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p-SUBGROUPS OF COMPACT LIE GROUPS

AND TORSION OF INFINrTE HEIGHT IN H\BG)
BY

MARK FESHBACH1

Abstract. The relation between elementary abelian />-subgroups of a connected

compact Lie group G and the existence of p-torsion in H*(G) has been known for

some time [B-S]. In this paper we prove that if G is any compact Lie group then

H*(BG) contains p-torsion of infinite height iff G contains an elementary abelian

/»-group not contained in a maximal torus. The hard direction is proven using the

double coset theorem for the transfer. A third equivalent condition is also given.

1. Let G he any compact Lie group and p any prime. Let BG he the classifying

space of G. Let H*iBG) he singular cohomology with integral coefficients. An

elementary abelian p-group is isomorphic to a product of a finite number of cyclic

groups of order p. The rank of an elementary abelian p-group is the number of

factors of p-cyclic groups. We shall reserve the letter L for elementary abelian

p-groups. Thep-rank of G, Rip, G), is the largest rank of any elementary abelian

p-subgroup of G. This number is always greater than or equal to the rank of G,

riG), since a maximal torus of dimension / contains a subgroup L of p-rank /.

Borel and Serre [B-S] showed that if G is connected and Rip, G) > riG) then

H*iG) contains p-torsion. Borel [B] later verified (using the classification of Lie

groups) that if G is simple and simply connected and H*iG) has p-torsion then

some subgroup L of G is not contained in any maximal torus. (A good example of

a connected, compact Lie group to keep in mind is SO(«), « > 3. Viewed as

matrices the subgroup of diagonal elements is an elementary abelian 2-group which

is not contained in any maximal torus.)

The main theorem of this paper is a result similar to that of Borel and Serre

which is true for all compact Lie groups. The classification of compact Lie groups

is not used in the proof.

We say y G H*iBG) is p-torsion of infinite height if y " ^ 0 for all « and py = 0

for some i > I.

Theorem 1.1. For any compact Lie group G, the following are equivalent.

(A) H*iBG) has p-torsion of infinite height.

(B) G contains an elementary abelian p-group L not contained in any maximal

torus.
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We also give a third equivalent statement at the end of the paper (2.1). In

addition we exhibit a nonconnected compact Lie group which has all of its

subgroups L contained in maximal tori but whose classifying space nevertheless

has 2-torsion (3.1). This example shows that one cannot remove the condition that

the p-torsion is of infinite height from the theorem. This counterexample also

shows that the cohomology of the classifying space of the Weyl group is not always

contained in the cohomology of the classifying space of the normalizer of a

maximal torus.

The implication (A) => (B) follows easily from a theorem of Quillen [Q, 7.1]. The

double coset theorem for the transfer [F] is used to prove (B) => (A). Two key

lemmas are proved along the way. One concerns the existence of elements in a

finitely generated free ring over Z/pZ which have the property that their sum

under the action of a group of automorphisms of the ring is non trivial (1.6). The

second concerns the image of the restriction map of H*(BC) to H*(BL) where C is

the centralizer of L in G (1.4).

(1.2) First we prove (A)=>(B). Let y G H*(BG) be p-torsion of infinite height.

Since y is of infinite height y reduced modp, denoted y, is also of infinite height. If

not some power of y would be divisible by p. A theorem of Quillen [Q, 7.1] implies

that every element of infinite height in H*(BG, Z/pZ) is detected by some

elementary abelian p-subgroup of G. Hence there is an L c G such that

p*(L, G)(y) is an element of infinite height in H*(BL, Z/pZ). L is not contained

in any maximal torus T since otherwise the integral class y would go to 0 in

H*(BT) and hence in H*(BL).

We use the double coset theorem to prove (B) => (A). We shall refer to [F] for

notation. Let L he a maximal elementary abelian p-group in G. Let C = {g G

G\glg~x = / V / G L} he the centralizer of L. Let N = {g G G\glg~x G L V / G

L} he the normalizer of L. Then C is normal in N and N/C is a finite group. The

general idea of the proof is to show that there is a y G H*(BC) such that

p*(L, G) ° T(C, G)(y) is an element of infinite height in H*(BL). Then we

essentially show that T(C, G)(y) is in fact a p-torsion element.

Proposition 1.3. Let y G H*(BC). Then

p*(L, G) c TiC, G)(y) = (2 Cg) ° p*(L, C)(y)

where the sum is over the elements of N/ C, where gC G N/ C. Cg is a conjugation

automorphism of H*(BL) [F, II.3].

Proof. By the double coset theorem [F, 11.11],

p*(L, G) o T(C, G) = 2 x*iM)TiC* n L, L) ° p*iCg n L, Cg) ° Cg

where the sum is over orbit-type manifold components {M} of the double coset

space L|G|C.

Since L is an elementary abelian p-group so is Cg n L = L'. If x G H*iBL')

then TiL', L)(x) = 0 unless L = L' since p*(L', L) is onto in H* and

TiU, L) ° p*iL', L) = 0 on H*iBL'). This latter fact follows since all elements of

H*iBL) have orderp andp divides x(L/L') if L' =t L [F, 1.1].
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Hence the only terms which are not zero are those where g G N. (Since L is

maximal it is in fact the unique maximal elementary abelian p-group in C. Hence

Cg n L = Lg n L.) Hence we need only sum over the orbit-type manifold com-

ponents of L\N\C. Since L is normal in N and is contained in C, L\N\C is just the

finite space N/C. x#(pO = 1- The proposition follows by noting that T(L, L) = id

and P*iL, Cg) ° Cg = Cg ° p*(Lg', C) = Cg ° p*iL, C) [F, II.2, 3].

We now analyze im p*(L, C).

Let the polynomial subalgebra of H*(BL) be denoted by Z/pZ[xx, . . . , x,]

where x¡ corresponds to the generator of H*(BZ/pZ) where Z/pZ is the ith factor

of L. x¡ has dimension two. The p-rank of L is /.

Lemma 1.4. There exists an S > 0 such that

im p*(L, C) D Z/pZ[xf, xf, ..., xf'\

Proof. The proof is a variation of an idea due to Swan [S]. We can embed C in

the unitary group U(n) for some n so that L is contained in the diagonal torus

U(l)n. This follows by the following argument. C can clearly be embedded in some

U(ri) since it is a compact Lie group. Under this embedding L is contained in a

maximal torus since all elementary abelian p-groups of £/(«) are contained in

maximal tori [B-S, Example 1]. Since all maximal tori are conjugate we can assume

L is contained in U(l)n.

We embed L in L' c U(T)n, another elementary abelian p-group, by adding new

generators to L. Let p he a pth root of unity. We add the element with p in the

places (bx, . . . , ft,) in U(T)n and one elsewhere if the (ft,, b2, . . ., ft.) places of each

x G L are (pe, . . . , pe) for some e depending on x and (ft,, . . ., ft.) is maximal

with respect to this property. In essence if the places (ft,, . . . , ft.) always agree and

disagree with any other place for some element of L we let them act freely as a

unit. By conjugating by some element of the symmetric group on « letters we can

assume the ft,'s are consecutive. Hence U(Tf is divided into segments of length m¡,

where E mt, = «.

Note that L' is the elementary abelian p-group generated by diagonal representa-

tions of Z/pZ in each block U(m,).

We claim that C is in fact contained in II U(m¡). Let c G U(n) be an element

which is not in II Uim¡). Then there is a nonzero element in the matrix representa-

tion of c which lies outside of the blocks containing II U(m¡). Say this element is in

the dth row and A:th column. Then by the maximality condition in the definition of

L' there is an x G L which has different values in the dth and kth places in U(T)n. c

does not commute with this element and hence is not in C.

Consider the commutative diagram where all maps are induced by inclusions.

BC-> B(UU(m¡))

Î ^j       RtfKi/aro)

BL-» BL'
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To prove the lemma it suffices to show that there is an S > 0 such that

im p*(L, Il U(m,)) D Z/pZ[xf, ..., xf*}.
Let E_ be the symmetric group on m letters.

It is well known that im p*(t/(l)"\ i/(w,)) equals H*(BU(T)mif"'<, the invariants

of the action of the Weyl group on the cohomology of the classifying space of a

maximal torus of a unitary group.

Hence im p*(II U(Tf, U U(mt)) equals II H*(BU(l)m>f»>.

We shall work on each factor separately. Let m¡ = m = p'q for each / where q is

prime top. Let (, G H2(BU(l)) he the generator of they'th factor of U(l)m. Then

t = S, ^, ^     ^, t, t¡ • ■ • t,   is invariant under the action of 2_. Let y be the
J\<Jl<        <JP' J1J2 -V m J

generator of H (BZ/pZ) where Z/pZ corresponds to the diagonal representation

of Z/pZ in V(T)m.

Then

p*(z/pz, u(T)m)it) = (py-

since p*(Z/pZ, f7(l)m)(r}) = y for ally since Z/pZ is diagonal, p does not divide

the coefficient since

lm\_ ipsq)ipsq - 1) • • • jp'q - p) ■ • • jp'q - p* + l)jm - p')\

\PS) ip°)ips - 1) • • • ip* - p) ■ ■ ■ ip' - p° + l)im - p')\

and p " divides a factor in the numerator iff it divides the corresponding factor in

the denominator.

Let S he the maximum of all the j. Let r/, be the generator of H\BZ/pZ) where

Z/pZ is the z'th diagonal factor of L'. Since each factor of II i/(«i,) behaves

independently we have shown

im p*(L', II Uim,)) D Z/pZ[r,fs, ̂ 2, ..., tf']

where thep-rank of L' is r.

We now show that for each x¡ in H\BL) which corresponds to a factor of L

there is an element in Z/pZ[T/f , t/_ , . . . ,-q^ ] which hits precisely xf  in H*iBL).

Since there is a map it: BL' -^ BL such that rr ° p(L, L') is the identity we need

only show that tr*ixfs) G Z/pZ[i]f, . . . , -q?s] for each i. tt*íx¡) = S dj,^, d}¡ G

Z/pZ. Hence

This establishes the lemma.

In summary we have shown there is an S > 0 such that

im p*iL, G) o TiC G) D S Cgix) (1.5)

for ail x G Z/pZ[xf, . . ., xfs] where the sum is over N/C gC G N/C

Each Cg is an automorphism of the ring Z/pZ[xx, . . . , x¡]. It is not hard to see

that Cgx and Cg2 are different if g, and g2 are in different cosets. Their action is

determined by the conjugation action of g, and g2 on L.

We need the following.
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Lemma 1.6. Let D be a subgroup of A = Aut(Z/pZ[x,, . . . , x,l). Then given any

S > 0 there exists an x G Z/pZ[xf , . .. , xf ] such that

2 dx^o.
deD

Proof. It is sufficient to find an x which works for A. Suppose otherwise, i.e.

2_eo dx = 0. Let a G A. Then E_e/) a dx = a "2d(=D dx = 0. Since the sum over

any coset of D is zero the sum over A must be zero which is a contradiction.

Hence we suppose D = A. A can be represented in GL(/, Z/pZ) as a group of

basis transformations. Let U equal the subset of A consisting of those elements

which do not have any zeros in the diagonal, i.e. u¡¡ =£ 0 V / if u G U. Let w equal

the number of elements in U.

Let x = x^'xÇ'2 • • ■ xf"' where a, > l,p^ > 2wpa>~i for 2 < i < I. Also assume

S divides a¡ for all i.

Let x = n_e£/ ux. We claim S_e/< dx =é 0. We shall see that this sum contains a

nonzero multiple of x w.

First we note that if d G A then

d(xf) = 2 CtjXf"

where the sum is overj and a, G Z/pZ. This follows since xf"' is apth power of a

basis element. Now dx = Il__[/ du x and x, appears with multiplicity pa,w in xw.

Sincep"' > S^/p'V the only way xw can occur in II du x is if a factor of exactly

xf"' comes from each du x. One cannot miss a factor of xf"' from any du x since

one could not make up the difference from all the other possible factors. Similarly

sincep"1 > S7<lpaAv V i we have that a factor of xf"' must come from each du x.

Hence the only way dx can contain a nonzero multiple of xw is if du x contains a

nonzero multiple of x for each u G U.

We claim that if d is not diagonal there exists a u G U such that du x fails to

contain a nonzero multiple of x. First suppose d is not an element of U. Then d

times the identity is not in U and hence the factor dx does not contain a nonzero

multiple of x. On the other hand if d G U but is not diagonal there is an i and a

/' ¥= i such that dtJ■=■ r =£ 0 and du = q =£ 0. r generates Z/pZ additively. Let

m G Z/pZ he such that mr + q = 0. Let u G U have ones down the diagonal, m

in they/ place and zeros elsewhere. Then du is not contained in Í7. Hence du x fails

to contain a nonzero multiple of x.

Suppose d is a diagonal element. Then d permutes the elements of Í7. Hence dx

contains the same multiple of xw as does x. Since there are exactly (p — 1)'

diagonal matrices and this number is prime to p some nonzero multiple of xw

remains in the sum. This establishes the lemma.

Note. This lemma is certainly not as precise as possible. I suspect that the image

of the map S_ <=_, d in Z/pZ[;c,, . . . , x,] contains / algebraically independent

elements.

We now finish the proof of (B) => (A).

From (1.5) and 1.6 it follows that there is a y G H*iBC) such that

p*iL, G) » TiC G)iy) is an element of infinite height in H*iBL). It remains to
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show that TiC G)iy) is p-torsion. Note that up to this point we have not used the

assumption that L is not contained in any maximal torus.

Let G0 he the identity component of G. We have two cases.

Case 1. L n G0 is not contained in a maximal torus. Then we claim that the rank

of C is less than the rank of G. Let Tx he a maximal torus of C. Let g G G0 n L be

an element not in Tx. Since g commutes with each element of Tx there is a maximal

torus of G0 which contains both g and Tx [Br, 0.6.7].

Let T he a maximal torus of G. By [F, VI.3] it follows that

p*iT, G) « T(C, G)(y) = 0. This suffices to prove that T(C, G)(y) is torsion since

p*(T, G) is injective on torsion free elements. This follows since

T(T, G) ° p*(T, G) is multiplication by xiG/T) =£ 0. Furthermore since

p*(L, G) ° TiC, G)iy) t^ 0 it is clear that the order of TiC G)iy) isp"q where q is

prime top and a > 1. Since 7\C, G) is a homomorphism we can assume q = 1, by

multiplying y by q if q ¥= 1.

Case 2. L n G0 is contained in a maximal torus. Then there is a g G L which is

not contained in  G0.  Let g  generate Z/pZ in  the following diagram where

r = g/g0.

BZ/pZ -^BL^>BG^> BT.
The first two maps are induced by inclusions and the last by projection. Since the

composition of these maps is induced by the inclusion of Z/pZ in T the induced

map in cohomology is nontrivial by Swan's theorem [S]. Since T is finite this

implies H*iBG) contains a p-torsion element of infinite height which pulls back to

an element of infinite height in H*(BL).

This completes the proof of the main theorem.

Note that as in Case 1 the p-torsion element in H*(BG) pulls back to zero in

H*(BT) where T is any maximal torus. This follows since the composition

T -» G -* T is trivial.

2. As a corollary of the proof we have

Theorem 2.1. The following are equivalent for G any compact Lie group

(B) G contains an elementary abelian p-group not contained in any maximal torus.

(C) H*(BG, Z/pZ) contains an element of infinite height which pulls back to zero

in the cohomology of the classifying space of any maximal torus.

(C) => (B) is a slight modification of the argument (A) => (B) (1.2). (B) => (C) can

be proven in almost the same manner as (B) => (A) was, just using Z/pZ

coefficients. As noted in both Case 1 and Case 2 of the proof the element of infinite

height pulls back to zero on any maximal torus.

Theorems 1.1 and 2.1 imply that (A), (B), and (C) are equivalent for any

compact Lie group G. Thus the existence of p-torsion of infinite height in H*(BG)

is detected by a condition in modp cohomology and also by the existence of a

particular kind of subgroup of G.

3.
Example 3.1. We now give an example of a compact Lie group G such that

H*(BG) has 2-torsion and such that the only elementary abelian 2-group in G is
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contained in a maximal torus. The group is not connected. It has two components

and looks like a continuous version of the union of all the generalized quaternion

groups.

The identity component is the circle Sx. The second component contains an

element t> of order four. The square of i> is -1 in Sx. If s G Sx then vsv~x is defined

to equal s . This is enough to define the group. Every element which is in the

nonidentity component vSx is of order four. Hence the only element of order two
is -1 G Sx.

Let Z/4Z be the group generated by v. Consider the maps

RZ/4Z -^BG^ BZ/2Z

where the first map is induced by the inclusion and the second by dividing out by

the identity component which in this case is also a maximal torus. The composition

is induced by sending v to the generator of Z/2Z. This induces a nontrivial map in

cohomology. Hence H*iBG) contains 2-torsion. However the 2-torsion is not of

infinite height. This can be seen either by direct calculation of H*iBG) or by using

Quillen's theorem as used in (A)=>(B) of the main theorem (1.2). This example

shows that the theorem would be false if one eliminated the hypothesis that the

p-torsion be of infinite height.

Note. G normalizes its maximal torus. Hence this example also shows that it is

not true in general that the cohomology of the classifying space of the Weyl group

injects into the cohomology of the classifying space of the normalizer of a maximal

torus.
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