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A CONSTRUCTION OF UNCOUNTABLE MANY

WEAK VON NEUMANN TRANSFORMATIONS

BY

KARL DAVID1

Abstract. We define weak von Neumann transformations and discuss some of

their properties, using several examples of countable classes of these transforma-

tions. Then we construct an uncountable class by the cutting-and-stacking method.

We show that each member of this class is ergodic and has zero entropy.

1. Introduction. Let (X, ®, m) be the closed-open unit interval X = [0, 1), with

% the Borel a-field and m Lebesgue measure. We denote by G(X) the group of all

one-to-one, measurable and nonsingular transformations of X onto itself, and let N

be the set of positive integers.

Definition 1.1. A measure-preserving transformation T G G(X) is called a weak

von Neumann transformation if, for each n G N, there exists a measurable partition

^„(T) = {£>?, £>2", . . . , D2"„} of X satisfying

(i)£>," = T~X(DX") and

(ii) A" = A" + I U A"++2»
for 1 < / < 2".

If in addition we have

(iii) the 0-field generated by {D G ty„(T)\n G N} equals $ (mod 0),

we say that T is a von Neumann transformation.

It is well known that any two von Neumann transformations are isomorphic.

The standard realization of such a transformation is

Example 1.1. For each n G N, let Qn = {Cx, C2, . . ., C2„) consist of the dyadic

closed-open subintervals of X of rank n, ordered from left to right. A transforma-

tion T: X -» X is defined by finding for any x G X the interval C" of minimum

rank containing x for which / ^ 2", and setting T(x) = x + 3/2"-1. This defines a

piecewise-linear measure-preserving transformation in G(X) which satisfies the

definition of a von Neumann transformation. Note that it linearly maps [0, 1/2) to

[1/2, 1), [1/2, 3/4) to [1/4, 1/2) and in general

[(2"-' - l)/2"-\ (2" - l)/2") to [1/2", 1/2"-'),

and thus is best depicted in cutting-and-stacking terms (see Example 6.4 in [1, p.

82]). When one considers its action on points of X in their binary expansion, it

becomes clear why it is often referred to as the "adding machine" transformation.

We however shall refer to it as the von Neumann-Kakutani transformation, or

simply as the VNK map.
-
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It is not difficult to show that the VNK map is ergodic and has zero entropy.

When we consider certain of its powers, we obtain examples of strictly weak von

Neumann transformations (again, weak VNK maps, for short).

Example 1.2. Let T be the VNK map. Then the transformation T2 is a weak

VNK map which is not ergodic; its nontrivial invariant sets are in fact [0, 1/2) and

[1/2, 1). It acts on each of these sets independently the way T acts on X. In

general, each T2" for n G N is a nonergodic weak VNK map whose invariant sets

are the dyadic intervals of rank n (and their unions), acting on each of these

intervals independently the way T does on X. As powers of T, they all still have

zero entropy.

A countable class of ergodic weak VNK maps can also be constructed. One way

is to take the independent cutting-and-stacking transformations discussed by

Friedman in [1, p. 89ff], and for which entropy computations are given by Shields

[2], whose terminology we follow here. Specifically, given n G N, by taking initial

configurations of uniform height 2 with 2" columns, we obtain an ergodic weak

VNK map with entropy \ log(2"). A simple modification of the cutting-and-stack-

ing pattern of Example 1.2, one which sufficiently "mixes" the columns at each

stage, should also result in a countable class of ergodic weak VNK maps, but this

time all of zero entropy. Thus countable classes of weak VNK maps with varying

properties are easily obtainable. The purpose of this paper is to show by explicit

construction that in fact an uncountable class exists. It is a remarkable fact that the

removal of only condition (iii) from Definition 1.1 should lead from essentially

only one possible example to uncountably many.

2. The construction.

Definition 2.1. Let ß be the set of all infinite sequences of zeros and ones. For

each « G ß, a weak VNK map Tu G G(X) is defined inductively as follows.

Suppose icn, n G N, is the «th entry of u. For the first stage, we define the action of

7^ via linear translation by

[0, 1/2) -»[1/2, 1)    if to, = 0,

and

[0, 1/4) -+[3/4, 1)       [2/4, 3/4) -»[1/4, 2/4)   if to, = 1.

Thus the configuration for Tu of height two has one column if to, = 0 and two

columns if to, = 1.

For the second stage, we continue the stacking procedure via the linear transla-

tions:

[2/4, 3/4) -»[1/4, 2/4)    if uxo>2 = 00,

[6/8, 7/8) -»[5/8, 6/8)       [2/8, 3/8) -»[ 1/8, 2/8)   if w,<o2 = 10,

[8/16, 9/16) -»[7/16, 8/16)        [14/16, 15/16) -»[1/16, 2/16)

[10/16, 11/16) -»[5/16, 6/16)       [12/16, 13/16) -»[3/16, 4/16)

if uxu2 = 01,
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[24/32, 25/32) ^[23/32, 24/32) [ 14/32, 15/32) -*[ 1/32, 2/32)

[26/32, 27/32) -*[21/32, 22/32) [ 12/32, 13/32) -»[3/32, 4/32)

[28/32, 29/32) -»[19/32, 20/32) [10/32, 11/32) -»[5/32, 6/32)

[30/32, 31/32) -*[ 17/32, 18/32)   [8/32, 9/32) -»[7/32, 8/32)
if w,w2 =11.

The columns of the stacking diagrams of height four should be drawn from left to

right in the same order as presented by the formulas above. Note that the four

possible configurations at this stage have differing powers of two (namely 2°, 21, 22

and 23) as their number of columns.

In general, suppose a configuration of height 2"~x is given; that is, we know the

first n-1 entries of a. If un = 0, the configuration of height 2" shall have the same

number of columns as the preceding one. This is done by cutting each column at

hand in half, going from the left half of the first to the right half of the last to form

the first column of the new diagram, the left half of the last to the right half of the

first to form the second column, etc., continuing to alternate directions until finally

the left half of the first column in the right half of the diagram goes to the right half

of the last column in the left half of the diagram.

If, however, <o„ = 1, we wish the number of columns to increase by a factor of

22" , and do this by cutting each existing column into 2 • 22" equal-sized pieces

and stacking the subcolumns in the same order as above, starting with the extreme

left and right subcolumns and alternating the direction.

We note in passing that Tu for the zero-sequence is just the VNK map itself; all

the others are strictly weak VNK maps. The definition insures that if o¡ ¥= w, then

from some point on (namely from that corresponding to the first entry where « and

w differ), the diagrams for Tu and 71- never have the same number of columns. In

fact, one will always have at least twice as many columns as the other, although the

lead can alternate according to which of to or to has a higher frequency of ones up

to the given point, and where in the sequence they occur. As an example, if

a = 1110 ... , then the number of columns in the diagram for Ta of height sixteen

is 21 • 22 • 24 • 2° = 128; whereas if to = 0001 . . ., the corresponding diagram for

T- has 2° • 2° • 2° • 2s = 256 columns.

3. Ergodicity.

Theorem 3.1. For any « G fí, Ta is ergodic.

Proof. If to is the zero-sequence, then Ta is ergodic. Otherwise, suppose / is an

interval in some column at a stage of the construction where the configuration for

Ta has height 2" and 2m columns for some n, m G N. We show first that m(J*) =

1, where J* = U ?__«, 1*J.

Now /* includes the entire column containing /, and consequently m(J*) >

\/2m. Since in the construction subcolumns of a given column always go to

subcolumns of a different column, we find at the next stage that the proportion of

columns containing a subinterval of J has doubled, independently of <on+1, and
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hence m(J*) > l/2m_1. The columns of the diagram of height 2"+1 which contain

subintervals of / are all adjacent, forming a block of length 2 if wn + 1 = 0 or of

length 2 • 22" if w„ + 1 = 1. Moreover, the preceding and succeeding blocks can also

be grouped in this way. Hence at the next stage, again no subcolumn containing a

subinterval of / goes to a subcolumn also containing a subinterval of J, and so

m(J*) > l/2m_2 (assuming m > 2). In a finite number of steps, we reach a point

where either the left or the right half of the diagram for Ta has a subinterval of J in

each column; thus at the next stage every column will have one, so that m(J*) = 1.

Now suppose A is an arbitrary set of positive measure, and let e > 0 be given. By

the Lebesgue density theorem, there is an interval J from some stage of the

construction such that m(A n J) > (1 — e)m(J).

Write J = U 2li J¡ (disj.) for some n G N, where each 7, is a subinterval of /,

one per each column of the diagram for Ta at some later stage. Suppose the

column heights at that stage are 2m, m G N. We compute

m(A*) >m[(A n J)*] > m U       U     Tk(A n /,)
i=l    k=-2m

2"

> 2 2mm(A n •/,)
i=i

= 2mm(A nJ)> 2m(l - e)m(J) = (1 - e)m(J*) = 1 - e.

Since e is arbitrary, m(A*) = 1, completing the proof.

4. Nonisomorphism. In this section we select an uncountable subset Í2' of ß such

that if w, w G ñ' are distinct, then Tu and T¿ are not isomorphic.

Lemma 4.1. Let Tx and T2 be isomorphic ergodic weak VNK maps. Let

{Cx, C2, . . ., Cr} and {Dx, D2, ■ ■ ■, Dr) be the partition sets of X determined by

the diagrams of height 2" for Tx and T2 respectively (we do not assume however that

C, <-» Djfor each i under the isomorphism). Suppose m(A) > 0 and A C C¡for some i,

and that A <-* B under the isomorphism. Then B Q Dj (mod 0) for some j.

Proof. Suppose not, i.e. B = Bx u B2 (mod 0), where Bx Ç Dj and B2 Q Dk for

j ¥^ k, with m(Bx), m(B2) > 0. Since T2 is ergodic, there exists an integer m such

that m(T2Bx n B2) > 0. Let Ax <h> Bx and A2<r± B2, so that A = Ax u A2 (mod 0).

But then m(TxmAx n AJ = 0, and since TXAX «-♦ T%BX, this is a contradiction.

We note in passing that this lemma is not true in the nonergodic case.

Lemma 4.2. Let T and S be measure-preserving transformations in G(X), isomor-

phic via a map <b such that <¡>T = S<¡> a.e. Let A G *35 and e > 0 be given, with

D G % satisfying m(DA<l>A) < e/2. Then for every n G N,

\m(T"A n A)-m(S"D nfl)|<£.

Proof. Since (S"D n D)A(S"<bA n <M) C S"(DA<t>A) u (¿>A<M), we have

m[(S"D n D)A(S"<bA n <bA)] < e.
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Thus

\m(T"A n A)-m(S"D n D)\ <\m(T"A n A)-m(Sn<bA n <t>A)\

+ \m(S"<t>A n <t>A)-m(SnD (1 D)\

= \m(S"<t>A n <¡>A)-m(SnD n D)\

< m[(S"D n D)A(Sn<bA n <M)] < e.

Lemma 4.3. Under the same hypotheses as above, suppose that T and S are in

addition ergodic weak VNK maps, and that A is contained on a level at some stage of

the construction for T. Consider any subsequent stage where A meets n levels. Then

there exists A' C A which is the intersection of A with some level y at this stage and

for which m(D'A<bA') < e/2n, where D'Çfl is the intersection of D with the level

<b(y) at the corresponding stage of the construction for S.

Proof. Let y¡, 1 < / < n, be the levels that meet A at the stage of T under

consideration, with A,, = A n y¡, so that A = U ?_ i A¡. Then we may write

D = U'.iAuÄ where D,, = D n 4>y¡ and D is the part of D not contained in

the n levels </>y,. Then (mod 0),

n

DAM = U (AA<K) U D (disj),
i-i

which follows from Lemma 3.1.

Now suppose that for all », m(DjA^At) > e/2n. Then

m(DA$A) = 2 m(DiA<pAi) + m(D) > e/2,
i=i

a contradiction, and the result follows.

Next we will need an algorithm to enable us to follow a piece (i.e. one of the

dyadic intervals that comprise a level) of a given diagram as it breaks up during

succeeding stages.

Definition 4.1. Suppose wGilis not the zero-sequence, and consider a config-

uration for Ta with 2" columns, n G N. An initial code is a consecutive numbering

of the pieces, from left to right, of a given level of the configuration, i.e. the row

array

1    2- • • 2""1    2""1 + 1 • • • 2" - 1    2".

Initial codes are continued for each subsequent stage of the transformation as

follows. At the next stage, the given level splits into two levels, so that the new code

will have two rows. We wish the digit in a given place of either of these rows to

indicate from which coded piece of the previous stage the piece which this place

represents is taken. The bottom row of the new code will stand for the pieces in the

lower of the two levels in question, the top row for the higher level. Thus the code
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for the next stage will be

2"    1      2"    1 ... 2"    1     2" - 1    2 ... 2" - 1    2

|1      2"    1     2". . . 1    2"| |2 2" - 1 .. .2 2" - 1|
2k terms 2* terms

2»-i + i    2"-'        ...2"-' + 1    2"_I

p«-1 2"-' + 1 ■.■2"-' 2"~1 + 1|

2k terms

for some A: G N, where k = 1 if and only if the appropriate term of co is zero.

As the code is continued through subsequent stages in the manner described, the

length increases each time a one is encountered in u, and the height doubles each

time.

The following are the formal algorithms for code continuations.

Lemma 4.4. Consider a code of length 2" with 2P rows. The next code is constructed

by the use of the following two formulas. We wish to determine where the digit in

position j of row q of the given code ends up in the new code. Let m be either zero or

the appropriate power of two that determines by what factor 2m the number of columns

in the configuration increases in passing from the stage corresponding to the given code

to the next. The change of position formulas for j are

(Y)j -» 2n + xj-k in row q of the new code for 1 < j < 2"~x,

j _» 2m+x(2n-j) + (k + 1) in row q of the new code for 2n_1 + 1 < j < 2",

where k= 1, 3, . . . 2m+1-3, 2m+1-l;

(2)7 -» 2m+xj-k + 1 in row 2P + q of the new code for 1 < j < T~\

j -> 2m+x(2n-f) + k in row 2P + q of the new code for 2"~x + 1 < j < 2",

again for k = l,3,..., 2m+1-3, 2m+1-l.

Proof. These formulas are the algebraic equivalent of the original verbal

description of the construction.

We refer to formula (1) as the "first, last algorithm" or "/, / rule," since the new

positions of the digits on these rows are determined by taking the first and last

digits (repeating if necessary), then the second and penultimate, etc., digits from the

old rows. Similarly, formula (2) becomes the "last, first algorithm" or "/, / rule."

Observe that if m ¥= 0, the construction forces m > n + 1. In any event the new

code length is 2n+m.

Definition 4.2. Consider an arbitrary row of a code of length 2". For 1 < j <

2"_I, we say that digits in positions j and 2" + \-j are in antipathetic position,

while digits in positions 7 and 2"~x + j are in sympathetic position.

Given an integer /, I < i < n, suppose we partition the row into 2"~' consecutive

blocks of length 2' each. Then a pair of digits within any one of the blocks is said to

be in (n-i)-weakly sympathetic position if the digits are "relatively sympathetic," i.e.

in sympathetic position within that block (thus the notions of 0-weak sympathy and

sympathy coincide).
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Example 4.1. For the initial code 12345678, the antipathetic pairs are

(1,8) (2,7) (3,6) (4,5),

the sympathetic pairs are

(1,5) (2,6) (3,7) (4,8),

the 1-weakly sympathetic pairs are

(1,3) (2,4) (5,7) (6,8)

and the 2-weakly sympathetic pairs are

(1,2)    (3,4)   (5,6)    (7,8).

Lemma 4.5. Let n > 2 and consider row q of a code of length 2" with 2P rows, with

m such that the next code has length 2n+m. Then

(1) for 1 < i < n-1, an (n-i)-weakly sympathetic pair of digits becomes

2m(n-i-Y)-weakly sympathetic pairs of digits on each of rows q and 2P + q of the

next code, while

(2) a sympathetic pair forms 2m antipathetic pairs on each of these rows and

(3) if m = 0, each antipathetic pair becomes an (n-\)-weakly sympathetic pair,

whereas if m =£ 0, the new weakly sympathetic pairs of orders n-l, n, . . . , n + m—2

are all of the form (j,j), 2m~x such pairs of each order for each digit j occurring in the

given code, while 2m new (n + m-\)-weakly sympathetic pairs are again determined

by each old antipathetic pair.

Proof. These facts follow from the algorithms for code continuations (Lemma

4.4), and verifying them for a specific example is more illuminating than following

the technical proof. Thus for the code in Example 4.1 (where n = 3, p = 0), if

m = 0, the new code is

81726354 18273645,

whereas if, say, m = 4 it is

8181... 81 7272... 72 6363 . . . 63 5454 . . . 54

[1818 . .. 18| |2727 . . . 271 |3636 . . . 36| |4545 ... 451

|25 terms_2s terms_25 terms_2s terms|

22 groups of terms

Lemma 4.6. Any code satisfies the property that if two columns begin with the same

digit, then corresponding places of the two have the same digit. That is, columns that

begin with the same digit are identical.

Proof. Assume n > 2 and m are as in Lemma 4.5 (the case n = 1 we discuss at

the end). We observe that the columns of a given code that combine to form the

columns of the next code are those in antipathetic position. For, by the/, / rule for

1 < j < 2"-x and the /,/rule for 2n'x + 1 < 2" + \-j < 2", we havej;^>2m+xj-k
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terms after the bar. Since wm+, = 1 necessarily, we have

and

_ BB . . . B\B\RR;mRR-RB1   ' 2m terms

- ^ «. «. i R jvxv  . . . J\  _
ym = BB . . . B\-B,

2m_1 terms

with m > 2, thus verifying the lemma for the first relevant stage.

Denoting the length of a truncated end sequence yn by l(y„), the induction

hypothesis breaks down into (even/odd) cases. Suppose first that the lemma holds

for all safe terms up to and including those determined by the index 2n. Assuming

'(ï2n) > '(Y2*)> we bound the maximum difference in lengths by examining the case

where u2m = 0 and tö2m = 1 for all m < n. We then have

l(%) = rsj 2>J + 2«    and   l(y2n) = I jg   2*j + 2«,

so that the difference is

n-l

2 2*+1 < 22"-l.
7=0

Setting l(y2„) = a and l(y2n) = ä, we have 2 < ä-a < 22n-\. The lemma is to be

verified for the new occurrences of a B at the ends of y2n+x and y2n+x. In the first

case, the B is in position a + 22n + 1 ; comparing with position ä + 22" + 1 for the

new occurrence of a B in f2n+,, a match would force a — ä and thus is impossible.

In the second case, we have a B in position ä + 22n + 1. The next two possibilities

for a 5 in y are the terms

a + 22n + 2       (if w2„+2 = 0)

and

a + 22n + 22n + x + 2       (if w2n+2 = 1).

But a + 22n + 2 = ä + 22" + 1 => 5-a = 1, while a + 22" + 22n + 1 + 2 = ä + 22n

+ I =t> ä-a = 22n+x + 1. Both of these are impossible, and no further possibilities

need be checked, completing the induction step for even indices. The odd case is

handled similarly and is omitted.

We now state and prove the main result.

Theorem 4.1. The transformations T = Tu and T = T¡, are not isomorphic.

Proof. Suppose the transformations were isomorphic via an isomorphism <j>,

such that <¡>T = T<b a.e. Set A' = [0, 1/4), one of the intervals comprising a piece of

the (identical) configurations of height two for both T and T. Let e' —\m(Ar) = ¿.

Let D' be a finite union of intervals such that m(D'A<M') < e'/2- Without loss of

generality we assume the intervals comprising D ' to be dyadic and all of the same

rank. Then there is some configuration for T (say that determined by ¿ôm) which D '

exactly "fits," i.e. each interval in D' is a piece (or union of pieces) of that

configuration. In the latter case, we can simply break D' down further to force an
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exact fit. Note that A' will meet 2m_1 levels of the diagram at this same stage for T.

By Lemma 4.3, there will be a level y at this stage for T such that, ii A = A' n y,

D = D' n <t>y, and e = e'/2m~x, then m(DA<i>A) < e/2-

Note that at this stage D, as well as A, consists entirely of pieces on only one

level, by Lemma 4.1. Also, since m(A) = \/2m~xm(A'), the relationship e =\m(A)

is preserved. By Lemma 4.2, the proof will be complete if we can produce an

integer n such that

\m(T"A n A)-m(f"D n D)\ > e.

For T, we work with the code continuations of the initial code /' = 12 represent-

ing the base level of the diagram of height two, so that l's correspond to pieces

taken from A' in the continuations. When we reach the stage determined by the

given m, we take from the code continuation the row corresponding to A and

assume without loss of generality that it begins with a 1, so that when we continue

this new initial code t (which we do not renumber, i.e. we retain l's and 2's as they

are), we are assured that a 2 returns to the end of the base row infinitely often

(Remark 4.1).

Thus suppose n > m is such that the base row of the code continuation tn of t

corresponding to the diagram of height 2" has a 2 on the end. By Lemma 4.5, all

antipathetic pairs on all rows of tn are of the form (1, 2). Consequently, in forming

tn+x, we stack over each column of tn another column of /„ with the property that

the l's and 2's are interchanged. Hence m(TrA n A) < \m(A), since half the l's in

r„+1 are in the top half of that code and are "missed" by the l's in the bottom half

when applying T2".

If in addition it happens that tn+x has a 1 on the end of its base row, then all

antipathetic pairs are either (1, 1) or (2, 2), and so by looking at a typical column of

tn+2 we see that m(T2"A n A) < \m(A).

Turning our attention to f, we let t' = 12 be as above, with / analogous to /

there (replacing A by D). The situation is quite different from that for T,

however-we have no assurance of a 1 «^ D (or 2 <-» D) correspondence. Hence this

time we do renumber t, say with the integers j for 1 < j < 2k, for some k. If we let

J = [1,2, . . . ,2k), then we have a subset J' oí J associated with D, defined by

letting y G /' if theyth piece of the level of the configuration corresponding to t is

from D. Again, J' does not necessarily contain half the indices in J. However, it is

not empty, since then D A<t>A = <¡>A, contradicting m(DA<t>A) <^e = j¿m(A).

We consider a stage, say that for a configuration of height 2" (n not necessarily

the same as above), where all antipathetic pairs in tn are of the form (j,f),j G /.

By the definition of Q' and Lemma 4.5, this happens infinitely often. Lemma 4.6

yields, by considering tn+x,

m(f2"D n D) >\m(D).

As before, we consider an additional possibility, namely when tn+x again has

antipathetic pairs 0,7), j G J. Then

m(f2"D n D) >\m(D).
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and

(2" + 1-7) ^2m+1[2"-(2" + I-7)] + k! = 2m+xj-(2m+x-k'),

with a one-to-one correspondence k <->2m+x-k'. The calculations for 2"_1 4- 1 < 7

< 2" are similar.

Now, a given code can be traced back to an initial code, which has the (obvious)

property that weakly sympathetic pairs are unique, i.e. if (j,f) and (j,j") are

weakly sympathetic pairs of the same order, then/ =7" (similarly for antipathetic

pairs). Lemma 4.5 shows that this property continues to hold for all code continua-

tions; moreover, the pairs will be the same on all rows. Thus, if two columns of

some code are identical, the antipathetic columns are also identical, so that an

induction argument proves the lemma (for n > 2).

Remark 4.1. We treat the case n = 1 separately because here we wish to make

some additional observations on code continuations. The initial code is 12, so that

the notions of antipathy and sympathy coincide. Hence Lemma 4.5(1) cannot

apply, at least until the code has increased in length, if it ever does. The rest of that

lemma remains valid and therefore, of couse, so does Lemma 4.6. The observations

we wish to make (whose proofs are trivial) are

(1) the base row of any code always begins with the digit 1,

(2) a 2 returns to the end of the base row infinitely often,

(3) if at any time we choose a row beginning wth a 1 from a code to form a new

initial code, then properties (1) and (2) hold for that code continuation; if the row

we choose begins with a 2, they hold with the roles of the digits interchanged.

Definition 4.3. Let ß' = {to G ß|to„ = 1 for all odd n), an uncountable subset of

ß.

Given distinct u, tö G ß', we shall show that Ta and 7^ are not isomorphic. First

we need a technical lemma to allow us to compare codes for Tu and T¿.

Definition 4.4. Let a sequence of codes for a transformation Tu, to G ß', be

given. An end sequence for this sequence is formed by taking the digits in the last

position of the base row of each of the codes in succession. Thus if the initial code

has length 2", the associated end sequence is just an infinite sequence, each term of

which is an integer/ 1 < 7 < 2".

Example 4.2. For the initial code 12345678 presented before, the associated end

sequence will begin 8532 ....

However, the next term will depend on the occurrence of a zero or a one at the

appropriate place in the expansion of co: specifically, that place which determines

whether or not the initial code increases in length at the next stage. In the first case,

the next term is again an 8, but in the second, there will be m l's followed by a

single 8, m being some power of two, as Lemma 4.5 shows. Clearly, an end

sequence for a Tu with to G ß' will contain arbitrarily long strings of l's.

Preparatory to stating the final lemma, suppose we have initial codes tx and /, for

T = Ta and f = T-, w, tö' G ß', taken from the first stage of each of these

transformations. Since to, = w, = 1, we have /, = 12 and /, = 12. Thus the

associated end sequences y and y begin y = 22 . . . and y = 22 ... .
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The second stage will determine more terms of the end sequences. Say u2 = 0.

Then the continuation of /, is

and so we have y = 222 ....

Suppose however that w2 = 1. We then have

- m 212121212      12121212'

so that y = 22112 ... . Our convention in this stage-by-stage determination of the

end sequences is not to anticipate required ones in the expansions of u and tö.

Suppose we consider the configurations for T and T at some stage (say where the

diagrams have height 2m) where the number of columns already differs, and look at

the parts of y and y that can be determined up to and including that time. Call

these truncated sequences ym and ym. We ask, by how little can the lengths of ym

and Ym differ? The example, where we computed Y2 and Y2> already gives the

answer, namely by 2. For here we have made u and tö differ in the earliest possible

entry, the second. Easy computations, based on the fact that com determines 1 term

in the end sequence if tom = 0 and 2m_1 + 1 terms if tom = 1, show that if the first

difference in u and to comes later, i.e. m > 4, then the difference in length between

Ym and ym is greater. Moreover, the difference persists (or increases) at all

subsequent stages.

Definition 4.5. Let to, w G ß' be distinct. A term 1 in the end sequences y and y

for the initial codes /, and /, is called mandatory if it is determined by <o„ or <ö„ for n

odd. We relabel each such 1 with an R. All other terms in the end sequences are

called optional and each is relabelled with a B. Finally, a term in y or y is called

safe if it is determined at a stage where T and f differ in column size.

For the preceding example, all terms of the end sequences after the second are

safe, and the relabelling scheme gives us

Y2 = BBB   and   y2 = BBRRB,

with the requirement to3 = w3 = 1 yielding

Y3 = BBBRRRRB    and y3 = BBRRBRRRRB.

Lemma 4.7. Let (relabelled) end sequences y and y be as above. Then corresponding

safe terms cannot both be labelled B.

Proof. The first safe terms are those determined by the first m for which

wm =?= töm. We then have

ym = BB... B\B

ym = BB . . . B\ RR ■ • • R B,
V-' terms

or vice versa. We use the vertical bars to separate previously determined terms

from those determined at this stage. The lemma is obviously true for the first 2m~x
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Now, Lemma 4.7 was proven for a situation where both initial codes were 12. It

remains valid here, where we have renumbered one of the codes, since mandatory

l's (which were relabelled by Ä's) in the end sequences are the same whether we

renumber or not. Hence we apply this lemma to the end sequences y and y

(labelled with R's and B's) corresponding to t and t respectively, and find a safe

position for which the term of y is a B which was originally a 2. The corresponding

term of y must thus be an R. The final step in the proof now breaks down into two

cases, depending on the next term of y.

Suppose first that the term is an R. Then for the appropriate n,

m(T"A n A) <\m(A) = 2e,

while

m(f"D n D) >\m(D).

Recalling that m(DA<i>A) < e/2, we estimate

m(D) > m(D n <M) = m(D U <bA)-m(DA<i>A) > m(A)-e/2.

Thus

m(f"D n D )-m(T"A n A) > {m(D )-\m(A) > \m(A)-\t = |e,

and so \m(T"A n A)-m(f"D n D)\ > e, in violation of Lemma 4.2.

In the other case, we suppose the next term of y is a B, so that the corresponding

term of y must be an R. Then

m(T"A n A) < \m(A) = 4e,

while

m(f"D n D) >\m(D).

We obtain m(f"D n D)-m(T"A n A) >y£, once again violating Lemma 4.2.

This concludes the proof.

5. Entropy.
Definition 5.1. Let T G G(X) and suppose & Q % is a sub-a-field invariant

under T, i.e. T~X(A) G & for all A G &. Then T& the (point) transformation T on

the space (X, &, m¿), is called a factor transformation of T. If & = {0, X} (mod 0),

the factor is trivial.

Example 5.1. Given n G N, let & consist of the dyadic intervals of rank n and

their unions, and let T be the VNK map. Then & is invariant under T and so T& is

defined. If we identify all points within each dyadic interval in &, then T& is

essentially a rotation on 2" points of equal mass.

We shall determine the entropies of the transformations Tu for to G ß' indirectly,

using a theorem of Sinai [3]. Let %(T) denote the entropy of any measure-preserv-

ing T G G(X). The theorem implies that if %(T) > 0 for an ergodic T and

0 < % < %(T), then T has a (nontrivial) factor T& with %(T^) = %. Moreover,

Te is mixing. Thus if %(Ta) > 0, then Tu would have to have a nontrivial mixing

factor. We show this is impossible, and hence %(TU) = 0.
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Theorem 5.1. Let u G ß' and set T = Ta. Then %(T) = 0.

Proof. Let E G 9>, 0 < m(E) < 1, be arbitrary. If we can show that

lim sup m(T"E n E) > m2(E),
n—»oo

then E cannot satisfy the mixing condition

m(TnE n E)->m2(E),

and so T cannot have any nontrivial mixing factors.

Suppose A is a finite union of dyadic intervals of the same rank. Then A fits

some configuration for T exactly. If y is a level of that configuration meeting A, we

can code it and identify the pieces that belong to A. Whenever we encounter a

string of m mandatory l's in the associated end sequence, then arguing as in the

proof of Theorem 4.1, we will have, for the appropriate n,

m[T"(A ny)n(Ac\ y)] > (\-l/2m)m(A n y)-

Applying this argument to all such levels we obtain

m(T"A nA)> (l-l/2m)m(A).

In fact, we can find a sequence {nk}, k G N, such that

m(Tn"A n A) > (\-\/2k)m(A).

Let e > 0 be such that m(E)-3e > m2(E), and find a finite union A of dyadic

intervals of the same rank such that m(EAA) < e/8. Finally, find k such that

l/2km(A) < e/2, and set n = nk. Then

m[Tn(E nA)n(E nA)]

<m(T"E n E) <m[Tn(E n A) n (E n A)] + 3e/8

and

m[ T"A n (X\A)] = m(TnA)-m(TnA n A) < m(A)- (\-\/2k)m(A) < e/2.

Finally,

m[T"(E nA)n(En A)] > m[T"(E n A)]-e/%-e/2 = m(E n ^)-5e/8.

Combining these estimates, we have

m(E n A) <m[ T"(E n A) n (E n A)] + e.

Hence

\m(T"E n E)-m(E n ^)|<e.

Moreover, since m(E n A) > m(E)-e, we have

m{T"E n E) > m(E)-2e.

We conclude that

lim supm(T"E n E) > m(E)-2e > m2(E),
n—*oo

as desired.



410 KARL DAVID

References

1. N. A. Friedman, Introduction to ergodic theory, Van Nostrand, New York, 1970.

2. P. Shields, Cutting and independent stacking of intervals, Math. Systems Theory 7 (1973), 1-4.

3. Ya. G. Sinai,  Weak isomorphism of transformations with invariant measure, Amer. Math. Soc.

Transi. (2) 57 (1966), 123-143.

Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003

Current address: Department of Mathematics, Union College, Schenectady, New York 12308


