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ON THE SINGULARITIES

OF GEGENBAUER (ULTRASPHERICAL) EXPANSIONS
BY

AHMED I. ZAYED

Abstract. The results of Gilbert on the location of the singular points of an

analytic function f(z) given by Gegenbauer (ultraspherical) series expansion f(z) =

ZJLo a„C*(z) are extended to the case where the series converges to a distribution.

On the other hand, this generalizes Walter's results on distributions given by

Legendre series: f(z) = 2>"_0 a„Cn/2(z)- The singularities of the analytic represen-

tation of f(z) are compared to those of the associated power series g(z) =

2"_0 anz". The notion of value of a distribution at a point is used to study the

boundary behavior of the associated power series. A sufficient condition for Abel

summability of Gegenbauer series is also obtained in terms of the distribution to

which the series converges.

1. Introduction. Since the publication of the fundamental paper by Nehari [11] on

the location of the singular points of an analytic function given by a Legendre

series, a certain amount of work has been devoted by various people to finding the

singularities of analytic functions given by eigenfunction series expansions.

Nehari's proof used the same kind of argument that Hadamard [9] originally used

in his proof of the "multiplication of singularities" theorem. This argument, which

is usually referred to as Hadamard's argument, has been exploited extensively by

Gilbert [3], [4] (also see these references for bibliography), and by Gilbert and

Howard [7], [8] in a series of papers studying the analytic properties of solutions of

some partial differential equations. In studying the singularities of an analytic

function/(z) given by the eigenfunction series expansion/(z) = 2~_oû„u„(z), they

used Nehari's technique to get information about the locations of the singular

points of f(z) by comparing them to the locations of the singular points of the

associated power series <¡>(z) = ~2^_0anzn. The cases where the eigenfunctions

{u„(z)}^=0 are Gegenbauer (ultraspherical) polynomials, Jacobi polynomials, and

eigenfunctions of certain Sturm-Liouville systems have been investigated in [5], [6]

and [8] respectively.

In all the previously-mentioned cases the proof depends on the fact that the

series of eigenfunctions converges to a function f(z) analytic in a complex neigh-

borhood of a real interval. However, if the function has a singular point in this

interval, the proof fails. G. Walter [13] was the first to attack the problem of
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generalizing these results to the case where the eigenfunction expansion f(z) =

2"=0 anvn(z) has singular points in the real interval. In fact, he considered the case

where {v„(z)}™=0 are Legendre polynomials. He considered not only the case

where/(z) has real singularities but also the case where/(z) is not even a function,

but rather a generalized function (Schwartz distribution). Evidently, in the case

where the eigenfunction expansion does not converge to a function, the singulari-

ties of f(z) must be interpreted differently. It turns out that in some cases it is

possible to find an analytic function f(z) whose singularities can be related to those

of the associated power series in a fashion similar to that obtained by the authors

cited previously. In §2 of this paper, which deals mainly with eigenfunction

expansions of the form 2"_0 a„C%(x) where C*(x) is the Gegenbauer (ultraspheri-

cal) polynomial of degree n, we show that this is indeed possible for these

expansions. This is done by using the integral operator method together with

Hadamard's argument. The results of this section are on one hand an extension of

Gilbert's results [5], and a generalization of Walter's on the other.

In §3 we use different techniques to get more information about the relationship

between the analytic properties of the power series and those of the Gegenbauer

series. For example, having characterized the singular points of the power series,

one may ask what about the regular points?: Does <j>(z) approach its limit <H.ß) as z

approaches ß radially, where ß is a point on the boundary of the disk of

convergence? The answer will be shown to be affirmative provided that the

Gegenbauer series behaves nicely at the point \(ß + 1//3). The technique that will

be used is the technique of value of a distribution at a point. We shall also employ

this technique to derive a sufficient condition for the Abel summability of

Gegenbauer series.

2. Singularities of ultraspherical expansions.

2.0. Preliminaries and notations. We begin by recalling some of the basic proper-

ties of the ultraspherical polynomials C£(x). Fix p > 0, then C*(x), n =

0, 1, 2, ... , are defined by the generating relation

oo

Sc:(x)Z"=(l-2xZ + ZV,        |Z|< l,xG[-l, 1]. (2.1)
n = 0

The set {C£(x)}™_0 is orthogonal and complete over (-1, 1) with respect to the

measure (1 — x2y~x/2 dx. In fact, we have

f' Q(*)C:(*)(1 - x2r1/2 dx = h^m (2.2)
J -\

where

2-*W(ü + 3p) (23)

"      n!(p + /t)[r(p)]2

It is also known that C£(x) satisfies the differential equation

(1 - x2)y" - (2/1 + l)xy' + n(n + 2p)v = 0. (2.4)
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We denote by L the differential operator

L = (1 - x2)d2/dx2 - (2p + l)xd/dx - p2, (2.5)

which we call the Gegenbauer differential operator. Evidently,

LCÏ(x) = -(n + tifCÏ(x). (2.6)

The following two relations are also useful and will be used later.

I (n + p)C:(x)r" =-/X(1~,"2) ,        M < 1, (2.7)
«=o (l - 2xr + r2Y + x

r2(p)22>-xn<^„,^^ _ fi

F(n + 2p)
C„"WC„"W=/   (l-t2y-xCÏ(œsW)dt (2.8)

where cos W = xy + i^(l - x2)(l - v2) , Re p > 0.

For more details on the ultraspherical polynomials see [2] and [12].

2.1. Singularity theorem. Borrowing the original Hadamard idea, Nehari [11]

proved the following theorem: Let {an} be a sequence of complex numbers such

that

TmT|an|,/'' = p<l

and let/(/), <XZ) t>e defined by the expansions

/(>)=  I anP„(t),        |/+1| + |,-1|<!±£
2

1 = 0

(Pn(t) is Legendre polynomial of degree n)

OO

$(z)=  2 anz\        \z\<p~x
n = 0

which converge in the regions indicated, then a point r =£ ± 1 is a singular point of

f(t) if and only if t = \(a + I/o) where a is a singular point of <j>(z).

The proof of Nehari's theorem depends essentially on the fact that lim,,^^ \an\x/"

= p < 1. But if ïim^jaj'7" = p = 1 the proof fails.

In fact this is not surprising at all since the series 2^_0 an^n(0 may diverge

everywhere. The case where hmn_>00|an|1/'' = 1 with an = 0(np) for some integer P

was investigated by Walter [13]. He showed that the series 2^_0 anPn(t) converges

in (-1, 1) to a distribution / whose analytic representation /(£) is given by the series

¡(0 = T^.0(i/TT)anQn(^) for Im i i- 0, where Q„(Q is the Legendre function of the

second kind. In addition to that, /(£) has a singular point at £ =\(a + I/o) in

(-1, 1) if and only if <f>(z) = 2"_0 anz" nas a singular point on the unit circle at

a t^ ± 1 and at rJ.

Analogous to, but more general than, Nehari's result is the following theorem

due to Gilbert [5]: Let {fl„}^_0 t>e a sequence of complex numbers such that

lim„_i>00|<3w|I/" = p < 1, and let/(i) and <f>(z) be given by

At)'  2   anC:(t),        \t-  1|+|,+ 1|<-L±£
1   j. „2

0
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where C£(t) is Gegenbauer polynomial of degree n, and

£   IY/i + 2p)       „ ,        _,

^■S-fesr^"   |2|<p '
Then /(/) has a singular point at / = t, t ^ ±1 if and only if t =j(a + I/o)

where a is a singular point of <>(z).

We obtain Nehari's theorem as a special case of Gilbert's by setting p = | since

C„1/2(jc) = /*„(*). The main purpose of this section is to extend Gilbert's theorem to

the case where lim„_>!:0|aj1/" = 1 and an = 0(np) for some integer P. From this

generalization, which is done in a fashion similar to the one given by Walter for

Legendre series, we can obtain Walter's result as a special case by setting p =\.

Indeed some difficulties arise in the extension due to the fact that the Gegenbauer

operator L is not self adjoint. In fact, L is self adjoint if and only if p ={, i.e.

Cx/2(t) = Pn(t).

One side effect of this is the lack of symmetry in some of the results which was

found to a greater degree in Walter's results.

Theorem (2.1). Let {a„}^_0 be a sequence of complex numbers such that

\a„\ < M(n + 1)',       n = 0, 1, 2, 3, . . . ,

for some integers M and P. Then there exists a distribution f with support in [-1, 1]

such that:

(i) The series 2^L0 an^n(l) converges in (-1, 1) to f.

(ii) If either f has a compact support in (-1,1) or p — { is an integer, then

g(t) = (1 - t2Y~x/2f(t) is also a distribution with support in [-1, 1].

(iii) The analytic representation g(£) of g is given by the series g(£) =

2~_0 anQ£(i), where (1 - i2y~x/2QH(i) are the Gegenbauer functions of the second

kind, and g(£) is holomorphic in the ¡¡,-plane cut along [—1, 1].

(iv) g(£) has a singular point at ß = \(a + I/a) in (-1, 1) if and only if

, x      S   T(n + 2p)

_n ri.n = 0

has one at z = a on the unit circle and a ^ ±1.

Proof, (i) Consider the function

Ht) = Ï   }~l)a"2kC:(t),       t E[-l, 1], (2.9)
«=o (n + p)

and zero otherwise, where 2k > 2p + P + 1. F(t) is continuous on [-1, 1] since

|C„"(0| < An2*'1 and hence we have

« = o  (n + p) n=o   (n + p)

The last series converges by our choice of k. Since the Gegenbauer differential

operator

L = (1 - t2)d2/dt2 - (2p + 1)/ d/dt - p2
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is continuous in ^ * (the space of distributions) and the defining series of F(t)

converges uniformly, hence, converges in ^ *, then it follows that

00

/= LkF(t) =  2 a„Q(0    in(-l, 1). (2.10)
n=0

Clearly, supp/ ç [-1, 1].

(ii) If p - j is an integer, then (1 — t2y~x'2 is a C°°-function, hence a multiplier

of/. If supp/ c (-1, 1), then (1 - t2y~x/2f is also a C°°-function in a neighbor-

hood of supp /, for all p.

(iii) Since g has compact support, then the analytic representation g(£) of g is

given by g(£) = (l/27rz')(g, l/(t — £)), £ £ supp g (see Bremermann [1]). Since

1/(Z - |) is analytic in [-1,1] for Im £ ^ 0, then its expansion in terms of

Gegenbauer polynomials converges uniformly to it. In fact, since l/(t — £) is

analytic in some ellipse E^ with foci at ±1, then its expansion in a Gegenbauer

series and all its derivatives converge uniformly on compact subsets of E^ [12].

Hence, the convergence of the series

x(t)     z l i  ri (\-u2y-x/2c»(u)du

t-i     „t-olvJ-i «-«
where X(t) G C0°°, X = 1 in [-1, 1] and supp X is in E( n R ', may be regarded as

convergence in the sense of ^D. Therefore, we have

g(0 = (l/2m)(g, X(t)/ (t - 0) = (l/2m)(g, 1/ (z - £))

where

/•i (1 - w2V~1/2 1
g,"(0-J /    (MJ¿)      C»db,       p>-^,p^0, (2.12)

and (1 — |2)'i~1/2ß„,'(£) is known as the Gegenbauer function of the second kind

(see [12]). But

(g, C;(0) = ((1 - 'Y" 1/2/(0, Q(/)) = (/, (1 - /2r-'/2Q(z))

= (LkF, (1 - f2)"~,/2Q(0) = (F, L*k(l - t2y-x/2CÏ(t)).      (2.13)

On the other hand, it is not hard to see that the adjoint operator L* of L is given

by

L* = (1 - t2) d2/dt2 + (2p - 3)f d/dt -(p-lf (2.14)

and that

l*(i - z2y-1/2Q(o - -(« + p)2(i - t2y-x/2c?(t).       (2.15)

c„"(0M')
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Thus, by substituting equation (2.15) in (2.13) and using (2.9) one gets

U, Q(0) - (-!)*(« + p)2k{F, (i - z2r-|/2c;(0)

= (-1)*(/| + p)2*((-l)V (n + pfk)anK = «„/»;, (2.16)

and consequently

m = ̂ - 2 «„aim   «et-u]. (2.17)
« = 0

To show that g(£) is analytic in the cut plane, we need to estimate Q*(Ç,) as follows:

la'ioi-
. (i - t2y-x/2a;(t)

i

0-0

i    i

dt

(n + p)2*

1

L**(l - t2)2\f-l/2

(n + p)
2 A'

1,7

/'o - /2r-1/2cn"(z)L^

c;(0 ^

t)
dt

,2m-1 A/(0

(« + P)
2k

where A/(£) is a constant that depends on £ but not n. Therefore,

2 añQM
n = 0

< 2 nic;(€)|< 2
n=0 n=0

A/(/z + pV^'A/fé)
< oo,

(n + p)2*

and hence the series converges absolutely and by standard argument it can be

shown that it converges uniformly on compact subsets of the cut plane,

(iv) First we show that the function

k(z,o- 2 orœ*-"
n = 0

(2.18)

which is analytic for \z\ > 1 and £ £ [-1, 1] can be continued analytically so that

the only possible singularities in the set {(z, £)|(z, £) G C X C and |z| > 1} are at

£ = ± 1 and £ = \(z + 1/z). The argument used in the proof is similar to the one

given by Walter. It goes like this.

•i O - t2y-x/2

n=o       J-\

-X

cx(t)dt

!    (1   _  /2\M-l/2    oo

(1 - ñ

n = 0

i-l/2z2M

dt. (2.19)
i(/ -0(1 -2/z + z2)"

Interchanging the summation and integration is possible since the series

2.™_0z-nC?(t) converges uniformly to z2>i/(\ - 2tz + z2y for t 6 1-1, 1] and

fixed \z\ > 1. Now by using the Hadamard argument we deduce that K(z, £) has

possible singular points only at £ = ± 1 and at the common singular points of

\/(t - £) and 1/(1 - 2zz + z2y i.e., £ = \{z + 1/z).

Now we use K(z, £) to construct an integral operator that maps g(£) into
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¡Kz) = 2~_0 a„z". Consider
1 CO 1 CO CO J

m = -hi 2 a»Q»{i) = ttS 2 erœ 2 «J>-" f    (2.20)
27» „=o (2wz)   «=o *=o    Jy z

where y is the contour \z\ = p < 1 and the last expansion is obtained from the

observation that

2tz ¿_0    ./y z

Since the series <p(z) = 2¡f_0 akzk converges uniformly on y and because |z~'| > 1

we can interchange the sums and the integral to obtain

m = j\ f ( 2 #«)*-")( 2 akzk) ± -¿/äc*. ö*w i.
47r2-/Y\„=o /U-o        /   z       4?r2-/y «

(2.22)
This is valid for Im £ sufficiently large since K(z, £) = 2"_0 Q%(£)z~n converges

uniformly in \z\ = p < 1 for Im £ sufficiently large by the asymptotic formula

UKÖ- 0(£-")[12].
Again by the Hadamard argument we can show that g(£) is analytic for all £

except possibly at £ = ±1 and the common singularities of K(z, £) and <Kz). Thus,

if <£(z) has a singular point at z = a, then g(£) may have one only at ß =

^(a + 1/a) except at ± 1.

On the other hand, if <f>(z) has a singular point at z = a, then so does ^(z) and

conversely. This follows from the original Hadamard's theorem applied to the

series

£   T{n+2p) %   r(„ + 2p)_„ -,
2/ --,-anz , 2, --,-* . Zj anz .

n = 0 "■ n = 0 "• n = 0

Conversely, since g has compact support, then by the representation theorem for

distributions [1], we have

lim f [ g(t + ie) - g(t- fe)JiKO </* = (*, «¿0    for all * E C".     (2.23)

Choosing t//(0 = ^(1 - £2)/(l - 2/z + z2y+x, where A = pr2(p)/7r21_2'i and |z|

< 1, we get

U.    ^'-^  ,| - (o - «y-"Vw,    Al-ñ ,|
I      (i -2tz + z2y+x I   \ (i - 2tz + z2y+x )

. ( i a.c;„), ^■-''>'"l/'"-;2»)

\»-o (i-2zz + z2r+i  /

= ( 2 «„Q(0, 4o - '2)"~1/2 2 (* + m)Q(/)z*)
\n = 0 M A- = 0 /

oo .     oo

= 2 «„- 2 (* + p)z*a¿«m
„=0       P k=0

=  inn^2AanZn = m (224)
n-O "•
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Let

*«(*) = f -iJ—J^-:[ ê(t + ie) - g(t - ¿e)] dt.
•/-'(l-2z/ + z2r+lL

This integral can be expressed as a contour integral with end points at -1 and 1 so

that the contour avoids the singularities of the integrand. We invoke the Hadamard

argument once more to conclude that <f>e(z) is analytic except possibly at a zero of

1 - 2( ß ± ie)z + z2, where ß is a singular point of g(£). Taking the limit as e -> 0,

we deduce that <¡>(z) is analytic except possibly at a where ß ={-(a + I/a).

Q.E.D.

3. On the Abel summability of Gegenbauer series: Point values of a distribution. In

this section we use the concept of value of a distribution at a point as introduced

by Lojasiewicz [10].

Definition. Let /be a distribution on R. Then/has a value at x0 if and only if

lim^o f(Xx + x0) exists in the sense of distributions. A point at which the distribu-

tion has a value is said to be regular, otherwise it is singular.

It has been proved that a distribution f(x) has the value y at a point x0 if and

only if there exist an integer k > 0 and a continuous function F(x) such that

F<*> = /and lim_o F(x)/(x - x0)k = y/kl.

In this section we utilize the concept of value of a distribution at a point to

extend the results of the last section. In Theorem (3.2) we look at the boundary

behavior of the power series <j>(z) = 2^L0 anhj¡zn as z —> ß radially; | ß\ = 1, as it is

related to the behavior of the associated series of ultraspherical polynomials

/= 2^=0 anC*(t). More specifically, we will show that if f^^ which is a distribu-

tion in general has a value y at the point a G (-1, 1) then <b(z) —»<X/?) as z —* ß

radially where ß is the image of a under the conformai mapping

z = t + (t2- 1)'/2.

We also investigate the Abel summability of series of ultraspherical polynomials. It

will be shown that the series *L™=Zl anC%(a), a G (-1, 1), is Abel summable to y

whenever the distribution 2^=0 anCn(x) nas a vame Y at «• We shall use the

following two lemmas which are well known.

Lemma (3.1). Let f G L'[-l, 1], lim,_>a/(Z) = y where a G(-l, 1) and suppose

that there exists a summability kernel K(a, t, r) with the following properties.

(i) K(a, t, r) —> 0 uniformly for \t — a\ > e > 0 as r -^ 1~.

(ii) f_x\K(a, t, r)\dt < Ma a constant for r G (0, 1) anda G (-1, 1).

(iii) /* K(a, t,r)dt-*l as r^l~; a G (a, b) and [a, b] c (-1, 1). Then

fx_xf(t)K(a,t,r)dt-^yasr^l-.

Proof. See Zygmund [15].

A summability kernel K(x, t, r) that satisfies the three conditions of Lemma (3.1)

is called quasi-positive.
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Lemma (3.2). Let f G L'(-l, 1); then the Abel sumf(x, r) of the series
OO 1 ,

f(x) ~ 2 a,Ci(x)    where an = — /   (1 - í2)""'/2/(0Q(0 A

m x) = ¿ r1 r1 (i - «y-'/2o - «y-«—^^—->w * *
77 ̂ -1 ^-i (1 -2r cos y + r2)'I+1

w/ze-re cos y = xt + wy/(l - Z2)(l - x2) , 0 < r < 1.

Sketch of the proof.

00    1 fi
/(x,r)= 2 a„c:(*K« 2 ^c;(*)r-/ (i-/2r-1/2/(0c;(0^

n = 0 «=0 "n -!

= 2 ¿'"f/íoo - ñrx/2<xix)cxt)dt. (3.1)

On account of relations (2.7), (2.8) and (3.1) the result follows easily.

Let us denote the kernel of the Abel summability by H(x, t, r) i.e.,

H(x, t, r) -  f ¿V1 - t2y~x/2CÏ(x)CÏ(t)r» (3.2)
n = 0 "«

= £ f ' (i _ ,y-'/2(i _ „y->-lim!)-du     (3.3)
^-' (l-2rcosy+/-2r+1

and let us also define

Gp(x, t, r) = (-ly^f- 2 -^Cï(x) ^(1 - t2y-x/2c?(t)r»,

0<r<l,p>/>- 1/2, (3.4)

_ (-i)'p (x - o" r1 /,   ,2v,   „am-, *'      (i-/y-|/2
-/ (i - r2)(i - u2y du.

* Pl      J-i dtp (x -2rcosy + r2Y+x

(3.5)

Some important properties of Gp(x, t, r) are given in Lemma (3.4).

Lemma (3.3).

dp (i _ ,2y-'/2 M _ rV-'/i-'
(0---^-=-—-P(t,y,r)      (3.6)

«ft1" (1 - 2r cos y + r2f + x      (1 - 2r cos y + r2f+x + p

where P(t, y, r) is a polynomial in t and r with coefficients as bounded functions of

cos y, (3 cos y/dt), . . . , (d cos y/at)F, (d2 cos y/3f2), . . . , (dp cos y/dtp).
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(1 - z2)
2\»i-l/2

dt     (i - 2r cosy + r2)2N(1+1

_*<£*!   *</.**! -iy- / 3 cos y \p  2*

+ l + />-*\, 3Z /
fe-o    (1 - 2/- cos y + r2)*

(l-Z2r-|/2-^(z,y,r)

(1 -2rcosy + r2f+X + v
(3.7)

where A(t, y, r) and ak(t, y, r) are of the same type as P(t, y, r) in part (i) and

V = (P - 2)/2 or (P — \)/2 according to whether P is even or odd.

Proof. For simplicity we write R = (1 — 2r cos y + r2), u = (1 — t2), v = p +

1, X ■» p — j. We prove the lemma by induction on P.

(i) The formula is true for P = 1 since

(i - ¿2y '
2^-1/2

dt

(p + 1)(1 - Z2)M"1/2(-2/-)/3cosy\

rcosy + r2r+2       '      dt     '(I -2rcosy + r2Y   l (1 - 2r cos y + r2)

(p-I)(l-Z2r-3/2(-20

(1 - 2r cos y+ r2Y+1

(i - t2y-3/2

(l — 2r cos y + r2)2\M + 2
2r(p+l)(l-/2)

2, 3 cos y

dt

+ (p -\)(-2t)(l -2rcosy + r2)

Assume it is true for P; then by taking the derivative of equation (3.6) one gets

iP+l    „x«A       du
\-p

P(',y,r) =
- (v + P)(-2r)(d cos y/3/)t/ \-p

dtp+l R"      dt r'+p

^(X-P)(-2t)u*-p-x

R
■ + p

DP+P+1
P(t,y,r)

dt

,\-P-\  r

R'
(„ + P)(2r)(Í^p)«P(/,Y,r)

dP
+ (X- P)(-2t)RP(t,y,r) +uR — (t,y,r)

.x-p-i

= -^pT\Q^y>r),

where Q(t, y, r) is a polynomial in / and r since P(t, y, r) is. Hence the formula is

true for P + 1.
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(ii) The formula is true for P = 1,2, since

d  ux _ (-i>)(-2r)ux/dcosy\      X(-2t)ux~x

dt R" /r+i        \     dt     j + R*

d2   ux _ (-2rfv(v+ l)z//3cosy\2      (-v)(-2r)X(-2t)ux~x I d cos y \

dt2 R" R"+2 I      dt     j /r+1 1     dt     j

|  (-v)(-2r)ux 32cosy  |   (- v)(X)(-2t)(-2r)ux~x I d cos y \

Rr+X dt2

*-l v/i       rv    i,A.»-22ama"'       a(A- 1)(-2Q »

g0(Z, /-)mx / 3 cos y \2      ax(t,r)ux~l      A(t, r)ux~2_ <W> r)"   /3cosy\

R*+2     \      dt     j

where a0, ax, and A are polynomials satisfying the condition of the lemma. Assume

it is true for P, then by taking the derivative of both sides of equation (3.7) one gets

dp+1   ux       d lk%/2i ak(t,y,r)ux-k tdcosy\p-2k      ux~pA(t, y, r) \

dt'+i R-    dt\   ¿0       /r+'-*    V    dt   j /r+"      /

_k%/2]    ak^-k   ldcosy\p-2k + X

èo ä'+'-*+»\  dt j

ak2uK~k~l tdcosy\p-2k       ak3uX-k / d cos y\p~2k~X

Rv + p-k   {      dt     J + R'+P-k{      dt     J

ak4ux~k id cos y Y ~2k ,   ux~pAx 3 cos y      ux-p~xA2

Rr+p-k\     3,     j + Ä»+,+ i      at     +     /T+"

k<[P/2] \-k       , ~ NÍP+11-2A
' ¿ki" / o cos y \l      '

+

y ak\u I d cos y y

z/"*"1 / 9cos y^"2*"1/     /3cosy\ / 3 cos y \\

ux~pAx  3 cos y      à'*'1 A

+   R' + V+l dt +      R" + r' 2

k<[P/2] ,      ,,X-k        ,a \P+l-2k
s? bkXu /3cosyy+l  iK

ào   /r+c+1>-*l    dt   j

bk2ux~k~x tdcosyy-2"-1      ux~pAx d cos y      ux-p~x

+   R-+P~k  \     dt     j + ^"+1+1      dt     +    Ä'+" 2

where aki, i = 1, 2, 3, 4, and ¿>^, Ap j = 1, 2, are all polynomials in r and t with

coefficients as described in the statement of the lemma. Changing k to k — 1 in the

second sum and combining similar terms, yield

dp+x   ux _k<lf/2]     Bkux~k    /3cosyy+'>-2*      ux-p-x

dtp+x Rv        ¿To    ä'+C+0-*1     a/    / + Ä,+,+i*



498 A. I. ZAYED

where Bk and B are polynomials of the required type.

Lemma (3.4). Let x G (-1, 1); then Gp(x, t, r) satisfies the following conditions.

(a) Gp(x, t, r)^>0 uniformly for 0 < S < y < tt as r —> 1 ~' ;  in particular, for

\t - x\ > ôx> 0.

(b) fx_x\Gp(x, t, r)\ dt < Mx a constant that depends only on xfor all r G (0, 1).

(c) fa Gp(x, t,r)dt^\ as r -» 1 ", x G (a, b) and [a, b] c (-1, 1).

Proof, (a) From equations (3.5) and (3.6) we have

G'(;c,,,,-) = (-l)^(*-')    <"
P\

(i - t2y~x/2

dtP (l-2rcosy + A-2)"+1

f (I - r2)(l - u2y~x

2

du

(-1)
p P (x - t)    fi

77 P\ J_

,2^-1/2-/»

/ (1 - r2)(l - u2y~x

(i - t2y

(1 - 2r cos y + r2)
2\(i+l + />

= (-1)

(1 - fiy-W-r

P(t, y, r) du

r2)(l- u2y~x

P{t, y, r) du.
[(l-rf + 4rsin2(y/2)y+X + P

Then, for 0 < 6 < y < -it, we have

m l(* - O'l     (i - r2)(i - t2y-x^-p
\Gp(t,x,r)\<

P\        [(i-r)2 + 4/-sin2(5/2)]M+1 + />

.f1|JP(i,y,/-)|(l-M2r-1i/W^0

as r —* l~ provided that t ^ ±1 or p>\+ P with no restriction on t. By the same

argument it follows that fo<6<,y<JGp(x, t, r)\ dt —>0as /•-» 1~.

(b) From equations (3.5) and (3.7) we obtain

Gp(x, t, r) = (-l)'£Í*_í)í J1 (I _ r2)(1 _ „y-i

a*(l - '2)2\|i-l/2-*¿<[/>/2]

2   -
*=o    (l - 2/-cos y + z-2)

r    ' / 3 cos y y

+ /.2\M+« + ',-*l     9r     /

+
(1 - t2)

2NM-1/2-/" A(t,y,r)
du (3.8)

(l-2/•cosy + /•2)'' + 1 + ,,

where ak, A(t, y, r) and rj are defined in Lemma (3.3). We show that

f1-i\Gr(x, t, r)\ dt < Mx independent of r by showing that each individual term in

equation (3.8) has the same property. Indeed, by part (a), we need only show that
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the integral of each of these terms taken over 0 < y < 8 is uniformly bounded. Let

us write

t *\P i „ (\ ,2\v--\/2-k
_ P(±^JL{1 _ ñ fx (1 _ „y-.-%0jlO-

*       P! j-> (l-2/-cosy + r2)"+1 + p-*
Gp(x, t, r) =

/ 3 cos y \

\~97~j9z

F

¿«,        0 < k <
2 (3.9)

J-l (l-2r■n       P\

We make use of the well-known relation

(l — 2r cos y + r2)
2\fi+l + »|

£(1_,2}r>  r1 (\-t2y-]/\\-u2y-x

1    - •   ( 1 — 2r cos y + r2)2\M+1
dtdu = \

(3.10)

(3.11)

and the fact that the integrand is positive. Relation (3.11) holds since the left-hand

side is just

C G°(x, t,r)dt= fl H(t, x, r) dt
J-i J-\

where H(t, x, r) is the regular Abel kernel (see equation (3.3)). Now by equation

(3.9) we obtain

•/0<y<« w       P\      J0<y<sJ-\   (i -2rcosy + r2f+X

x - tV a„

(1 - /2)*(1 -2/" cos y + r2)2^-*

9 cos y

3/

P-2k\

dt du.

The proof will be completed if we show that the quantity in braces is bounded

when r—> 1. Since 1^1/(1 — t2)k is bounded for t G [a, b] c (-1, 1) we investigate

only the behavior of

L(x, t, u, r) =
x - t

(1—2/- cos y + r2)2\P-k

d cos y

3/

P-lk

when /•—> 1. As a function of », L(x, t, u, r) attains its maximum at u = 1, i.e.,

cos y = xt + y(l — /2)(1 — x2) . Expanding cos y in terms of (x — t) yields

cosy- 1 =(x- tf[l + o(l)]    and    9 °°S Y = (x - t)[l + o(l)].

Hence, (1 - 2r cos y + r2)p~k = (x - tfp'2k[\ + o(l)] as r -* 1 and

,      (x-Of(x-Qf-2<:[l + Q(l)]
L(x, t.r)«- 2f_2^,-—--=0(\)    asr-»!.

(,-^-»[1 + 0(1)]
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As for Fp(x, t, r), we have

rlV-  ,  _^ ÍÍ-01F"'(x,/,/■)«-^-*-= 0(\)    asr^l
(*-/)2"[l + 0(l)]

since from Lemma (3.3), we have r/ = (P - 2)/2, (P - l)/2 according to whether

P is even or odd.

(c) It is easy to see that G°(x, t, r) -* 8(t — x) as r -+ 1 (see [14]); then it follows

from the relation tp8m(t) = (-\)PP\8(t) that Gp(x, t, r) -> 8(t - x) as r -^ 1. That

is

Um<C?'(*, /, /•), <í»(í)> = <«(/ - x), <f>(0> = <f(x)

for all <i> G C°°, supp <|> c (-1, 1).

Take <i> = 1 on [a, b\, then lim^, (Gp(x, t, r), <J>> = 1, i.e.

lim(f + f+ f)Gp(x, t, r)<p(t) dt = 1.

But from part (a), we immediately get

lim   ¡"gp(x, t,r)dt= 1.   Q.E.D.
r-»I   ^a

Corollary. Gp(x, t, r) is a quasi-positive kernel.

Theorem (3.1). Let f be a generalized function with support in (— 1, 1) given by

f= 2^-0 a*C»"- 7// Äaj « "fl^ Ï«' « e(-íi O, íA«n 2~_0 a„C„"(a) * ^>

summable to y.

Proof. By hypothesis there exists a nonnegative integer P and a continuous

function F(t) such that

F(/>>=/ (3.12)

in a neighborhood of a and lim(_>a F(t)/(t — a)p = y/P!. Without loss of general-

ity, we may assume that (3.12) holds globally. Therefore,
OO OO 1

2 anCÏ(a)r» =  2  JÏ C?(a)r*(f, (1 - ñ^'C^t))
n = 0 B = 0 "b

= 2 ¿c»r"(ff,(i- /2r-1/2c:(i))
n = 0 "n

= (-1)' 2  ¿CftaW ' F(/Äl - if-WCXt)*
„ = 0 "b •'-l i#

F(QP!

(Z - af

rx I  F(t)P\  \l(-\)P(t-a)P   »   ^

•cn"(«)(-^(i-i2)"-1/2cn"(o))^

•'-iVir - a)   /

Applying Lemmas (3.4) and (3.1) finishes the proof.   Q.E.D.
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Remarks, (i) If P = 0, i.e., if f(x) is a function in the classical sense for which the

coefficients {a„}^_0 exist, we obtain the well-known result that the series

2£s_0 a„C£(x) is Abel summable to/(;e) where x is a point of continuity of f(x) in

(-1, 1).
(ii) It is natural to ask whether the converse of Theorem (3.1) is true. That is, if

2^_0 anC£(a) is Abel summable, does "Z^0 anC^(x) have a value at x = a? The

answer is negative and 8 '(x) is a counterexample. For

*'(o)-£ 2 -¿c„"(o)^c;(o),

and C,f(0) = 0 if n is odd and (d/dt)C£(0) = 0 if n is even. It is very interesting to

find sufficient conditions for the converse; however, we will not pursue this here.

Corollary. Under the same assumptions of the previous theorem if

g(t) = (i-t2y-x/2f(t),

then lime^0[g(a + z'e) - g(a - z'e)] = (1 - a2)M_1/2y.

Proof. From Theorem (2.1), we obtain g(z) = 2^=0 anQ£(z). Hence

g(a + ie) - ¿(a - is) =   | an Ç (1 - tf'^C^tí--^--) dt.
« = o    J-\ \(t - a)   + e2 I

Taking the limit as e -h» 0, keeping in mind that the quantity in brackets is just the

Poisson kernel for the upper half-plane and that the series 2"_0anC^(a) is Abel

summable to y, we immediately get

lim [ g(a + ie) - g(a - z'e)l = (1 - a2)""1/2y.

Theorem (3.2). Let f(x) be a generalized function with support in (-1, 1) given by

the series f(x) = 2"=0 <*„C£(x). Suppose that ^(x) = dMf/dx{A has a value y at

a G (-1, 1); then
CO

4>{z) =  2 anKz" -» <H ß)   asz^ß radially,
«=o

where a ={(ß + l/ß).

Proof. From the identity 2~=0 C*(t)zn = (1 - 2zz + z2)'», \z\ < 1, and the

fact that (1 - t2y~x/2/(l - 2tz + z2y is in C°°(7) where / is a neighborhood of

supp /, we obtain

,, c - ñr-»\ _ i  /c;w, (. - -y-
(l-2tz + z2y)      b=o    \ (l-2iz + zY,

00 / OO \

= 2 «Bkf(o,o-'2r1/22 c:(oH
n=0       V m=0 /

= 2 «„2 zm(c:w,(i-z2r-i/2c:(/))
n=0      m=0

2 a„ 2  *"*,£«„, =  2 anKz" = *(z),        |z| < 1.
b=0       m = 0 /i = 0
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Since/(1/l)) has a value y at a, then there exists a continuous function F such that

F(k) = jqm) in a neighborhood of a and F(t)/(t - a)k -»• y/fc! as í -* a.

Without loss of generality we may assume that k > [p] and Fw = /(1,ll) globally

where F is continuous and has support in (-1, 1). Let P = k — [p]; then

I (1 - 2zz + z2)*/      \ '   <*' (1 - 2tó + z2)"/

■/-i wv     *' o - itz + z2y

As in the proof of Lemma (3.3) we can show that

dp    (l-z2y1/2       (1 - t2y~i/2-pP(t,z)

dtp (1 - 2iz + z2y        (1 - 2zz + z2y+p

where P(t, z) is a polynomial in t and z. Then, we have

, /I   _   ,2^-1/2-/*

*(z)=r pw-^—u—-rp(t,z)dt
J-i     (i-2tz + z2y+p

-If +[        )f(í)  (1 ~ ?2)"-P(r,z)rfr.
\-Va|>«      -V«|<¿7 (I -2tZ + Z2y + P

Let us denote the first integral by I(z) and the second by J(z). Then,

\ r (1   -   ,2y.-l/2-J>

/(z) =- f Fit)—K---*■-P(t, z) dt
(-2zT+pJ\<-«\>*        lt-\(\/z + z)Y+"

and by choosing z sufficiently close to ß we can make |\(\/z + z) — a\ < 5/2.

Therefore,

'/wi<X-.L,^"i(';i/C/-'"f|'(')|d

where

g(z)=     sup    \P(t,z)/(-2zy+P\,      gel'I-1,1],
0<r<z<1

and by the Lebesgue dominated convergence theorem it follows that limz_>/8 I(z)

exists.

As for J(z) we have

-/|z-«|<S |Z — a|M

= r        "w   i/-ar^o-ry-'^ w ^
v«i<«ií-«r+w       i'-«r"*       '*WI
r |P(Q|    (i-?y-./2-/>|g(0| ^

■>|,-«|<«|r- a\p+M If-al"-^1
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The last integral is bounded since |F(z)|/|z — a|p+I''1 is bounded and

(\-t2y-x'2-p\g(t)\

\t - a^-M

is integrable in a 8-neighborhood of a. Hence, applying Lebesgue dominated

convergence once more yields that limz_>/3 J(z) exists.    Q.E.D.
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