Applying the

maximum principle again, we derive another contradiction. This proves that

ßn {/ = O}^0for/ = 1,2.
We now prove that 3g, n (ax, a^ is nonempty for /' = 1, 2. If 3Q, (/ = 1, 2)

intersects the line {/ = 0} only at one or both of the points [ax, a2), then we

can derive the same contradiction derived above with the aid of the maxi-

mum principle.

Thus 3g, n (ax, a2) ¥=0 for i = 1, 2. But then, because u G C(G) and

because each Q¡ is maximal, it follows that (ax, a^ c3ß, for i = 1,2. But

then, again by maximality, Qx = Q2. This proves that PT[u] is connected for

each t G (0, oo). Thus P[u] is also connected. The final assertion follows

from Theorem 3.2.

Theorem 3.9. If the hypotheses of Lemma 3.4 and Theorem 3.6 are fulfilled,

then there exist functions ¡¡,(t) G C[0, oo) n C0,1(0, oo) (/ = 1, 2) such that

W0 \. W0 /•, W0) = - a, £2(0) = a and

P[u] = {(x,t)GG\tx(t)<x<t2(t)}.

If \vx(x, 0)\L~(R¡) < oo, then £, G C01[0, oo)/or i = 1, 2.

Proof. Let IT denote the open set P[u] n {/ = t} where t G (0, oo) and let

(xx, t),(x2, t) G Ir. We will first show that Ir is an interval. Because PT[u] s

P[u] n [t < t) is connected (Theorem 3.8) it follows that there exist

continuous arcs ßx and ß2, connecting (xx, t) and (x2, t) to the interval

(ax, a2) lying on {/ = 0}, and these arcs must he in PT[u] except at the initial

and terminal points. Indeed, this is easily seen by first connecting points

(*?, t*) (i = 1, 2) to (ax, a¿) where t* < r and (xf, t*) is sufficiently close to

(x¡, t) (/' = 1, 2). But then there clearly exists a continuous arc ß lying in

PT[u] u (ax, ûj) connecting (jc,, t) to (x2, t). Since ß is continuous it follows

that for any x G(xx,x2) there must be a point (x, t¿) on ß for some

t0 G [ 0, t). But since w(x, t0) > 0, Lemma 3.4 implies that w(x, t) > 0 and
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therefore that (x, r) G Ir. It follows from the arbitrariness of x, xx, and x2

that IT is an interval which we shall denote by (f ,(t), £2(t)).

As an obvious consequence of Lemma 3.4 it follows that Çx(t)\ and

WO^ • In order to establish the Lipschitz continuity of f,(i) (i = 1, 2) let /,

and t2 be arbitrary nonnegative distinct real numbers. Without loss of

generality we can assume that 0 < tx < t2 < oo. Let u*(x, t) denote the

solution of the Cauchy problem for the porous medium equation on the half

plane Rl X (tx, oo) with initial data given by u*(x, tx) = u(x, tx). Theorem

3.1 implies that u(x, t) < u*(x, t) for (x, t) G Rl X (r,, oo). Theorem 6.1 of

[15] and Theorem 3.6 then imply that

fiW-fcCi) < C(t- tx)   for; > tx

where C is a positive constant depending on /, unless \vx(x, 0)|L«, < oo.

Using the monotonicity of f2 we then have:

0 < fcÓa) - &(/,) < C(t2-tx)
or

¡Mi) - h(*i)\ < c\t2-tx\.

The Lipschitz continuity of f,(r) follows similarly, and the fact that f,(0) =

— a and f2(0) = a is an easy consequence of Theorem 3.2 and Lemma 3.4.

Corollary 3.10. If<p(u) = u* and\\i(u) = cu" where p > 1 andc > 0, then

the conclusions of Theorem 3.8 are valid if v > 0 and the conclusions of

Theorem 3.9 hold if v > 1.

4. A borderline case. In this section we examine the Cauchy problem (2.13),

(2.9) with p = v. The cases v > p and v < p were considered in [8] and it was

there proved that the support is localized in space if v < p and that it is not if

v > p.

During the typing of this manuscript the author received from Robert

Kershner [22] a copy of his doctoral dissertation in which, in addition to

several other interesting results, it is proved that P[u] cannot be bounded

when p = v. In fact, Kershner proves that the support must grow faster than

some power of ln(ln i). In Theorem 4.1 below we obtain the improved

estimate |f,(0l > #,Vln / and provide a (sharp) upper estimate as well.

Theorem 4.1. Ifv = p> 1, then there exist constants 9X, 92 > 0 such that

9xVhTt <|£,.(O|<02'1/Ol+1)     0 = 1.2)

for t > 1.

Proof. The right inequality is an easy consequence of Lemma 3.1 and

Theorem 9.2 of [15]. Equation (2.21) now becomes

v, = (p- l)wxx + v2 - c*v2 (4.1)
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where c* = c(p - \)2/p > 0. Our strategy is to show that some transfor-

mation of an explicit solution of the porous medium equation satisfies an

appropriate parabolic inequality so that the maximum principle can be used

to show that this transformed solution, whose support grows no slower than

Vln / , is dominated by 9(u) given by (2.14) and (2.20). Now we shall define

this comparison function which we will call v(x, t). Let v(x, t) be given by

v(x, t) = s(t)r,(x, g(s(t)))   on G (4.2)

where

y(x, t) = i\0(Lx, L2t)   on G, (4.3)

io(*,0 = TirTx'"MW{1-*2x"2(')}+ on^'          <4-4>
p     i

X(t) = D(t + l)1/<1+">   fori>0, (4.5)

i/O+m)

.-(^a   ">o, L « # . (4.6)
I

The constants £,, £2 > 0 are chosen so that

9(u(x,0))>£2xi-il¿¡](x)   on i?1, (4.7)

where x is the characteristic function. The functions s and g will be specified

later. We remark that the function i]0(x, t) is due to Barenblatt [4], [5] (see

also [15]), and that tj satisfies

If - (i* - 1)^^ + »¿

whenever tj > 0.

Now we shall specify the functions s and g. First, let £  denote the

nonlinear operator given by

£z = (ju-l)zzxjc + z2-c*z2-z, (4.8)

(see (4.1)). Then, from (4.2) and (4.8) we get

£ü = (s — s'g')sr¡í - [j'tj + c*s2T)2]

where the arguments of s, g, and tj are t, s(t) and (x, g(s(t))), respectively. In

order to have £u > 0 whenever v > 0 we shall require that s and g be

positive and satisfy the conditions:

(d/dt)g(s(t)) = s(t)   fort>0, (i)

- s-2(t)s'(t) > c*7,(x, g(s(t)))   for t > 0. (ii)

Since it is easily seen that i\(x, g(s(t))) < t/(0, g(s(t))) for all (x, t) G G,

condition (ii) can be replaced by the condition

-s-2(t)s'(t) = c2(l + L2g(s(t))f-'im+'í) (Ü)
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where we have used equations (4.3) and (4.4) and when

We now define the function g(w) by

(4.9)

1 + L2g(w) =

U + fO/2

,}L   , (in - W 1 for w > 0    (4.10)
c2(l + p)\      s0) v      >

and we define the function s(t) to be the solution of the initial value problem

,0-10/2

- S   's
-V — -2L2

c2(l + p) H) +1

with initial condition

f(o)=*°=(JV!")*2Í) e-i

fori>0      (4.11)

(4.12)

(see (4.6), (4.7)). It is not difficult to verify formally that conditions (i) and

(ii)' above are satisfied by our choice of the functions g and s.

We claim that a positive solution s(t) of (4.11), (4.12) exists for all t > 0,

and that s strictly decreases to zero as t -» oo. Indeed, local existence and

uniqueness, for small t > 0, is standard, and monotonicity is obvious from

equation (4.11). To see that j cannot vanish for finite values of t we observe

that equation (4.11) implies that

s(t) = s0 expi - £C3s(QE(Q dA (4.13)

where

£«)- -Ai*—)
c2(l + p) \      s0   )

+ 1

0-(0/2

(4.14)

The nonvanishing of s then follows from the boundedness of E and equation

(4.13). From this observation, the monotonicity of s, and equation (4.11) it is

obvious that 5 decreases to zero as t approaches infinity.

We have thus shown that a unique positive solution of (4.11), (4.12) exists

and that

and

s'(t) < 0   and   s(t) > 0   for t > 0

lim s(t) = 0.

Since conditions (i) and (ii)' hold, we have also established that

£u > 0   when v > 0.

(4.15)

(4.16)

(4.17)
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Equations (4.2)-(4.5) imply that v(x, t) > 0 iff |x| < f (0 where

f (Í) - £ (1 + L2g(J(/))),/(1+")   for r > 0. (4.18)

Thus (4.17) can be restated as

£u > 0   if |x| < f(f) and r > 0. (4.19)

We will now show that v(x, t) < 9(u(x, t)) s v*(x, t) in G. Let {w„} be

the decreasing sequence of smooth positive functions satisfying (2.23)-(2.25)

and converging to <p(u). Let v" = (9 ° &)(w"). Then the functions v" satisfy

the equation

tv" = 0   in Gn. (4.20)

For arbitrary F > 0, let DT be the domain DT = {(x, t)\ \x\ < £(/) and

0 < f < F}. Henceforth we assume that « is large enough so that DT c G„.

It is easy to show that (4.19) and (4.20) imply that the function P" = v" — v

satisfies the inequality

( p - l)v"Px"x + (v"x + vx)Pxn - f(x, t)P" - P? < 0 (4.21)

in DT, where

f(x, t) = c*(vn(x, t) + v(x, t))-(p- l)vxx(x, t).

Since it is easily verified that 3 \Q/ dx2 < 0 (see (4.4)) it follows that vxx < 0

and that f(x, t) > 0 in DT. Because v" > 0 and v = 0 when |jc| = f (t) it

follows that P" > 0 on the lateral boundary of DT. Equation (4.10) implies

that g(s(0)) = 0 and thus by equations (4.2)-(4.4) we have that

+

v(x,0) = so(^-J)D^[f-^)

so that, by equations (4.6), (4.7) and (4.12) we have

v(x, 0) < s0 —^-y D'-" = i2,       xGR\ (4.22)

and

v(x, 0) = 0   for |jc| > D/L = {,. (4.23)

Hence equation (4.7) yields the inequalities

v(x, 0) < v*(x, 0) < v"(x, 0)    for x G (- n, n). (4.24)

Applying the maximum principle we see from (4.21) and the above

observations that P" > 0 in DT. Letting « approach infinity we see that

v* > v in DT for arbitrary T > 0 and therefore that

v*(x, t) > v(x, t)   for |jc| < f (t),   t > 0. (4.25)

We shall now obtain a lower bound for f (t) as / —> oo. Equations (4.10) and
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(4.18) together yield

,1/2

w-f -2L2    J '(0 \  ,  x
c2(l + ii)     \   s0   I

or that

,1/2

Let

f (/) > Const [ - ln( - \ j        for / > 0. (4.26)

|(f) = -ml ~ J    for t > 0. (4.27)

Equation (4.11) implies that the function | satisfies

ç = Be-(i,\At + l)0"")/2   for t > 0, (4.28)

where B = j0c2 and A = 2L2/(c2(\ + p)). By (4.14) and (4.27) we have that

£ > 0 and that £(0/* °° as r -» oo. Hence there exists a positive constant T*

such that e£(,) > [£(i)](,1"l)/2 when / > T*. Thus we obtain from equation

(4.28) the inequality

f > we"21    fori > F* (4.29)

where w = c2j0(/I + l/|(r*))(1_,l)/2 and this immediately implies that

KO > j ln(í - F*) + î hi[2W] (4.30)

for t > T*. The result now follows for t > T* from (4.26) and (4.30). The

result then follows for t > \ by redefining 9X, if necessary, so that

0, < ^(OyVhTf^ .

5. The growth of the interface as t -> oo. In this section the functions a and

k are again given by equations (2.17) and (2.18) and u(x, t) is a weak solution

of (2.1), (2.9).

Theorem 5.1. Suppose that for some constants c* > 0, e > 0, p > 1 and

2 < ß < 2p/(p - \)such that

a(s) < (p - l)s   forO < s < e (5.1)

and

k(s) < c*sß   for 0 < s < e. (5.2)

77ie« there exist positive constants 9X, depending on p and ß, and 92 depending

on p such that

öi/((,-M)/(,-0)/2 K |fi.(,)| 4 02,./2       (/ m h 2) (5.3)

holds for all t > 1, where v = (p — l)ß — p + 2.
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If (p(u) = u* then we can replace r1/2 by i1/<1+'i> in (5.3).

Proof. The right inequality of (5.3) follows directly from Theorem 3.2.

Since we shall prove the left inequality by the same technique used to prove

Theorem 4.1, we will only sketch the proof. By Theorem 4 of [8], we may

assume without loss of generality that

v(x, t) = 9(u(x, t)) < e/2   in G (5.4)

where e is the constant occurring in (5.1) and (5.2). Now let c be given by the

condition

c* = Cil(A71)" (5"5)

As in the proof of Theorem 4.1 it is possible to show that

v(x, t) < v(x, t)   for (x, t) G G, (5.6)

where

v(x, t) = s(t)r,(x, g(s(t)))    in G, (5.7)

and where

g(») = j-2{[Ax8(w2-ß-s2-ß)+\]1/S-l}    forw>0,     (5.8)

s'(t) = -^[^(.(O2-" - ^o2-") + I]'"'75, (5-9)

s(0) = s0, (5.10)

where s0 and L are suitably chosen positive constants and where c2 is given by

(4.9), tj is given by (4.3H4.6), « = (2 + u - v)/(\ + p) and Ax = L2/(c2(ß

- 2)). In carrying out the calculations, it is useful to observe that 5 < 0 and

that 1 - 1/5 = (1 - v)/(2 + p - v) < 0. It is also useful to note that,

instead of (4.21), we now get the following inequality for P" = v — v" in DT:

o(v")P;x + (vx + vx")Px" - c*vß + k(v") + (p- \)vxxP" - P,"

> (o(v") - (p - \)v")vxx. (5.11)

Using (5.1), (5.2) and (5.4) and the fact that vxx < 0 we get the inequality

o(v")Px"x + qx(x, t)P; - q2(x, t)P" - P? > 0   in DT,        (5.12)

where

qi(x,t) = vx(x,t) + v;(x,t)

and

q2(x,t)= -(p- l)vxx + c*ß C(9v + (1 - 9)v")ß'1 dß.
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Because q2(x, t) is bounded, we can apply the maximum principle to the

function Q"(x, t) = e~F'P"(x, t) for sufficiently large F > 0 and conclude

that inequality (5.6) is valid. From (5.9) and (5.10) one obtains the estimate

s(t) <[(a* - \)c2lt + s10-"']1/(l~''')   for/ > 0 (5.13)

where / is a positive constant and where a* = ß + (2 — /í)(l — 1/5) > ß >

2. This estimate, together with (4.16) and (5.8)—(5.10) implies that for / = 1, 2

we have

fc(0 > yP1/(1-">[(a* - l)c2lt + ^-*]«'-">/<'-'»/2        (5.14)

for / > 0, where P > 0 is a constant, and this establishes the result.

Remark 5.2. Theorem 9 of [8] gives conditions on <p and \p so that

|£(0|-* °° as r->oo. Although these conditions are not the same as

conditions (5.1) and (5.2) of this paper, and the proof is different, nevertheless

Theorem 9 of [8] shows that the interface grows faster than some power of t

where that power depends upon <p and \p. In the special case <p(u) = wM and

\p(u) = cu", the left inequality of (5.3) can also be obtained by a careful

reading of the proof of Theorem 9 of [8].

Corollary 5.3. Suppose that the hypotheses of Theorem 5.1 hold with a

constant ß G [ 2p/( p — 1), oo). Then, for every e0 > 0 there exist a constant 9X

depending on e0 and a constant 92 such that

0,/(I/(I+"))-*»<|WO| < 02/'/2       (' = 1,2) (5.15)

for t > 1, andif<p(u) = u't, then,

0/,/(I + ',))-'»<|WO| < 02'1/(1 + Al)       (' = 1,2) (5.16)

holds for t > 1.

Proof. Since we assume that (5.2) holds for some ß > 2p/(p — 1), it

follows that it holds for each ß G (2, 2p/(p - 1)). Since

ß/<2p/(p - 1) => vsp + 2 =*\(v - p)/(v - 1)7-1/(1 + p), the result

follows.
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