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APPLICATION OF THE EXTREMUM PRINCIPLE TO

INVESTIGATING CERTAIN EXTREMAL PROBLEMS

BY

L. MIKOEAJCZYK AND S. WALCZAK

Abstract. Denote by C, K, X, respectively, a complex plane, the disc {z e C:

\z\ < 1} and any compact Hausdorff space. Denote by P a set of probabilistic

measures defined on Borel subsets of the space X. For (i£?, let f(z) =

Sx q(z> t) dp, z G K, and 9 m {/: |ief). Consider a finite sequence of real

functions F0, F}, . . . , Fm defined in the space R2". Let f,, .. ., Çk be fixed points

of the disc K and ij(/) - [re /(0)(f ), im /<0>(f,), . . . , re /<"<>(£,),

im/"'»(f,); . . . ,ref°\tk), im/«»(&), . • • , re/^), im/<*>(£*)], where / 6 <5,

» — «,+ ••• + /k + A:. Let F/f) — /}(t|(/)). 7 = 0, 1.m. We consider the

following extremal problem. Determine a minimum of the functional F^f) under

the conditions FXf) < 0,j = l,2,.,.,m,/ËÎ. We apply the extremum princi-

ple to solve this problem. In the linear case this problem was investigated in [11].

Introduction. In their monograph under the title "Theory of Extremal Problems"

[1], A. D. Joffe and W. M. Tikhomirov gave a general method of investigating

extremal problems in Banach spaces. In this method a theorem called the ex-

tremum principle is of essential importance. From the extremum principle one can

derive, as it turns out, many theorems of the calculus of variations and those of the

theory of control. In the present paper the extremum principle is applied to

examining extremal problems in certain families of complex functions which have

structural representation given by L. Brickman, T. H. MacGregor and D. R. Wiken

(cf. [11]). On the basis of the extremum principle, there has been proved a general

theorem characterizing extremal functions. From this theorem one can obtain, in

particular, many results obtained earlier by other authors. In further considerations

the terms family of functions, class of functions, set of functions, will be used as

equivalent ones.

1. Introductory notes. By an extremal problem we mean, similarly as in mono-

graph [1], a problem for a conditional extremum under various side conditions.

Extremal problems in various families of complex functions were investigated,

among others, in papers [2]-[10]. Most problems examined were considered in

those families of complex functions which have an integral representation. The

considerations in the present paper will also concern these kinds of classes of

complex functions.

Let us denote by C, K, X, respectively, a complex plane, the disc {z G C:

|z| < 1} and any compact Hausdorff space. We assume that the mapping q:

K X X —» C possesses the following properties.
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(i) For every t G X the mapping z -^ q(z, t) is analytic in K,

(ii) for every z G K the mapping t —> q(z, t) is continuous on X,

(iii) for every r, 0 < r < 1, there exists a number Mr > 0 such that \q(z, t)\ < Mr

for \z\ < r and for t G X.

Denote by 9 a set of probabilistic measures defined on Borel subsets of the

space X. For p G 9, let

/„(*) = f <l(z> ') dp{t\       z G K, (1)

and let ^ = {/, : p G 9}.

It is possible to show (cf. [11]) that

(a) every function of the set S is analytic in the disc K,

(b) the mapping p —>/, is continuous (under the weak-*-topology induced from

the space C(X)* and under the topology of almost uniform convergence on S),

(c) the set S is compact and it is a closed convex hull of the set of functions

{x-*SO,0 :t GX},

(d) the functions z —> q(z, t), t G X, are the only possible vertical points of the

set S. If íq G X and the condition

q(z, t0) = f q(z, t) dp(t), ZGK,
Jx

holds only for p = 8,, where 8, denotes a Dirac measure at the point t0, then the

function z —> q(z, tQ) is a vertical point of the set 'S'. In particular, if the mapping

p -> / is one-to-one, every function z —> q(z, t), t G X, is some vertical point of the

set <ÏÏ.
As is known, one of the most familiar representations of form (1) is the Herglotz

representation for analytic functions with real parts positive in the disc K. In this

case the mapping p —>/M is one-to-one (cf. [12, p. 40]). Many interesting families of

analytic functions possess a representation of form (1), where X = [a, b], a < b,

while ty = 9 (a, b) is a set of measures cumulated on the segment [a, b], such that

fdp(t)=L (2)
J a

In further considerations, to shorten the notation, instead of (1) we shall write

f(z) = f q(z, t) dp(t). (3)
Jx

On the basis of the properties of vertical points, in paper [11, §3] there have been

proved some interesting theorems concerning linear complex functionals defined

on chosen families of complex functions which have a representation of form (1).

In the present paper a case of nonlinear functionals is being investigated.

2. Formulation of extremal problem. Let m, «,, n2, . . . ,nk be fixed natural

numbers. Consider a finite sequence of real functions F0, Fx, . . ., Fm defined in the

space R2", where « = «, + n2 + • ■ • +nk + k. We assume that these functions

are of the class C(1).
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Let f,, £2, • • •: » îk De fixed distinct points of the disc K. Denote by r¡ a vector of

the form

V(f) -[«/%,), im/«»(i,), • • • , re /<->(£,), im/"■>(£,);

... ; re/°>(^), im/«»(&), . . . , ref^k), imf>\tk)],        (4)

where/ G $,f0) =fi

We introduce the notation

refit,) = «;,   im/'Xfy) = »/    for / = 0, 1, . . ., «,. and / - 1, 2,..., k. (5)

With notation (5) vector (4) has the form

n(/) - [«?, e?...".:, «f, of1; • • • rf. v°k,..., u?, v?]. (6)

We construct a finite sequence of real functionals

FjU) = Fj(-n(f)),       j = 0,l,...,m, (7)

defined on the family S.

We shall consider the following extremal problem.

Problem 1. Determine a minimum (maximum) of the functional FQ(f) under the

conditions /•}(/) < 0, / = 1, 2, . . . , m, f G S.

Remark 1. Equality constraints will not be paid respect to in general considera-

tions, since every equality Fj(f) = 0 can be represented as a conjunction of two

inequalities Fj(f) < 0 and -/}(/) < 0.

3. Extremum principle and theorem on extremal measures. Let <p0, <p,.<pm be

a finite sequence of real functionals defined on some nonempty and convex subset

U of the given space. Let us denote by L a function of the form

m

L(u, x0, xx,...,K)=Il \vM, (8)

where u G U, while Aq, \x, . . . , \„ are given real numbers. Function (8) is called a

Lagrange function, whereas the constants A,, / = 0, 1, . . ., m are Lagrange multi-

pliers. In our further considerations we shall make use of the following theorem.

Theorem 1 (Extremum principle). //

I. u0 G U and <p,(Mo) < 0, / = 1, 2, . . ., m,

II. «o is the argument of the minimum of the functional <p0 on the set U under the

constraints <p,(M) < 0, / = 1, 2, . . ., m,

III. the vector function qp = [tp0, <px, . . . , <pm] satisfies the following weak condition

of convexity on the set U. For any ux,u2G U and a G [0, 1] there exists u G U such

that

<p,{u) < a<p,(",) + (1 - «)<P,(«2)   M i = 0,\,...,m, (9)

then there exist Lagrange multipliers A, > 0, 1 = 0, 1, . . . , m, not vanishing simulta-

neously such that

(a) L(u0, \,Xx,...,Xm) = Tom L(u, V A„ . . ., \J,

(b) A,<p,(«0) = 0   for I' \,...,m. (10)
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The above theorem follows directly from Theorem 3 formulated in monograph [1,

pp. 79-80].
Remark 2. If the functionals <p¡, i = 0, 1, . . . , m, are convex, condition (9) is

satisfied for u = cxux + (1 — a)u2.

Let v = v(t)he a continuous real function defined on the space X mentioned in

introductory notes.

Denote by E the following set E = {t G X : v(r) = M}, where M =

max,eA- v(t).

We shall prove

Theorem 2. If

[ v(t) dp,(t) = max  [ v(t) dp(t),
Jx ce? Jx

then the measure pm is cumulated on the set E.

Proof. The space X can be represented in the form X = U *" i Xk u E, where

Xk - {f € *,(l - jj{M -m) + m< v(t) < (l - ^77)(^ - m) + m},

M - max t>(r),       «i = min v(t).
tex tex

The sets Xk, k = 1,2,..., and £ are pairwise disjoint, and thus pM(X) =

2*°-i MíÍ^*) + M*(^)- Suppose that the measure ¡u.„ is not cumulated on the set E,

i.e., pt(E) < p^(X) = 1. And consequently, there exists some k such that pm(Xk) =

a > 0.

Let /t G ÍP be any measure cumulated entirely on the set E. We have

[ »(') 4"* = f   »(') ¿K + f       »(/) dp.
Jx Jxk Jx\xk

< [f1 " XTl)(A/ " m) + m] ̂ *{Xk) + M»*{x N Xk) K M-    (11)

Since ¡x ü(0 dp = M, inequality (11) contradicts the assumption of Theorem 2.

4. Application of the extremum principle. Basing ourselves on Theorems 1 and 2,

we shall prove a general necessary condition for the existence of the extremum in

Problem 1.

The Lagrange function for Problem 1 has the form

m

L(f, K X„ ..., \,).~ 2  XjFjif). (12)
j-o

Let /», /,(z) = Jx q(z, t) dp+(t) denote a solution of Problem 1. Such a solution

does exist provided that the set

W= {fG$:Fj(f)<0,j= 1,2,:..,«}

is not empty.
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Let w be a function of the form

MO = í   i {Ai re é»{t„ t) + R; im q"(ts, t)), (13)
i=li-O

where / G X,

dL(f, X0, X„ . . . , Àj .      3L(/, X0, \„ . . . , \J ,
-4. =-:- ,_,,       i>t =g    , ■/-/.' » 9    , 1/-/.

and

Denote by Ew a set of the form Ew = {t G X : w(t) = maxTeEjr vv(t)}. The set is

not empty since the function w is continuous and the space X compact.

We shall prove

Theorem 3. If the function /+(z) = fx q(z, t) dpt(t) is a solution of Problem 1 in

which, for the function F = [F0, Fx, . . ., Fm], the weak condition of convexity on the

set S (condition III from Theorem 1) is satisfied, then the measure pt is cumulated on

the set Ew.

Proof. From Theorem 1 we have

£(/*> Xo> K--->Kn) = mi» L(f> K K ■ ■ ■ . K,), (14)
J ^   *

where L is a function defined by formula (12).

Let / be an arbitrary element of the family S. Since S is a convex set, which

follows directly from the definition of Sr, then, together with the functions/„ and/,

to the set S there belongs a function

/.-/, + «(/-/*) (15)

with any e G [0, 1].

Taking account of (14) and (15), we get

(grad L(U À0, Xx, . . . , aJ, t,(/ - /,)) + o(e)/e > 0,

where o(e)/e —» 0 with e —» 0.

After simple transformations we obtain

2   Í(AÍrefiKO + B!imfi\Q)< ¿   Í (4 re fïXU + Bj im f?(Q).
k      n,

i-l ;'-0 s= 1 1 = 0

Hence, taking account of (3) and (13), we get

[ wit) dp(t) < f w(t) dpm(t),
J y J y

where p, p+ G ty.

Making use of Theorem 2, we obtain the proposition of the theorem being

proved.
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Corollary 1. //

I" X c R,

2° w(t) =fi const.,

3° the mapping X B t —> q(z, t) is analytic on the set X,

then the extremal function /„ is of the form

/♦(*) = 2  «,q{z, 0, (16)
i = i

where N is some natural number, a, > 0, /' = I, . . . , N, 2*11 a, = 1, t¡ G X, i =

\,...,N.

Proof. It follows from the assumption that the function w is analytic and is not

identically constant. Consequently, the set Ew is finite. The number of its elements

is denoted by N. From equality (3) we obtain formula (16), which concludes the

proof.

Remark 3. Let X c R and let A' be a compact set. The mapping X 3 t —> a(t) is

called analytic on this set if, for every point t0 G X, there exists a neighbourhood

(/„ — 8, t0 + 8) in which a(t) can be represented in the form

ait) =  2   a„{t0){t - /„)"    for t G (í0 - 8, t0+8)n X.
«=o

5. On the possibility of certain generalizations of Problem 1. Let l'D be a compact

subset of the space Rm, whereas F0, Fx, . . . , Fm is a finite sequence of real

functionals which are defined on the family S and have the form (7).

Consider the following

Problem 2. Determine a minimum of the functional F0{f) defined on the family

S under the conditions

(W),...,^,(/))e*D,      fGS. (17)

Let/ = /„ be a solution of Problem 2.

If the set of functions/ G S which satisfy condition (17) is not empty, then, on

account of the compactness of the set 6¡), the solution/, is sure to exist.

Put FjifJ = üj,j = 1, 2,.... m. It is readily seen that the function / = /„ will

be the argument of the minimum of the functional F0 under the conditions

Fjif) - Oj < 0,        -Fj(f) + aj < 0,       / = 1, 2, ... , m.

Hence we infer that the method of examining Problem 1 can also be adapted to

examining Problem 2.

Let us still consider a case of complex functionals. Then let F0, Fx, . . ., Fm be a

finite sequence of continuous complex functionals of the form FAf) = Fj{r){f)),

j = 0, 1, . . . , «j, defined on the family 'S.

In this case the extremal problem will be formulated as follows.

Problem 3. Determine the set of values of the functional F0 under the conditions

Fjif) = 0,      j=\,2,...,m. (18)

Denote by Aq the set of values of the functional F0 under conditions (18) and by

T its boundary.
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One can show that the set Aq is compact. The function /„ is called a boundary

function with respect to the functional F0 if F0ifm) G T and /}(/,) = 0, / = 1,

2, . . . , m.

Let us first consider a case when the set Aq is a convex set.

Note that in this case, if /, is a boundary function, there exists a number a0 G R

such that /„ is the argument of the extremum of the functional re F0 under the

conditions

im F0if) -a0 = 0,       re FjÇf) = 0,       im F/J) = 0,

/ = 1,2, ...,«,,        (19)

or/, is the argument of the extremum of the functional im F0 under the conditions

re F0if) - a0 = 0,       re F/J) = 0,       im Fjif) = 0,

j - 1, 2,.... m.       (20)

Hence it can be seen that Theorem 3 and Corollary 1 may also be applied to

investigating Problem 3 in the case considered. With that end in view, one should

replace equalities (19) and (20) by an equivalent system of inequalities and check

whether the condition of weak convexity is satisfied.

Let us in turn consider a case when the set Aq is an arbitrary compact set.

The point vv0 G T will be called a regular boundary point if there exists a point

f G Aq such that \w0 - f | = minM,eAjM> — f |. The set of regular points is denoted

by T'. It is to be proved (cf. [13]) that the set T' is dense in T.

The function /„ G S is called a boundary function regular with respect to the

functional F0 under conditions (18) if F0ifJ G T'.

It is not difficult to see that, if /„ is a boundary function regular with respect to

the functional F0 under conditions (18), then it is the argument of the minimum of

the real functional F0 = \F0 — f |2 for some f G Aq.

So, if in the considerations we have carried out so far the functional F0 is

replaced by the functional FQ, then Theorem 3 and Corollary 1 may also be applied

to investigating the set of values of complex functionals.

The above considerations concerning complex functionals will be illustrated by

the following

Example. Determine the set of values Aq of the functional F0if) = fiÇx) in the

family of typically-real functions with fixed second coefficient a2 = /"(0)/2 = c,

where c G [-2, 2].

It is known (cf. [14]) that the family of typically-real functions coincides with the

family S with qiz, t) = z/(\ — 2z cos t + z2) and X = [-w, it]. It is easy to see

that the set Aq will be convex in this case. As we found before, every boundary

function is at the same time an extremal function of the functional

reF0(f) = ifitx)+J(íxj)/2

under the conditions

im F0if) = (/U,) - fijj)/2i - «o = 0,

(/"(0)+r(Ö))/2-c = 0,
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or it is an extremal function of the functional

imw) = (/a.)-/a,))/2/
under the conditions

re F0if) -a0= (/(£,) + /(£,) )/2 - a0 = 0,

(/"(0) + /"(0))/2-c = 0,

where a0 is some real number.

It can easily be verified that in the case f, = f, the set Ew defined in §4 of the

present paper contains at most three points, whereas in the case f, ^ ?, at most

four points. Consequently, the boundary function is of the form

4 z
/*(z) - 2  -;—-~T^P*'

k = \   1 - 2z cos tk + z

where tk G \-nt, it], pk > 0, k = I, 2, 3, 4, 2*_] pk = 1. Since in this case the

function tv (see [13]) is even, the points tk, k = 1,2, 3, 4, are symmetrically situated

with respect to zero. And consequently, every boundary function can be repre-

sented in the form

/.(*) = *     .    -; + (i - *)-
1 — 2z cos t, + z2 1 — 2z cos t2 + z2

where X G [0, 1], t, G [0, w], i - 1,2.

The above result was obtained in some other way in paper [15].

Remark 4. Most extremal problems considered in the theory of complex func-

tions have the form: determine an extremum of the functional F0 = F0if) defined

in a given family of functions. If F0 is a continuous functional, while the given

family is connected, then the functional F0 possesses the Darboux property and

consequently, it satisfies the condition of weak convexity. By choosing the function

qiz, t) in a suitable way and applying Theorem 3, one can obtain with no difficulty

many familiar results for the families of Carathéodory, typically-real, starlike and

other functions.

Literature in this field is very comprehensive and by and large well known.

Many results and titles of reference books concerning this question can be found in

[12] and [16]-[18] according to the references of the present paper.
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