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SOME EXAMPLES OF SEQUENCE ENTROPY AS AN

ISOMORPHISM INVARIANT

BY

F. M. DEKKING

Abstract. With certain geometrically diverging sequences A and the shift T on

dynamical systems arising from substitutions we associate a Markov shift S such

that the A -entropy of T equals the usual entropy of S. We present examples to

demonstrate the following results. Sequence entropy can distinguish between an

invertible ergodic transformation and its inverse. A -entropy does not depend

monotonically on A. The variational principle for topological sequence entropy

need not hold.

1. Introduction. Let iX, p) be a Lebesgue space with invertible jit-preserving map

T. Let A = {/„}"_ i be a sequence of integers. Then the sequence entropy hAiT) of T

with respect to A is defined as follows [14]:

hAiT, 0 = lim sup !//(_-''_ V • • • VT~H),       t S Z,
n—*oo      M

hAiT) = sup hAiT,£)
(ez

where Z is the collection of measurable partitions of X with finite entropy. We also

call hAiT) the A -entropy of T.

Clearly sequence entropy is an isomorphism invariant of dynamical systems and

one recovers the usual entropy «(T) of Thy takingyl = (0, 1, 2,. . . }.

Kusnirenko [14] proved that T has discrete spectrum if and only if hAiT) = 0 for

every sequence A. On the other hand we have the following theorem of Newton

and Krug [13], extending earlier work in [16]. If «(T) > 0, then hAiT) = KiA)hiT)

where KiA) does not depend on T. (A simplification of their proof can be found in

[12].) This result implies that sequence entropy is uninteresting as a new invariant

in case T has positive entropy. However, little is known in case «(7) = 0 and T has

a continuous part in its spectrum, which in some sense is the case where new

invariants are most needed. We briefly survey the known results for such T.

Kusnirenko showed that the (2"}-entropy of the horocycle flow on a two-dimen-

sional manifold of constant negative curvature lies between log 2 and log 64, and

that the {2"}-entropy of the transformation (x, y) -» (x + a, x + y + ß) equals

log 2. Recently Hülse [8] extended this result and determined a class of sequences

such that hAiT) = co if T has quasi-discrete spectrum. The existence of such

sequences in case T has quasi-discrete spectrum follows from a theorem of Pickel'

[18] stating that sup^ hAiT) = log k for some positive integer k, or equals oo.
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In the present paper we calculate the sequence entropies for a special class of

zero-entropy transformations and a number of sequences. These results reveal

some new properties of sequence entropy. Our main example shows that sequence

entropy can distinguish between T and T ~ ' (Example 8).

We do not know the answer to the following "intermediate value" question. If

«(T) = 0 and hAiT) = oo for some A, does there exist A' such that 0 <

nA'iT) < oo? If this holds then the conjecture that T X T is not isomorphic to T

for ergodic T with finite entropy could easily (cf. the proof of Theorem 1 of [14]) be

shown to be true. A related question is the following. Is hAiT) > hBiT), if A is a

subsequence of R? It follows from Newton's work that the answer is positive when

«(jT) > 0, B is strictly increasing and A = {tn} has bounded gaps or satisfies

t„+ x-t„ —> oo. Example 7 however shows that the answer can be negative for such A

and R if «(T) = 0.

We also consider the topological analogue of sequence entropy. Let I be a

compact metric space, T a continuous map on X. For a an open cover of X, let

Nia) denote the minimal cardinality of any subcover of a. Let A = {/„}"_! be a

sequence of integers. Then hApiT), the topological sequence entropy of T with

respect to A, is defined by

hAopiT, a) = lim sup -log #(7"-'** y ■ ■ ■ \/7"H
n—>oo      «

hpiT)- sup Ar(r, a)
aew

where W is the collection of open covers of X [6].

Let M denote the collection of !T-invariant Borel probability measures, and

h£iT) the A -entropy of T w.r.t. p in M. Then Goodman [6] showed (with a

restriction that can be removed [4]) that for any A

hA°?iT) >  sup hSiT)
iieM

with equality in case hlopiT) > 0, where htopiT) denotes the usual topological

entropy of T. If htopiT) = 0, then the variational principle for topological sequence

entropy need not hold. Goodman gives an example with h\opiT) = log 2 but

supMeA/ h%iT) = 0, where T has discrete spectrum. We provide several other

examples. If, for instance, T is the shift on the closed orbit of the Morse sequence

(see for example [1, p. 92]) then

hXHT) = Mî + 2^ ) > sup  hfaiT) = f log 2.
neM

2. Preliminaries.

2.1. Substitution shifts. Let X = {0, 1}Z with shift T. Let Ö = 1, Ï = 0. We extend

this map-called mirroring-to blocks, i.e. finite sequences of zeroes and ones, and

to elements of X by component wise application.

A map 9: (0, 1} -> (0, 1}' is called a substitution (on two symbols) of length /. In

this paper we only consider continuous substitutions [1]. A substitution is continu-

ous iff 91 is the mirror image of 00 and, moreover, 9 is not finite i.e. 90 =£ 00 . . . 0,

90 =£ 0101 . . . 010 or mirror images of these blocks. As we did in the case of
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mirroring we extend the domain of substitutions to blocks and infinite sequences,

and define 0" by 9"i = 9i9"~xi), i = 0, 1, for each positive integer «.

If 9 is a continuous substitution of length / then f?20 starts and ends in 0 and we

can define an infinite sequence w9 by

w9[-l2m, l2m-l] = 92mi00),       m =1,2,_ (1)

Here we used the following notation. If x is an element of X then x[k, n]   :=

XkXk+\ ■ ■ ■ Xn-

Let Xg be the closure (in the product topology on X) of the orbit {T'Svf. k G Z}

of w9. It is well known that X9 is minimal under T and that there is a unique

T-invariant Borel probability measure p on X9 (see [1]). We call the dynamical

system iX9, T, u)-often abbreviated to T9-a substitution shift. Note that w9„ = w9

and hence Tg„ = T9 for n = 2, 3, ... .

The strict ergodicity of T9 enables one to read many properties of T9 from the

sequence w9 or from the blocks 9m0 or $m\, m = 1, 2, .... For example, consider

simple cylinders [b0bx . . . bn] := {x G X: x0 = b0, xx = bx, . . ., xn = bn}. Then

such a cylinder has a nonempty intersection with X9 iff the block R = b0bx . . . b„

occurs in w9 iff it occurs in some 9m0 iff it occurs in some 9m\. We call such a

block admissible. Furthermore, the u-measure of [B] = [b0bx . . . b„] equals the

relative frequency of B in w9 and

"([*]) = Ä ¿",('"0) = Ä 7^ W"1) (2)

where NBiC) denotes the number of occurences of R in a block C. Since 9m 1 is the

mirror image of 9m0 the following lemma is obvious.

Lemma 1. Let 9 be a continuous substitution. A block B is admissible iff its mirror

image is and p([B]) = p([BJ).

The next lemma is essential to the structure of T9 (cf. [1, L.53]). In the following

form the lemma is proved in [2, L.27]).

Lemma 2. Let 9 be a nonfinite substitution of length I. For each positive integer m

the collection of open sets {TJ9mX9: 0 < j < lm-\} is a partition of X9.

Lemma 3. Let 9 be a nonfinite substitution of length I and let N > 0. If x G

T'9mX9 for some m > 0 and 0 < j' < lm then there exists an integer p such that

x[0, N] = w9[p,p + N] andp = j modulo lm.

Proof. Since X9m = X9 we may assume m = \. Let x G TJ9X9. By minimality of

T on Xg we have x = lim,.,^ T^Wg for some sequence (&,-). Therefore x[0, N] =

W<A> k¡ + N] for large i. On the other hand T^Wg G TJ9X9 for large /, since TJ9X9

is open. By Lemma 2, k¡ = j modulo / for such i.   [_]

Throughout this paper » denotes topological isomorphism, ^ measure-theoretic

isomorphism. (See [1] for definitions.) Unique ergodicity of substitution shifts

implies that if Te = T9, then T9 ̂  T9,.

For a block B = b0bx . . . bn let R~ = bn . . . bxb0 be its reversal. If 9 is a

continuous substitution we define 9~ by 9~0 = (0O)~.
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Lemma 4. Let 9 be a continuous substitution. Then Te~x « Te~.

Proof. Let <b be the reversal function on X defined by <#>(*) = x~, where

xj^ = x_k_x for k G Z. Then <f> is obviously continuous, invertible and <¡>T~X =

T<¡>. It is easily checked that (0~)2m(OO) = (02mOO)~. From (1) we see that #ws) =

wg~. The minimality of T~x on I, and T on X9~ then implies that </> is an

isomorphism from iX9, T~x)to iXg~, T).   fj

2.2. Sequence entropy of substitution shifts. Let A = {/„} be an infinite sequence

of integers. From now on £ will have a fixed meaning: £ = {[0], [1]}, the time-0

partition of X. Note that | is an open cover of X. Let 4 := . V ^ ~ '£

V • . ■ V7,_*+1.. According to [6, P.2.1] and [14, L.2.1] we then have

Lemma 5. Let A be an infinite sequence of integers, T a subshift on X, £ =

{[0], [1]}. Then

hTiT) =  lim h\°PiT, ík)   and   hAiT) = lim hAiT, ik).
k—»oo k—»oo

Given A = {/„}, 17 a partition of X, -q" will always denote the partition n" =

T^'^y T'SjV • • • \/T~'"j}. The first conclusion of Lemma 5 then can be

rewritten as

hA°p(T) _  Hm   lim sup - \ogNitZ).
k—nx>       n—»oo        "

Since 4" is a partition, A(4") equals the number of nonempty atoms of ££. An atom

of ik is a general cylinder i.e. has the form

{xGX:x[tj,tJ+k_x] = BJ,j= 1,...,«}

= t~''[bx] n r-'^[R2] n ... n T~'-[Bn]

where   R1, . . . , B"   are   blocks   of   length   k.   We   denote   this   atom   by
[Bx;B2;...;Bn].

Let 9 be a substitution, w = we as defined in (1). An atom [Bx; B2; . . . ;Bn] of

§¿* intersected with Xt is nonempty iff there is an integer/? such that w[p + tj,p +

tj+k-i] = ^"'» j — I,. .. ,n. If this is the case we say that the ík-block

(R1; . . . ;B") occurs in w, or is admissible. Let A(Bi. ;_»)(C) denote the number of

occurrences of the 4"-block (R1; . . . ;B") in a block C. Since a general cylinder is a

finite disjoint union of simple cylinders, equation (2) generalizes to

^[R1; ...;!>?]) «Jim   p? #<_.;...;*•)(*"*)    for/= 0,1, (3)

and we obtain analogously

Lemma 6. Lei 9 be a continuous substitution, A an infinite sequence of integers. A

ik-block is admissible iff its mirror image is, and the corresponding atoms have equal

measure.

3. {/"}-entropy for substitution shifts. In the sequel, 9 is a continuous substitution

of length /, 00 = a0ax . . . a¡_x with a0 = 0 (this is no restriction since Te = Tg,

where 9 is defined by 00 =00) and w = wg is the sequence generated by 0.
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Recall that . = {[0], [1]}. We consider A = {1, /, I2, . . . }, thus £" = T~x£ V

T~'i V • • • \JT~r £. Atoms are called nonempty if their intersection with X9 is

nonempty.

If [b0; bx; . . . ;b„] is a nonempty atom of |" + 1 then trivially [b0; bx; . . . ,bn_x] is

a nonempty atom of £".

Basic Property. Let [b0; bx; . . . ;b„] be a nonempty atom of _"+1. Then

[bx; b2; . . . ;bn] is a nonempty atom e>/£".

Proof. If [b0; bx; . . . ;bn] is a nonempty atom of |"+1 then there exist integers/?

and 0 < q < I such that wp¡+q+lJ = bj,j = 0, 1, . . . , n. Since 9w = w, we have for

any integer s

{ 00 = anax . . . a,  ■    or
w \sl, sl+ /- 1    = ° ' ' ' (4)

L J       \9\=ä0äx...äl_x K '

and (recall that a0 = 0)

Wst = ws- (5)

Hence, if a„ = 0, theni

and if aq = 1, then

"' (7) Wpl+lJw Wp,+q+,J = bp     J=l'2>--->"'

' (7) Wpl+,Jw W"+«+p = bJ'      7 = L2,...,«.

Therefore, if a  = 0 then [bx; b2; . . . ;b„]; if aq = 1  then [Z>,; ¿>2; . . . ;bn] is a

nonempty atom of £". The claimed property follows in the last case from Lemma 6.

Theorem 1. Let 9 be a continuous substitution of constant length I and let

A = {/"}. Then

hTiTg) = hA°piTg,H).

Proof. Let 4 = £ V T~x£ V • • • \/T~k+x£. According to Lemma 4

hAopiTg)= lim «r(7i,&)
K—»OO

for any /I. Since ^ + i refines ^, it suffices to prove (with A = {/"})

hT(Te, tk) < hAopiT9, .)   for A: = 2, 3, ... .

We first consider k = 2. Let (¿>0c0; 6,0,; . . . ;b„cn) be the ££+'-block corresponding

to a nonempty atom of i2 + x, i.e. there exist integers/? and 0 < q < I such that

wpl+q+liwpl+q+li+x = bjCj,      j = 0, 1, . . . , «.

Case 1. 0 < q < I — 1. Then c2, . . ., cn are completely determined by the

symbol c, plus the ¿"-block (Z?,; b2; . . . ;bn). For the ¿"-block (c,; c2; . . . ;c„)

equals (6,; b2; . . . ;b„) or its mirror image, depending on whether aq = aq+x or not.

Case 2. q = I — 1. Then (Z»0c0; ¿>,c,; . . . ;bncn) is completely determined by an

admissible |2"-block. This is the £2"-block {bxcx; . . . ;b„cn) if a,_x = 0, the _2-block

(bxcx, . . . , bncn) if a,_x = 1 (cf. the proof of the basic property). The symbols b0

and c0 are determined by bx since all three symbols occur in the same 00 or 01.
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Combining these two cases we obtain

A(¿2"+1) <2-2-A(r)+A^2n)

< 4AT({") + 4Af(¿"-1) + • • •  + 4A(¿2) + N^2)

< 4«A(¿").

Therefore

hAopiTg, ¿2) = lim sup \ log NÜÍ)
n—*oo      "

< lim sup- log(4(n - 1)JV(€"-1))
n—»oo      1

-*r(2v>ö-
Now let £ > 2. Choose m such that /m > k. Let Ry = ¿^ .. . b{ be a block of

length /c for y = 1, . . ., « and let (R1; R2; . . . ;R") be the ¿¿-block corresponding

to a nonempty atom of 4". Then there exist integers/? and 0 < q < lm such that

w[plm + q+ V,plm + q + ¡J + k - \] = BJ,       j=\,...,n.

The 4"-block is completely determined by the first «i-l blocks R1, . . . , Rm~! and

the _2"-m+ '-block

ib¡!_9b¡S_9+í; . . . ;bí_qb?m_q+x)   iíq>r-k,

ibfb?; . . . ;ô;_2")    if O < q < im - k.

(Actually the ¿"~m+'-block (Z»,m; . . . ;bx) would suffice in the second case.) This

leads to the following bound.

ATfo") < i2k)m-xNÍtrm+1)-

Therefore

hTiTgAk)<   h^PiTg,   è2).        O

Theorem 2. Let 9 be a continuous substitution of length I and let A = {/"}. Then

hAÍT»)   =   KiTg,   0.

Proof. As in the proof of Theorem 1 it suffices to show (with A = {/"}) that

hA(Te, ik) < hA(Te, ¿) for k = 2, 3, ... . Let k > 2 and m be arbitrary such that

lm > k. Let

r-\
F=       IJ       Tj9mXg

j = !m-k+\

and t/ = {F, Xe\F}. We shall estimate //(¿A"|¿" V v) for n > m.

An atom of ." V V which lies in Xg\F splits into at most 2(*_1)m atoms of 4".

For if [R1; R2; . . . ;R"] is a nonempty atom of 4" (R7 = b\b{ . . . b{ for j =

1, . . . , «), and x belongs to the nonempty atom [b\; b2; . .. ;bx] of £" and to

Tj9mX9 then it follows from Lemma 3 that the blocks Bm, . . . , B" all occur at

places j modulo lm in w. Since 0 <, j < lm — k, these blocks are completely
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determined by the ¿"-block (¿>f; b\; . . . ;b") and the block b2b? . . . bk. Further-

more    there    are    at    most   (2*_1)m_1    possibilities    for   b\b\ ■  • • bkx,
Lm-lLm-l .  um-\

. . . ,02       D3 Dk

An atom of ¿" V V which lies in F splits into at most 2k" atoms of ¿¿, as there

can be no more atoms in ¿¿. Estimating the entropy of a partition with the

logarithm of the number of its nonempty atoms we obtain

H(tf|_" V t?) < niX9^F)log2<k-»m + u(F)log2"*

<\k - T)m log 2 + nkpiF)\og 2.

According to standard properties of entropy

H{%) < z/(¿;|¿" V v) + HÜ") + Hiv).

So

//(¿£) < //(¿") + ik- \)m log 2 + nkpiF)log 2 + log 2,

and

hAiT9,tk)<hAiT9,0 + kpiF)log2.

Since T preserves p and the Ti9mX9 are disjoint according to Lemma 2, we have

piTj9mXg) = rm forj = 0, . . . , /m - 1. Therefore

hAiTg, ik) < hAiTg, {) + (*- \)kl~m log 2.

Since we can choose m arbitrarily large we obtain the desired

«a(T„ Q < KiTg, ¿),   where A = {/"}.    D

We now turn to the task of calculating «j°P)(Ts, ¿) and h{niTg, ¿). If

[b0; bx; . . . ;bn] is a nonempty atom of ¿"+1 then [bx; b2; . . . ;b„] is a nonempty

atom of ¿", as noted in the Basic Property. Conversely, if [bx; b2; . . . ;bn] is a

nonempty atom of ¿", then either [0; bx; . . . ;bn] or [1; bx; . . . ;bn] or both are

nonempty atoms of ¿"+1. As we shall show below it is possible to decide which one

of these possibilities occurs, according to an algorithm which does not depend on n

but only on the first element of the atom of ¿" under consideration, i.e. on bx.

First we split some atoms into two: instead of ¿" = r_1¿V ■ • -\/T~r ¿we

consider ¿ V ¿", denoting a nonempty atom of this partition by

[b0ibx; b2; . . . ;bn)]   :=   {x G Xe: x0 = b0, xx = bx, x2 = b„ . . ., xr-x = bn},

and the corresponding ¿V ¿"-block by b0ibx; b2; . . . ;bn). We then fuse pairs of

atoms of ¿ V ¿"- Let i\n be the partition whose atoms are

[b0ibx; b2,... ;_■„)] u [b0(bx; b2; . . . ;b„)]. (6)

Note that

|log A(¿")-log NiVn)\ < log 2,        \Hi£")-Hir,„)\ < log 2.

Therefore

h^}iTgA) = lim sup ^-log NiVn)
n—*<x>      «
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and

"{/")(7», Ö = lim sup -//(i)J.
«—»00        «

The following lemma describes the announced splitting algorithm. In the sequel,

+ between symbols denotes addition mod 2.

Lemma 7. Let 0(6,; b2; . . . ;bn) be an admissible ¿ V £"-block. Then

Oiaq + aq + x; bx; b2; . . . ;bn),       q = 0, 1, ...,/- 2,

Oia,_x + bx; bx; b2; . . . ;b„) (7)

„re / admissible ¿ V ¿n+1-blocks. Moreover any admissible ¿ V i"*1-block

0(c; 6,; ¿>2; . . . ;bn) with c = 0 or I is among (7).

Proof. Let 0(6,; b2; . . . ;bn) be an admissible ¿ V ¿"-block, i.e. there exists an

integer/? such that wp = 0, wp+/J-¡ = bj,j = 1, 2, . . . , n. By definition

wiP+q(wip+q+i'> wiP+q+r> ™iP+q+i* • •• ;>"4,+,+/").       9 = °.'-Ii     (8)

are admissible ¿ V ¿"+ '-blocks. But it follows with (4) and (5) that

w[lp, Ip + I — 1] = a0ax . . . a,_x    and

\bj   úaq = 0,
wiP+q+v "if-    ., , J = L • • • > n and q = 0, ...,/- 1.

[*>,■    if a9 = 1.

If + between symbols denotes addition modulo 2 we can concisely write wq>+q+¡i

= bj + aq, and we see that the blocks in (8) can be identified as

aq(aq+v b\ + <V b2 + aq; . . . ;b„ + aq),       q = 0, . . . , I - 2,

a,_xibx; bx + a,_x; b2 + a,_x; . . . ;bn + a,_x). ^

Considering the cases aq = 0 and aq = 1 separately, mirroring the ¿V£"+ '-block

in the latter case and using Lemma 6, we obtain that the blocks in (7) are

admissible. The last assertion of the lemma follows from the fact that any

admissible ¿ V ¿"+'-block 0(c; bx; b2; . . . ;bn) is among (8) for some p and 0 < q

< I, and the Basic Property.   □

Theorem 3. Let 9 be a continuous substitution of length I. Then

h«*(T\. ílogÜ + 5^5)     1/00 = 0101... 01,

[ log 2 in all other cases.

Proof. Let a be the number of zeros in {a0 + ax, ax + a2, . . . , a¡_2 +

a,_x, a¡_x}, ß the number of zeroes in {a0 + ax, ax + a2, . . ., a,_2 + a,_x, a¡_x +

1}. Then 0 < a,ß < /. In case 0 < a,ß < / it follows from Lemma 7 by induction

that any ¿V ¿"-block is admissible. (The ¿V¿ '-blocks 0(0) = 00 and 0(1) = 01

are admissible for any nonfinite 0.) Therefore Ni-q„) = 2" and h\fJlxiTe) = log 2.

Here we used Theorem 1.

It is quickly verified that the cases a = l, ß = 0 lead to finite substitutions and

that ß = / is impossible. The only case left is a = 0 with 00 = 0101... 01. Then
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all blocks in (7) are equal to 0(1; 0; b2; . . . ;b„) if bx = 0, while both

0(0; 1; b2; . . . ;b„) and 0(1; 1; b2; . . . ;bn) occur if Z?, = 1. It follows by induction

that 0(60; bx; . . . ;bn_x) is an admissible ¿V ¿"-block if and only if no two

consecutive b's are 0. This easily implies that tl, has exactly Fn+X nonempty atoms,

where Fn is the «th Fibonacci number. Therefore, if 00 = 0101 ... 01, then

hfß}iTg) = hm sup I logiFn+x) = log(¿ + {- Vs ).   Q
n—»oo      «

Corollary. Let 9 be a continuous substitution of length I. Then

h?fL}iTg) = \og2.

Proof. Immediate from T9 = T9i.

Remark. The reader acquainted with topological Markov chains (introduced as

intrinsic Markov chains in [17]) will have noticed that in the case 00 = 0101 ... 01

the nonempty atoms of tj„ are in one-to-one correspondence with the nonempty

atoms of (f V T~l$ V • • • VT~n+xÇ) n Xa, where f is the time-0 partition of a

shift space on two symbols with shift T and Xa the topological Markov-chain

determined by the matrix a = (¡\).

We now turn to measure-theoretic {/"}-entropy. Given a continuous substitution

of length /, we define a substitution 9d of length / by

^(0) = K + ax)iax + a2) ■ ■ ■ ia,_2 + «,_,)(%_, + a0),

0rfO) = («o + «iX^i + a2) ■ ■ ■ ia,_2 + _,_ ,)(<*/_ i + aQ).

In [1] 9d is called the discrete substitution associated with 9. If 0 is any substitution

then we call the matrix L = L(0) = (L) defined by ltJ = Nji9i), i,j = 0, 1, the

matrix of 0. Note (remember a0 = 0) that L(0d) = (^ {_£), where a and ß are as in

the proof of Theorem 3.

On (0, 1} we define a probability vector/? by

/>o=u([00]u[H]),       />, = u([01]u[10]) (10)

and a Markov matrix II = n(0) = (««)h_,o Dv

H :=  rxLi9d) = /-(J    ¡I«). (11)

Lemma 8. Leí/? an¿ IT be as in (10) and (11). 77ie« n(0m) = nm(0),/?n = p and

p0= ßil-a + ß)~x.

Proof. It is not hard to verify that (0m)d = (0d)m for w = 1, 2,_Conse-

quently n(0m) = rmLH9m)d) = rmLmi9d) = nm(0). It follows from (2) that

n('-)-(2;  J)  if «-«o ;

which implies/?n = /?, and/?0 = )8(/-a + Ö)-1 follows by direct computation.   □

Let v be the Markov measure and Tu be the Markov shift defined by/? and II [3]

(/? is uniquely determined by n since n is irreducible). Let f = {[0], [1]} and

£„ = S V T~xi V • • • V7""+'í. The distinction between ¿ and f is made to
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indicate that atoms of ¿ will be measured with p and those of f and £„ by p. We

define a map <i> from -r\n (with atoms (6)) to f„ by

<j>: [Oibx; 62; . . . ;bn)] u[l(6~; 6~; . . . ;6„)] -[¿A-i . . . b2bx].

In particular <j>i[00] u [11]) = [0] and <K[01] u [10]) = [1]. We claim that <f> is

one-to-one and measure preserving between tl, and f„, i.e. if R is an atom of _„ then

<#>~'R is an atom of tl, such that pi<b~xB) = p(R). The proof is by induction on «.

For « = 1 our claim is true by (10). Let « > 2. Suppose

p([0ibx; b2;... ;bn)] u[l(6~; 6~; . . . ;*_)]) = *([bn . . . b2bx])

for all atoms [0(6,; b2; . . . ;bn)] (J [1(6,; b2; . . . ;b„)] of t)_. We have to show

^[0(60; bx; . . . ;bn)] u[l(60; bx; . . . ;bn)]) = ,([*„ • • • bxb0])

forb0 = 0, l.Now

vi[bn...bxb0]) = -ubibvi[bn...b2bx})

= irblbop([0ibx; b2;... ;bn)} u[l(6,; b2; . . . ;bn)]),

the last equality by the induction hypothesis. So we prove our claim, if we show

p([0ib0; bx; . . . ;bn)] u[l(b0; bx; . . . ;bn)})

= iwítOÍA,; bï> ■ ■ ■ -A)} u[i(6,; b2; . . . ;bn)]).    (12)

Let m be arbitrary but large. Any ¿ V ¿"+'-block occuring in 0m+1(Ol) is generated

by a ¿ V ¿"-block occuring in 0m(Ol) as in the proof of the Basic Property.

Conversely, any ¿ V ¿"-block occuring in 0m(Ol) generates / ¿ V¿"+ '-blocks in

0m+1(Ol) as in (9). Considering this equation and iU mirror image and taking into

account that ¿ V ¿"-blocks and their mirror images occur in pairs in

0m(Ol) = 0mO0™0 and in 0m+1(Ol), we obtain the following refinement of Lemma

7. Suppose there occur k ¿ V ¿"-blocks 0(6,; . . . ;6„) in 0m(Ol). Then there occur

exactly k ¿ V ¿"+'-blocks 0(a„ + aq+x; 6,; . . . ;6„) for each q = 0, 1, ...,/- 2

separately, and k blocks 0(a,_, + 6,; 6,; . . . ;6„) in 0m+1(Ol). Therefore

AW,;   .A>(*m+i(01))

= (number of 60 in {a0 + ax, . . . , a,_2 + a,_„ a,_x + 6,})^^.... A)(0m(Ol))

= ^^„,....,^9^01)),

by the definition of n in (11). Dividing both sides by lm+x and letting m -* 00

yields (12) by (3) and Lemma 6.

The fact that <i>: tl, -» f„ is one-to-one and measure preserving for « = 1, 2, . . .

implies immediately

Theorem 4. Let 9 be a continuous substitution of length I with associated discrete

substitution 9d. Then

hniTg) = h(Tn)

where Tn is a Markov shift with transition matrix Tl = / ~ xL(9d).
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Example 1. High {/"}-entropy is obtained when a = l-ß iff

1 //-   1        /+  \\      ._      ,TT_  !//+ 1in
2W+1     /- lj 2 V/ - 1     /+ 1/

For any odd / a continuous 0 with L(0_) = ITl as above is easily found. In this case

/? = i\\) and

,      /»-x      ,      *      1  , '2 1   ,       /+ 1
V)(Ti) = log 2 + - log ——-— lo8 TTTf '

which can be arbitrarily close to log 2.

Example 2. Low {/"}-entropy is obtained when 00 = 0101... 01. Then

Wr*) = 7TTlog ' - 7T7 losC " l)>

which can be arbitrarily close to 0.

Example 3. Theorems 3 and 4 provide us with many examples of hApiT) ^

hAiT) = sup^^ hZiT). For example if 0 is defined by 00 = 01, then hffl^Tg) =
log(^ + j V5 ) and «{2.}(7¿) = § log 2 (set / = 2 in Example 2).

Example 4. {/"}-entropy is not a complete invariant for 7^'s with 0 of length /. It

is particularly obvious that n(0) = n(0~), so Te cannot be distinguished from T9~

nor from T9~x (Lemma 4).

4. Other sequences. In this section we consider sequences

a = {Hi) ■ r, ki2) •/-,..., kit)- /"}:_„ ii)

with 1 = /t(l) < k(2) < . . . < kig) < I. The restriction fc(l) = 1 is mainly for

technical reasons. Recall that ¿ = {[0], [1]}. The basic property now is: Let

[6,; 62; . . . ;*,<„+d] = {x G X: xk(i)lJ = bgj+¡, 1 < i < g, 0 < j < n)

be a nonempty atom of ¿«<"+1). Then [bg+x; bg+2; . . . ;bgin+X)] is a nonempty atom

of ¿*". The proof is a slight generalization of the proof of the basic property for

A = {/"}.

Theorem 5. Let 9 be a continuous substitution of length I and let A be as in (#).

77ie«

KTiT,) = hTiTg, ¿)   and   kjTj - hjj* 0.

Proof. Note that

lim sup —log Af(¿") = lim sup —log ^(¿«")
rt-»oo      n n—»oo      _"«

and

lim sup - //(¿") = lim sup — HHgn).
n—»oo      « «—»oo      ^W

We can follow the proofs of Theorems 1 and 2 with « replaced by gn everywhere

and A as in (ft). Details are left to the reader.   □

In the calculation of hApiTe, ¿) and hA(T9, ¿) the following notions play an

important role. Let a0ax . . . a,_, be a block of zeroes and ones. The auto correlation
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matrix M = («i,9)Í~'1j9«0 °f aoai • • • ai-\ 1S defined by

miq = % + a(? + /)mod/. 1  < i <l,0 < q <l,

where + between symbols stands for addition mod 2. The cross correlation matrix

A = iniq)'r \q_0 of a0ax ...a,_xis defined by

miq    if i + q < I,

n,q      [ miq    ifi + q>l.

Given 1 = kil) < k(2) < ... < k(g) < I and a matrix M = (miq)'¡ZJ>?_0> we call

the matrix M :=   (w^(()9)f_7j_0 the reduced matrix.

As in the last section we split the atoms of ¿g" by ¿ and consider tl, with atoms

[60(6,;...;6gJ]u[6"0(6",;...;6gn)]. (13)

Then we have

hT(T9, î) = ~ lim sup i log Nii,m),
g     n-»oo     «

hAiT9,0 = llimsup±-Hir}n). (14)
5      n-»oo      «

Let [0(6,; . . . ;bgn)] be a nonempty atom of ¿V¿*"- This is equivalent to the

existence of an integer/? such that

wp = 0,    wp+k(iVj = 6&+,.,        1 < í < g, 0 < j < ». (15)

For each q wth 0 < q < I

wiP+q(wiP+q+i'> ■ ■ ■ ;wtp+q+k(»v> ■ ■ ■ ;w4,+,+«_)/")     0 <i < g,o <j <n)

(16)

is an admissible ¿ V ¿g("+ ''-block. Now equations (4) and (5) imply that

w* = 0,

*,+?+w')    lvw-i + *.   if.+ *(/)>',

H'/p + ? + «0/' " 6» + . + a?>        1 < i < g, 1 < / < n.

Considering the cases aq = 0 and a? = 1  separately for q = 0, ...,/— 1, we

obtain as in the last section

Lemma 9. Le/ 9 be a continuous substitution of length I and A as in (#). Let M and

N be the reduced auto, respectively cross correlation matrices of 00. Lei

0(6,; . . . ;bgn) be an admissible ¿ V ign-block. Then, if 6, = 0

0(m,9; m2q; . . . ;mgq; 6,; . . . ;6g„),       q - 0,...,/- 1, (17)

a«i/ »/ 6, = 1

0(«,?; «2?; . . . ;«g_; 6,; . . . ;__,),       9 = 0, ...,/- 1, (18)

are admissible ¿ V £g(n+X)-blocks. Moreover, i/0(c,; . . . ;cg; 6,; . . . ;6g„) w/rTi c, = 0

or 1 /or 1 < í < g is an admissible ¿ V ¿*("+1''-block, then this block is among ill) or

(18).
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With the columns occurring in the reduced auto or cross correlation matrices M

or N of 90 ■we associate nonnegative integers j with 0 < j < 2g called states simply

by considering a column as the binary notation of s. Thus

(1,2, ...,2*~X)M=: isx,s2,...,s,)=: v0

is the vector of states associated with M. Analogously (1, 2, ... , 2g_1)A' =: vx is

the vector of states associated with N. Let S be the set of states which occur in v0

or vx. We partition S into two sets S0 and Sx by s G Sr iffs = r (mod 2). States in

Sq are called even, those in 5, odd. We illustrate this terminology with an example.

Example 5. Let 00 = 0011, A = {4", 3-4"}_>0. Then the auto and cross correla-

tion matrices of 00 are

0
M =    1

.1
The reduced matrices are

M

1
1
0

0
1
1

N = 1
0
0
0

o]
0
1

-(?
0
1 ) - Mí i I ï>

t_ = (2, 1, 2, 1), vx = (2, 3, 0, 2)  and S0U S, - S - {0, 2, 1, 3).

We consider Sz with shift T and time-0 partition f = {[s]; s

:=  ? V T~lS V ■■■ V7'-"+'f.

Any admissible ¿ V ¿g-block or its mirror image occurs in

or   ana, . . . a,_,änä, . . . ak

S}. We set f„

lönfl i-»0"1 • • • "/-1"0"1 • • • "*(g)-l      U1      "0"1 • • • "/-l"0"l • • • "k(g)-l-

The columns of M have just the same components as the ¿^-blocks preceded by 0,

or their mirror images, in case they are preceded by 1, which occur in the former

block. Analogously columns of N correspond to ¿*-blocks occurring in the latter

block. We therefore have a one-to-one correspondence between nonempty atoms of

t/, (see (13)) and states in S, or equivalently, with nonempty atoms of _. Moreover,

atoms [0(6,; . . . ;bg)] u [1(6,; . . . ;bg)] with 6, = 0 correspond to even states and

those with 6, = 1 to odd states. Let [0(6,; . . . ;6g„)] be a nonempty atom of

¿ V ¿"g- As in the Basic Property it follows that 0(6,; . . . ;bg),

0ibg+x; . . . ;b2g), . . . , 0(bg(n_X)+x; . . . ;bgn) are admissible ¿ V ¿g-blocks. If

s„, sn_x, . . . , sx are the corresponding states (note the order inversion), then we let

the atom [0(6,; . . . ;bgn)] u [1(6,; . . . ;6^n)] of tl, correspond to the atom [sx] n

T~x[s2]n ...nr-"+,K]of._.

Let a be a matrix on 5 X 5 defined by

if s G Sr and t occurs in vr for r = 0 or 1,

otherwise.

Let Ta be the topological Markov shift defined by a ([3], [15]). With Lemma 9 it is

easily shown by induction that the above defined correspondence is one-to-one

between nonempty atoms of r¡n and of f„ w.r.t. T0. With the aid of Theorem 5 we

obtain

Theorem 6. Let 9 be a continuous substitution of length I and let A be as in (i). Let

Ta be the topological Markov shift determined by (19). 77ie« h^p(Te) = g'^^TJ.

Mi (19)
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It is well known ([3], [17]) that «top(7'(J) equals log X, where A is the largest

eigenvalue of a. The matrix a in (16) has a special form: transitions only depend on

whether a state is even or odd. Let o° be the 2x2 matrix defined by a^, =

^•tesasi where s G Sr. Then the largest eigenvalue of a° equals A. To prove this,

note that À is an eigenvalue of a° with a nonnegative eigenvector. Since a° is

irreducible (a component of o° equals zero iff the corresponding component in

iaß '¡Iß) equals zero, where a and ß are as in the proof of Theorem 3), the

uniqueness of nonnegative eigenvectors [5, p. 63] implies that X is the largest

eigenvalue of a". This observation facilitates the calculation of hApiT9).

Example 5 (continued). Here

a =

0 110
0 110
110 1
110     1

•-Ü !)•
Hence 6;o4p,3.4.,(Tä) =i log(l + V2 ).

Example 6 [9, §7, Example 3]. Let 00 = 001, A = (3", 2 • 3"}. Then M = M =

(° ¿ !), N = Ñ = (° ! °), _0 = (2 1 3), t;, = (2 3 0), S = {0, 2, 1, 3} and a" = (J 2).

Hence h$a.r)iT9) = \ log 3.

We turn to the calculation of measure-theoretic sequence entropy. Let a proba-

bility vector/? = ÍPs)s£S be defined by

Ps = piBs),       s G S, (20)

where Bs is the atom of ij, corresponding to s. Let a Markov matrix IT = n(0, A)

= (wj^es be defined by

irst = / ~ ' (number of times t occurs in vr)    if s G Sr, for r = 0 or 1.      (21)

Lemma 10. Let p and Tl be defined by (20) and (21). TTie« pTl = p.

Proof. Let 11° be the Markov matrix obtained by lumping [11] all states in Sr to

a single state r for r = 0, 1. Let p° be the probability vector (2ies/?j, 2jes ps).

Then n° = 11(0, {/"}n>0) and p° = (K[00] U [11]), u([01] u [10])). According to

Lemma Sp°H° = p°. This suffices to havepïl = p.    □

Let rn be the Markov shift on Sz defined by/? and II. As in the last section one

shows that our one-to-one correspondence between tl, and f„ is measure preserving.

One then has

Theorem 7. Let 9 be a substitution of length I, A as in (#). Let Tn be the Markov

shift defined by (20) and (21). Then hAiT9) = g-xhiTn).

In our situation the formula for the entropy of Tn [3, Proposition 12.3] simplifies

to

«(Th) = -2u([00]) S V log*v - 2u([01]) 2 «_,, log «•„„
res 165

where j0 is any even and sx any odd state.
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Example 6 (continued). Here TI =\a. Therefore hAiT9) = \ log 3. Note that in

this example hApiT9) = hAiT9), i.e. the variational principle holds for this substitu-

tion shift with A = {3", 2-3"}. It does not hold with A = (3"}, cf. Theorem 3 and

Example 1.

Example 7. Let 00 = 00001. Then

M =

0
0
1

0

0
1
0
0

1
0
0
0

N =

0
0
1
1

0
1
1
1

a = number of zeroes in first row of M = 3, ß = number of zeroes in first row of

N = 4. So by Lemma 8, 2«([00]) = /?(/ - a + A)-1 =§. First let A = {5"}. Then

M = (00011), Ñ = (00010), 5 = {0, 1} and n = ±(| 2). Hence

V}(r») = log 5 + f [ -f log 3 - f log 2] + i[ -| log 4] = 0.61547 ....

Now let A = {5", 3-5"). Then

û_(0    0    0     1     1\ <j-(0    0    0     1     0\
M-\o   i   o   o   i>     N-(o   1    1    1   oj*

Co = (02013), t?, = (02230), S = {0, 2, 1, 3}. The transition probabilities from 0

and 2 are therefore j(2, 1, 1, 1) and those from 1 and 3 are y (2, 2, 0, 1). Hence

A(5M.5")(^) = _ {log 5 + f [ - I log 2] + ¿[ -1 log 2]} = 0.61987 ....

In this example we have A{5„j(7¿) < h^3.y^iT9), although {5") is a subsequence of

{5", 3-5"}.
Example 8. Let 0,0 = 0111001, 02O = 0110001 and A = {7", 4-7", 6-7"}. Then

a(0,) = / — /?(0,) so 2pii[00]) =\ for / = 1, 2, where p¡ is the T-invariant measure

on X9. Furthermore,

A/(0,) =
0
1
1

»o(0i) = (5    6

0
0
0

0

1
1

0

3

0
1
1

6

1
1
0

3

1
0
1,

5)

Ni9x) =

0
1

0

1
0
1

0
0
0

1
0
1

f,(0,) = (5     2    4    5     0    5    2),

S(0,) = {0, 2, 4, 6, 3, 5}.  The  transition  probabilities  from  an  even  state  are

j(1, 0, 0, 2, 2, 2), those from an odd state are j(l, 2, 1, 0, 0, 3). Now for 02,

0
1
0

2

M(02) =
1 0
0 1

.1 1

«o(*2)-(5 6

1
0
0

0
0
1

1

1
1
0

3

A(02) =
0
1
0

1
0
1

0
1
0

0
0
1

1
0
1

0]
0

7),       vxi92) = i5    2    5    2    4    5

0.

0),

5(02) = {0, 2, 4, 6, 1, 3, 5, 7}. The transition probabilities from an even state are

uniformly distributed over the positive states and those from an odd state are

?(1, 0, 2, 0, 1, 3, 0, 0). Therefore

M7i1)-Ä^(7iJ)-i{l[-flogf>ilo87]}-i{.log7}-Ilog2.

Hence T9¡ and T9 are not isomorphic. However, 02 = (0,~)2, so it follows by

Lemma 4 that 7_ ä 7__1.
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Example 8 strengthens a result of Gottschalk [7] who proved that T9 & T9~x if 0

is the continuous substitution defined by 00 = 0010. Actually one can show that

T9 oz T9X, and consequently T9 m Te~x, for this 9 by calculating the

{16", 11  16", 13 16"}-entropy for 02 and (0~)2.

5. The isomorphism problem for substitution shifts. We once more only consider

systems arising from continuous substitutions on two symbols. In [1] the problem

of topological classification of such systems is solved for substitutions having the

same length. It is stated without proof that two systems arising from continuous

substitutions are measure-theoretically isomorphic iff the substitutions have a

common power. This would imply the corresponding topological result which has

been proved in [15]. Concerning the measure-theoretical classification there are

some results in [10] where an invariant is obtained from calculations on the spectral

measure of T9. If M and A^ are the auto and cross correlation matrices of 00, let us

call M' := \(M + N) the aperiodic auto correlation matrix of 00. It is shown in

[9] that the vector of row sums of M' is an invariant for T9's arising from

continuous substitutions of the same length /. Obviously M'(B) = M'(B~), so this

invariant does not distinguish between T9 and Te~ or Tfx.

Consider the collection of sequences

{A = {k(\)lnm, ..., k(g)lnm}n>0: m > 1, 1 = ¿(1) < • • • < k(g) < lm}.

We conjecture that the corresponding collection of sequences' entropies is complete

among T9s arising from substitutions of the same length /, i.e. if T9 ä: T9 then

there is an A in this collection such that hA(T9) =£ hA(T9). The essential problem is

to compare two T9s arising from substitutions whose lengths are different but

possess the same prime factors (the latter is the case iff their pure point spectrum is

equal, see [1, p. 96]). We do not know an A such that the ^-entropy can be

computed for both systems.

Added in proof. From [19] follows that T9 as T9 for two continuous substitu-

tions of the same length iff 02O = 022O.
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