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HIGHER DIVIDED SQUARES IN

SECOND-QUADRANT SPECTRAL SEQUENCES1

BY

W. G. DWYER

Abstract. The geometric action of the Steenrod algebra on many mod 2 cohomol-

ogy spectral sequences is complemented by the action of a completely different

algebra.

1. Introduction. The purpose of this paper is to show that many second-quadrant

mod 2 cohomology spectral sequences have a so-far unsuspected type of structure-

the action of an algebra of "higher divided squares". This action is related in an

essential way to the known action of the Steenrod algebra.

In more detail, suppose that A' is a cosimplicial space [2, p. 267], that is, a

collection {X"}n>o of spaces together with maps between them that satisfy the

dual of the usual simplicial identities. There is a natural mod 2 second-quadrant

cohomology spectral sequence E~p,q (p, q > 0) associated to X which sometimes

converges to an identifiable limit. The Eilenberg-Moore spectral sequence [8], the

generalized Eilenberg-Moore spectral sequence [1], and a few other more exotic

spectral sequences can be obtained in this way. Rector [8] and Smith [11] have

shown that this spectral sequence admits Steenrod squaring operations Sq': E~p'q

—* E~p,q+' which can be nonzero, at E2, for i < q — 1 (p > 0). This paper

constructs higher divided square operations

8¡: E2p'q -* F2-'-'-2«,       2 < i < p,

with the property that if the class x in E2p,q survives to E¡~px,q then d'(8¡x) =

Sq,_,+1(x). In this way the higher divided square operations ensure that at Ex the

action of the Steenrod algebra is unstable with respect to total degree (which is

<7 -/»)•
The 5,'s are constructed with the techniques of [4] and satisfy the Cartan formula

and Adem relations derived there.

Relationship to earlier work. From a formal or technical point of view this

paper develops for second-quadrant spectral sequences the analogue of Singer's

theory of Steenrod squares in first-quadrant spectral sequences [9], [10]. Neverthe-

less the conclusions of the two theories are opposite to one another. There are too

few "vertical" squaring operations in first-quadrant spectral sequences, and Singer

constructs "horizontal" squaring operations that make up the deficit. There are too

many vertical squaring operations in second-quadrant spectral sequences, and this
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paper constructs new horizontal operations that conspire with differentials to

annihilate the extra vertical classes.

Let A be the category of the finite ordered sets {0, 1, ... , n} (n > 0) and

nondecreasing maps [6, p. 4] and let Aop be the opposite category. A mixed

simplicial coalgebra is a functor from Aop X A to the category of commutative

Z/2-coalgebras. The singular complex of a cosimplicial space gives rise to a mixed

simplicial coalgebra in a standard way [10, p. 352]. In order to emphasize the

analogy with Singer's constructions most of the work in this paper will be done in

the category of mixed simplicial coalgebras; in particular, this involves developing

a purely algebraic approach to the geometric theory of Rector and Smith.

I would like to thank the referee for some very helpful comments.

2. Definitions and results. The constituents of a mixed simplicial object X will be

written Xp; the upper integer is the cosimplicial index and the lower the simplicial

one. In the same vein, d', s' will stand for the "horizontal" coface and

codegeneracy operators and d¡, s¡ for the "vertical" face and degeneracy operators.

An augmentation for a mixed simplicial object A1 is a simplicial object R together

with a simplicial map X: R -h> X° such that d°X = d^: /? -» X\.

Any simplicial Z/2 module R has an associated chain complex CR given by

(CR)n = Rn, d = 2?_o df Along the same lines, a mixed simplicial Z/2-module X

has an associated double chain complex CX given by (CX)_pq = Xp, with hori-

zontal differential dh = 2f_0 d' and vertical differential dv = 2?_0 d¡. It is some-

times useful to regard CX (with a single subscript) as a singly indexed chain

complex with a decreasing filtration

F"(CX)n = 2 (CA-)_1> + „       d=d"+ d\
>>p

Note that from this point of view (CA")„ is not positively graded.

Suppose that A1 is a mixed simplicial Z/2-module. There is an increasingly

filtered cochain complex Hom(CA~, Z/2) defined by

F^Hom^CA-, Z/2) =[/: (CA"),, ̂ Z/2|/(F"+1CA") = 0].

The spectral sequence (Er, dr) of X is by definition the spectral sequence of this

filtered cochain complex (see §5 and [5, p. 326]). Note that (Er, dr) is a second-

quadrant cohomology spectral sequence with E0~p'q = Hon^A^, Z/2). If X has an

augmentation X: R -» X then X defines, in an obvious way, a Z/2-homomorphism

A*: H* Hon^CA", Z/2) -h> H* Hom(CÄ, Z/2).

When X* is an isomorphism the cohomology H* Hom(CR, Z/2) is filtered and is

the "target" of the spectral sequence (Er, dr). The spectral sequence need not

converge, but in any case let

p: FpHq~p Hom(CR, Z/2) -+ E„™

be the natural projection.

Suppose now that A" is a mixed simplicial coalgebra and that R is a simplicial

coalgebra (all coalgebras are commutative coalgebras over Z/2 as in [9]). §4
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contains   a   construction   of   products   and   Steenrod   operations   both   on

H* Hom(CR, Z/2) and on H* Hom(CA", Z/2).

2.1. Proposition. IfX: /? —» X is an augmentation, then X* preserves products and

Steenrod operations.

§5 contains a construction of products

E~M ® E~s-' -> E~(j'+S)'q+'       (r > 2)

in the spectral sequence (Er, dr) of X, as well as a construction of Steenrod

operations

Sq*: Er-p'q -» Er-p'q+k        (r > 2).

2.2. Proposition. Products and Steenrod operations on E2 determine products and

Steenrod operations on Er for all r > 2. For example, if u G E2 survives to Er and

represents [u] G Er, then Sq*w survives to Er and [Sq*w] = Sq*[u].

2.3. Proposition. Under the above product pairing (Er, dr) is a spectral sequence of

differential algebras. The Steenrod squares commute with the differentials.

It follows that there are products and squaring operations on £M.

2.4. Proposition. Suppose that X: Ä —» X is an augmentation and that X* is an

isomorphism.    Suppose    that    u  G   F Hq~p Hom(CÄ, Z/2)    and    v  G

FrHsr Hom(CR, Z/2). Then uv G Fp+rH* Hom(CÄ, Z/2) and p(uv) = p(u)p(v).

Moreover Sqku G FpH* Hom(CR, Z/2) and pSqku = Sqkp(u).

Fix r > 2 and pick s > r. Let B~p,q denote the subgroup of ErTp'q containing

those elements x which survive to E~p,q and have zero residue class [x] in E~p'q.

By definition, an operation 8: E~p'q -» E~a,b of indeterminacy s is a map E~p,q -»

E-a'b/B;"-b.

§5 contains a definition of higher divided square operations

5,.: E-p'q -► Er-p~K2q,       2<r<i<p,

of indeterminacy 2r — 2. Note, in particular, that at F2 the indeterminacy is trivial.

2.5. Proposition. Higher divided square operations on E2 determine higher divided

square operations on Er for r > 2. In other words, if u G E2~p,q survives to Er and

represents [u] G ErTp-q, then for r < z" < p the class 8¡u survives to Er and 8¡[u] =

[8¡u] modulo the appropriate indeterminacy.

Remark. The indeterminacy of the operation 8¡ always lies in the kernel of all

spectral sequence differentials.

To avoid complicated notation, in the next statement no distinction is made

between an element u in E~p'q that survives to Es and its residue class in E~p,q.
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2.6. Proposition. Suppose that u G Er p,q (r < p) and that dru = v, with v G
E-p + r,g-r+l    Then

(a) for r < i < min{2r — 2, p — 1}, the classes 8¡u and Sqq~'+1u both survive to

E¡andd¡8¡u = Sqq~i+1u,

(b) if p > 2r, so that 8rv is defined, the classes 82r_x(u) and Sq,-2r+2M + 8rv both

survive to E2r_x and

d2r_x82r_x(u) = Sqq-2r+2u + 8rv,

(c) for 2r < i <p the classes 8¡u and 8¡_r+x(v) both survive to E2r_x and

dir-Au = 8¡_r+x(v),

(d) if r <p then dr8pu = uv while if r = p then dr8pu = uv + Sqq~p + 1u.

Remark. If u G Er then at E2r_x all of the indeterminacy in the value of 8¡u has

disappeared.

2.7. Proposition. The action of the Steenrod operations on E2 satisfies the Cartan

formula and the Adem relations (both, in general, interpreted with Sq° ¥= 1). The

action of the higher divided squares on E2 satisfies the relations of [4, 2.1]. The two

actions satisfy the commutation relation Sqk8¡ = 8¡Sqk^2 where Sq*/2 = 0 for k odd.

The relations of [4, 2.1] imply that if u G E2p'q and v G E2r's the following

three properties hold.

(i) If p = r and q = s, then

8¡(u + v) = 8¡u + 8¡v,       8p(u + v) = 8pu + Spv + uv,       2 < i <p.

(ii) If 2 < i < p + r, then

v%(u)    if r = 0,

«,(««) = • u28¡(v)    iîp = 0,

0 otherwise.

(iii) If 2 < i < p and 2 < j < 2i, then

«/,(«)=      2      ('w + t_1k+,-A(«)-
2

3. Chain and cochain diagonal approximations. The aim of this section is to recall

the properties of some natural chain and cochain homomorphisms.

If R and S are simplicial Z/2-modules, let il ® S denote the dimensionwise

tensor product (R ® S)n = R„ ® Sn with the tensor product face and degeneracy

operators. If A and B are graded Z/2-modules, let A ® B denote the graded tensor

product

(A®B)n=    2    (A¡®Bj).
i +j = n

The Leibnitz differential

d(a ® b) = d(d) ®b + a® d(b)

makes A ® B into a chain complex if A and B are chain complexes.
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Let T denote the switching map

C(R ® S) -> C(S ® R)   or    CR ® CS -> CS ® CR.

3.1. Lemma. There exist natural maps

Dk: C(R ® S)¡ -h> (CR ® CS)i + k,       i, k > 0,

such that

(i) D0 is a chain homotopy equivalence which induces the identity map C(R ® S)0

-+(CR ® CS)0, and

(ii) dDk + Dkd =Dk_x + TDk_xT(k > 0).

The collection {Dk} is a simplicial Eilenberg-Zilber map in the sense of [9] and is

constructed in [3]. It is convenient to adopt the convention that Dk = 0 for k < 0.

Suppose now that U = {U'} is a cosimplicial Z/2-module [2, p. 267]. Associated

to U is a cochain complex CU given by (CU)n = U",d= 2"^0 d>- If v is another

cosimplicial Z/2-module, the "codimensionwise" tensor product U ® V and the

graded tensor product CU ® CV are defined in the obvious way.

Let T be one of the switching maps. C(U ® V) -h> C(V ® U) or CU ® CF->

CV ® CU. A map <¡>k: C(U ® V) -► CU ® CV of degree k is said to be admissi-

ble if
(a)<f>*F = T<j>k,

(b) the restriction of </>* to U' ® V is zero unless i = k,

(c) the image of <¡>k: Uk ® Vk -* (CU ® CV)2k is contained in (CU)k ® (CV)k

= Uk ® Vk, and

(d) the map Uk ® Vk -»• Uk ® Vk induced by <j>k according to (c) restricts to

the identity on the intersection of the kernels of the codegeneracy maps

sk:Uk ® Vk^>Uk-1 ®Vk~\       0 < i < /c - 1.

3.2. Lemma. There exist natural maps

Ak: C(U ® V)'^(CU® CV)i + k,       0 < k < i,

and natural admissible maps <j>k of degree k (k > 0) such that

(i) the map A = A0 + TA°T + <¡>° is a cochain homotopy equivalence that induces

the identity map C(U ® V)°^(CU ® CV)°, and
(ii) A*-1«/ + dAk~1 = A* + TAkT + <¡>k (k > 0).

Remarks. Equation (ii) only makes sense when applied to an element x of degree

> k, since A*(x) is not defined otherwise. The awkward definition of admissible

map could be avoided by working systematically with normalized cochain com-

plexes, but this would lead to other complications.

Proof of Lemma 3.2. Let R and S be the simplicial Z/2-modules which are the

Z/2-duals of U and V, and let N(R ® S) be the normalized chain complex of the

simplicial Z/2-module R ® S [5, p. 236]. The natural projection C(R ® S) -*

N(R ® S) has a natural section [6, p. 94], so that if U and V are finitely generated

in each codimension the maps of Lemma 3.2 can be constructed by composing the

maps CR ® CS-^ N(R ® S) of [4, Proposition 3.3] with this section and dualiz-

ing. The general case is handled by using the fact that U and V can each be
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expressed as a direct limit of cosimplicial Z/2-modules which are finitely generated

in each codimension.

4. Products and Steenrod operations. This section gives the construction of

products and Steenrod operations, first for simplicial and then for mixed simplicial

coalgebras.

Suppose that R is a simplicial coalgebra, and let

X: Hom(CÄ, Z/2) ® Hom(CR, Z/2) -h> Hom(CR ® CR, Z/2)

be the natural pairing map. Let \¡/: R-> R ® R be the coproduct, and define

cochain operations

p.: Hom*(CÄ, Z/2) ® Homq(CR, Z/2) -* Homp+q(CR, Z/2),

Sk: Uom"(CR, Z/2) -* Homn+*(C/?, Z/2)

by the formulas p(x ® y) = \¡/*D*x(x ® y),

sk(X) = rD:_kX{x ® x) + rD:_k+xX(x ® dx).

Then p. and Sk pass to products and Steenrod squares on H* Hom(CÄ, Z/2).

These have all of the usual properties, except that in general Sq° ¥= 1 [7, p. 198].

The mixed simplicial case needs a few preliminaries. Suppose first that X and Y

are mixed simplicial Z/2-modules. The componentwise tensor product of X and Y is

written X ® Y: it is a mixed simplicial Z/2-module with the usual tensor product

face, coface, —, etc. operators. The bigraded tensor product of the double

complexes CA" and CY is written CA" ® CY. It is the double complex defined by

(CA-®cr)-M=   2  (cx)_i¡k®(CY)-j,,
i+J = P

k + l=q

and has vertical and horizontal differentials which are given by the Leibnitz rule.

There is an intermediate object, called the horizontal tensor product of X and Y.

This is the double complex C(X ®^ Y) given by

c(x®HY)_pq=  2 xq®Yq
i+j-p

with horizontal differential (Ed1) ® 1 + 1 ® (2d') and vertical differential

2(4 ® d,).
Define homomorphisms

H: C(X ®Y)^ C(X ®H Y),       Gs: C(X ®H Y) -+ CS ® CY,

where H is homogeneous of bidegree (0, 0) and Gs is homogeneous of bidegree

(0, s), as follows. The restriction of H to C(A" ® Y)       is

A(X*,Y*):Xp®Yp^   2    X,'®ï*
i+j—p

and the restriction of Gs to the summand X{q ® Yq of C(A" ®HY)_     (i + j = p) is

D,(X'„ Xi): Xq O y¿ ->     2      Xi ® Yj.
k+I=q+s
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Let T denote the appropriate switching map. It follows that

d°G, + Gsd° - G,_, + TGS_XT,       d"Gs = Gsdh,

dvH = Hdv,       dhH = Hdh,       H = THT.

Define maps Kk:  C(X ® Y) -h> CX ® CY homogeneous of bidegree (0, k) by

Kk = GkH. A computation shows that dKk + Kkd = Kk_x + TKk_xT, where d =

dh + dv is the total differential.

Suppose that A" is a mixed simplicial coalgebra, and let

X: Hom(CA-, Z/2) ® Hom(CA-, Z/2) -* Hom(CA- ® CX, Z/2)

be the natural pairing map. Let \¡/: X-> X ® X be the coproduct, and define

cochain operations

ju: Homp(CX, Z/2) ® Hom^CA", Z/2) ->Homp+q(CX, Z/2),

Sk: Hom"(CX, Z/2) -> Hom^^CA", Z/2)

by the formulas

íx(x ® y) = xP*KSx(x ® y),    Sk(x) = rV-kXix ® x) + ^/^-*+1x(^ ® dx).

Then p and Sk pass to products and Steenrod squares on H* Hom(CA", Z/2).

Proposition 2.1 can be proved in the same way as [9, Proposition 1.1]. The main

ingredient is (i) of Lemma 3.2.

Note that the squaring operations on H* HomiCA', Z/2) satisfy the "instability"

condition Sq*x = 0 if k > dim x, since K£ = 0 if k < 0.

5. The spectral sequence of a mixed simplicial coalgebra. Suppose that A is a

mixed simplicial coalgebra. The spectral sequence {E~p'q, dr} of X is defined in the

usual way.

E-P,q =   Z-p,q/[dZ-J-r+l,q+r-2 +   ̂ -,+ 1,,-lj

where

Zr-"-q = {x G Fp Hom'-'XCA', Z/2)|<fe G Fp_r Hom(CA-, Z/2)}.

The differential d on Hom(CA", Z/2) induces

dr: Er-p'q -+ Er-p+r'q-r+1.

Let Hom(CA\ Z/2) ® HomiCA", Z/2) have the standard increasing filtration

associated with a tensor product of increasingly filtered complexes. Then it is clear

that the cochain multiplication map

ju: Hom(CA-, Z/2) ® Hom(CA-, Z/2) -+ Hom(CA-, Z/2)

is filtration-preserving, and so passes to a pairing on the spectral sequence (Er, dr)

of X. It follows easily that this pairing has the properties stated in Propositions 2.2,

2.3 and 2.4.

The cochain level Steenrod maps

Sk: Hom"(CA", Z/2) -+ Homn+k(CX, Z/2)

are filtration doubling, and so can be used to define spectral sequence operations

E~p,q-* E~2p'p+q+k of indeterminancy 2r - 1. These operations are identically
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zero unless p = 0. One way to overcome this difficulty and also eliminate the

problem of indeterminancy is to deform the maps Sk so that they preserve

filtration. This leads directly to the construction of higher divided squares, and to

spectral sequence Steenrod operations that are not unstable with respect to total

degree.

For the moment, let X and Y be mixed simplicial Z/2-modules as in §4. Define

homomorphisms

Pk, Hk: C(X ®Y)^> C(X ®HY)       (k > 0)

which are homogeneous of degree ( — k, 0) as follows. The restriction of Pk to

C(X ® Y)_M is

<Pk(X*, Yj): X> ®YP^     2      X'® Yq

i+j=°p + k

and the restriction of //* to C(A" ® Y)_pq is zero if p < k and is otherwise equal

to

A*(A,*, y?*): X> ®Yp^     2       X'® Yq.
i+j—p + k

Give C(A" ®HY), considered as a singly indexed complex, the usual decreasing

filtration

F'C(A- ®„y)„ = 2  C(X ®HY)_in + i
• >p

and let  T denote any one of the appropriate switching maps. The following

properties of the maps Pk, Hk are either trivial or are immediate consequences of

the formulas in §3.

d°Pk = Pkdv,       PkTPk,

dvHk = HkdD,       H° + TH°T + P°+ H.

In   addition,   it   is   easy   to   see   that   if   x G FPC(X ® Y)   then   modulo

F2p+1C(X ®HY) there are congruences

Pk(X) =0       (k *p),

d"Hk(x) + Hkdh(x)=Hk+1(x) + THk+1T(x) + F* + 1(*)-

For any integer k (positive or negative) define a map

Jk: C(X ® y)-»CA- ®CY

homogeneous of degree A: with respect to total degree, by

A(*)=    S    G^WTXx).
i-j-k
ij>0

(Because of the way in which the HJ were defined only a finite number of terms on

the right-hand side are nonzero for any particular x.) Let d = dh + dv be the total

differential. A calculation shows that for x G FPC(X ® Y) the congruence

dJk(x) + Jkd(x)=Jk_x(x) + TJk_xT(x) + Gk_xH(x) + Gk+p_xP»(x)

holds modulo F2p+1(CX ® CY).
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Suppose that X is a mixed simplicial coalgebra with diagonal map ip and pairing

X as in §4. For any integer k define a cochain operation

2*: Hom"(CA\ Z/2) -» Hom"+*(CA-, Z/2)

by

2*0) = *v;_*x(* ® *) + ^v;_k+lX(* ® «&).

Dualizing the congruences above shows that for x G Fp Hom"(CX, Z/2) the

congruence

2kd(x) + ¿2*(x)

= Sk+1(x) + W)*(Gn*_,+/,_,x(x ® x)+ G;_k+pX(x ® dx))

holds modulo F/)_, Hom(CX, Z/2).
Let Sk: Hom^CA-, Z/2) --> Homn+*(CA', Z/2) be the cochain map defined by

Sk(x) = S*(x) + 2*_1i/(x) + ¿2*_1(*)-

Then Sk is filtration-preserving, dSk = 5*</, and, for any cocycle x G

Hom(CA\ Z/2), Sk(x) is visibly cohomologous to Sk(x). It follows immediately

that the maps Sk pass to Steenrod operation E~p-q-> E~"-q+k that have all of the

properties described in Propositions 2.2-2.4. These operations may well be nonzero

even if k > q — p.

Write Fj for Fy Hom(CX, Z/2) and suppose that x G Zx~"-q, so that x G Fp and

dx G F   ,. A straightforward filtration calculation shows that

2*(x) G F^,       k<q-p,

GFp+a_k, q - p <k <q,

GFp,        q<k.

In particular if x G Z~p,q (r > 1), then for 2 < k < p the element 2,_*(x) lies in

Fp + k. A little manipulation of the formulas above shows that for 2 < k <p the

congruences

¿2*-*(x) + Zq-kd(x) = W)*(G*_,x(x ® x) + G¿x(x ® dx))

holds modulo Fp_x. To see this, use the fact that the cochain operations Sk satisfy

Skx = 0 if k > dim x + 1. The same congruence holds for k = p if the term

\p*H*GoX(x ® dx) is added to the right-hand side.

If x G Z~p'q (r > 2) represents {x} G E~p'q, define ô,({x» for r < i < p to be

the residue class in E~p~i'2q of the element 2*~'(x) G z~p'i;iq. The inde-

terminacy properties of the operations 8¡ and all of the properties listed in

Propositions 2.5 and 2.6 are straightforward consequences of the congruences listed

above. It is useful to keep in mind that at F2 the operations 8¡ are linear or at worst

quadratic (Proposition 2.7, see §6).

Remark. An operation "5," exists on the F,-level, in the sense that if x G Zx~p,q

(p > 0) represents a class {x} G Exp'q which survives to F2, then 2,_1(x) belongs

toZ-"-1'2' and ¿/,{2'7"1(x)} = Sq*{x}.
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6. Operations on the F2-tenn. Suppose that X = {Xp} is a mixed simplicial

coalgebra. For each p > 0, {Xp} is a simplicial coalgebra; let A(p) denote the

corresponding cohomology algebra H* Hom(C(Xp), Z/2). The transposes of the

coface and codegeneracy operators of X give the collection A = {A(p)} the

structure of a simplicial object in the category of graded commutative Z/2

algebras, and the F2-term of the spectral sequence of X can be computed in terms

of the (graded) homotopy groups of A.

E2-»"> = (VfA\. (6.1)

(The homotopy groups of a simplicial commutative Z/2-algebra are by definition

the homology groups of the associated normalized chain complex [5, p. 236]. The

homotopy groups of a graded algebra themselves inherit a natural grading.)

The machinery of [4], slightly refined to take the grading of A into account,

provides algebraically defined higher divided square operations

V*:(V0.-*(WV       2<i<p,

and algebraically defined pairing maps

(^A)q®(-usA)l^(Tp+sA)q+l.

In addition, the Steenrod operations (§4)

Stf:A(p),-*A(p)t+i
commute with face and degeneracy operators and so pass to operations

Sq^:(v4),-*(V4W
6.2. Lemma. At E2 the operations Sq' and 5, constructed in §5 agree via (6.1) with

the operations Sc¿,g and S,alg. At E2 the pairing constructed in §5 agrees via (6.1) with

the algebraic pairing described above.

The proof of this is essentially the same as the proof of [9, Proposition 5.1]. It

involves inspecting the leading terms of the cochain formulas for Sq'{x}, 8¡{x}

and {x} • { v} and using, in the Sq' case, property (d) of an "admissible map" (§3).

Proof of Proposition 2.7. If R is a simplicial coalgebra, the action of the

Steenrod squares on H* Hom(CR, Z/2) satisfies the Adem relations and the

Cartan formula (both, in general, interpreted with Sq° ¥= l) [7, §7]. It follows from

Lemma 6.2 that the action of the Steenrod squares on E2 similarly satisfies the

Adem relations. It also follows directly from Lemma 6.2 that the action of the

higher divided squares on F2 satisfies the relations of [4, Theorem 2.1]. For the

remaining statements, let Sq = Sq° + Sq1 + Sq2 + • • • and note that by the

Cartan formula Sq acts as a simplicial algebra endomorphism of A. If Sq# denotes

the induced map on trtA it follows by naturality that for x G irpA, y G -n^ there

are equalities

Sq#5,(x) = ô,Sq#(x),        Sq#(xy) = Sq#(x)Sq#( v),        2 < i < p.

The proof is finished by separating each of the above equations into its homoge-

neous parts.
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