Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Kernels for the tangential Cauchy-Riemann equations
HTML articles powered by AMS MathViewer

by Al Boggess PDF
Trans. Amer. Math. Soc. 262 (1980), 1-49 Request permission

Abstract:

On certain codimension one and codimension two submanifolds in ${{\textbf {C}}^n}$, we can solve the tangential Cauchy-Riemann equations ${\bar \partial _b}u = f$ with an explicit integral formula for the solution. Let $M = \partial D$, where D is a strictly pseudoconvex domain in ${{\textbf {C}}^n}$. Let $\omega \subset \subset M$ be defined by $\omega = \{ z \in M; \operatorname {Re} h(z) < 0\}$, where h is holomorphic near D. Points on the boundary of $\omega$, $\partial \omega$, where the tangent space of $\partial \omega$ becomes complex linear, are called characteristic points. Theorem 1. Suppose $\partial \omega$ is admissible (in particular if $\partial \omega$ has two characteristic points). Suppose $f \in {\mathcal {E}}_M^{p,q}(\bar \omega )$, $1 \leqslant q \leqslant n - 3$, is smooth on $\omega$ and satisfies ${\bar \partial _M}f = 0$ on $\omega$; then there exists $u \in {\mathcal {E}}_M^{p,q - 1}(\omega )$ which is smooth on $\omega$ except possibly at the characteristic points on $\partial \omega$ and which solves the equation ${\bar \partial _M}u = f$ on $\omega$. Theorem 2. Suppose $f \in {\mathcal {E}}_M^{p,q}(\omega )$, $2 \leqslant q \leqslant n - 3$, is smooth on $\omega$; vanishes near each characteristic point; and ${\bar \partial _M}f = 0$ on $\omega$. Then there exists $u \in {\mathcal {E}}_M^{p,q - 1}(\omega )$ satisfying ${\bar \partial _M}u = f$ on $\omega$. Theorem 3. Suppose $f \in {\mathcal {D}}_M^{p,q}(\omega )$, $2 \leqslant q \leqslant n - 3$, is smooth with compact support in $\omega$, and ${\bar \partial _M}f = 0$. Then there exists $u \in {\mathcal {D}}_M^{p,q - 1}(\omega )$ with compact support in $\omega$ and which solves ${\bar \partial _M}u = f$. In all three theorems we have an explicit integral formula for the solution. Now suppose $S = \partial \omega$. Let ${C_s}$ be the set of characteristic points on S. We construct an explicit operator $E: {\mathcal {D}}_S^{p,q}(S - {C_S}) \to {\mathcal {E}}_S^{p,q - 1}(S - {C_S})$ with the following properties. Theorem 4. The operator E maps $L_{p,\operatorname {comp} }^{\ast }(S - {C_S}) \to L_{p,\operatorname {loc} }^{\ast }(S - {C_S})$ and if $f \in {\mathcal {D}}_S^{p,q}(S - {C_S})$, $1 \leqslant q \leqslant n - 3$, then $f = {\bar \partial _S}\{ E(f)\} + E({\bar \partial _S}f)$.
References
  • A. Andreotti, C. Denson Hill, S. Łojasiewicz, and B. MacKichan, Complexes of differential operators. The Mayer-Vietoris sequence, Invent. Math. 35 (1976), 43–86. MR 423425, DOI 10.1007/BF01390133
  • A. Boggess, Plemelj jump formulas for the fundamental solution to ${\bar \partial _b}$ on the sphere, preprint.
  • Jiri Dadok and Reese Harvey, The fundamental solution for the Kohn-Laplacian $cm_{\textrm {b}}$ on the sphere in $\textbf {C}^{n}$, Math. Ann. 244 (1979), no. 2, 89–104. MR 550841, DOI 10.1007/BF01420485
  • G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
  • Hans Grauert and Ingo Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\bar \partial f=\alpha$ im Bereich der beschränkten Formen, Rice Univ. Stud. 56 (1970), no. 2, 29–50 (1971) (German). MR 273057
  • R. Harvey and J. Polking, Fundamental solutions in complex analysis. I, II, Duke Math. J. 46 (1979), 253-300; 301-340.
  • G. M. Henkin, Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications, Mat. Sb. (N.S.) 78 (120) (1969), 611–632 (Russian). MR 0249660
  • —, Integral representations of functions holomorphic in strictly pseudo-convex domains and applications to the $\bar \partial$ problem, Mat. Sb. 82 (124) (1970), 300-308; English transl, in Math. USSR-Sb. 11 (1970), 273-281.
  • G. M. Henkin, Solutions with bounds for the equations of H. Lewy and Poincaré-Lelong. Construction of functions of Nevanlinna class with given zeros in a strongly pseudoconvex domain, Dokl. Akad. Nauk SSSR 224 (1975), no. 4, 771–774 (Russian). MR 0466634
  • —, The H. Lewy equation and analysis of pseudo-convex manifolds, Uspehi Mat. Nauk 32 (1977), no. 3; English transl, in Russian Math. Surveys 32 (1977). —, H. Lewy’s equation and analysis on a pseudo-convex manifolds. II, Mat. Sb. 102 (144) (1977), 71-108; English transl. in Math. USSR-Sb. 31 (1977), 63-94. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1965.
  • L. R. Hunt, J. C. Polking, and M. J. Strauss, Unique continuation for solutions to the induced Cauchy-Riemann equations, J. Differential Equations 23 (1977), no. 3, 436–447. MR 590067, DOI 10.1016/0022-0396(77)90121-8
  • Nils Øvrelid, Integral representation formulas and $L^{p}$-estimates for the $\bar \partial$-equation, Math. Scand. 29 (1971), 137–160. MR 324073, DOI 10.7146/math.scand.a-11041
  • Enrique Ramírez de Arellano, Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann. 184 (1969/70), 172–187 (German). MR 269874, DOI 10.1007/BF01351561
  • A. V. Romanov, A formula and estimates for the solution of the tangential Cauchy-Riemann equation, Dokl. Akad. Nauk SSSR 220 (1975), 532–535 (Russian). MR 0385172
  • A. V. Romanov, A formula and estimates for the solutions of the tangential Cauchy-Riemann equation, Mat. Sb. (N.S.) 99(141) (1976), no. 1, 58–83, 135 (Russian). MR 0409872
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • R. O. Wells Jr., Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann. 179 (1969), 123–129. MR 237823, DOI 10.1007/BF01350124
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F20, 35N15
  • Retrieve articles in all journals with MSC: 32F20, 35N15
Additional Information
  • © Copyright 1980 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 262 (1980), 1-49
  • MSC: Primary 32F20; Secondary 35N15
  • DOI: https://doi.org/10.1090/S0002-9947-1980-0583846-0
  • MathSciNet review: 583846