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THE LATTICE OF CLOSED CONGRUENCES

ON A TOPOLOGICAL LATTICE

BY

DENNIS J. CLINKENBEARD1

Abstract. Our primary objectives are:

(1) if L is a lattice endowed with a topology making both the meet and join

continuous then

(i)    the natural map which associates a congruence with the smallest topo-

logically closed congruence containing it preserves  finite meets and

arbitrary joins;

(ii)   the lattice of such closed congruences is a complete Brouwerian lattice;

(2) if L is a topological (semi) lattice with the unit interval as a (semi) lattice

homomorphic image then the lattice of closed (semi) lattice congruences has no

compatible Hausdorff topology.

Introduction. Given a topological lattice L, we investigate 9*(L) the lattice of all

congruences on L which are topologically closed in L X L. This collection of

congruences is particularly interesting when L is compact Hausdorff since each

member of 9*(L) will then preserve many algebraic and topological properties of

L.

It is well known that for any lattice L its congruence lattice 0(L) is both

algebraic and satisfies the infinite distributive equation (\/aeS xa) /\ y =

Vaesí^a A y)2 which characterizes complete Brouwerian lattices (cf. [1, pp. 188,

138]). Yet the only known result for 9*(L) similar to the defining equation for

Brouwerian lattices is by A. R. Stralka, who proved that if L is a compact

Hausdorff distributive topological lattice of finite breadth, then 9*(L) is a distribu-

tive lattice (cf. [6]).

In §1 we demonstrate that 9(L) and 9*(L) are much more similar than the above

result suggests. By merely assuming L has a topology (not necessarily Hausdorff)

such that both the meet and join are continuous we prove that 9*(L) is also a

complete Brouwerian lattice. Furthermore, the preservation properties of the natu-

ral map between 9(L) and 9*(L) mentioned in the abstract allows us to obtain

another fact: L is Hausdorff iff the pseudo-complements of 9(L) and 9*(L) are

identical. From this we conclude immediately that L is compact Hausdorff iff all

pseudo-complements in 9(L) have compact Hausdorff images.

As men toned previously 9(L) is also algebraic. In general, the congruence lattice
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on any partial algebra is algebraic. Thus, 9(L) is algebraic when L is also a

semilattice. Moreover, any algebraic lattice admits a compact Hausdorff (zero-di-

mensional) order-compatible topology3 (cf. [5]). In contrast, the only known

analogue for 9*(L) was proven by K. H. Hofmann and M. W. Mislove in [4]. The

result can be stated as follows: if L is an algebraic lattice such that all its quotients

are also algebraic when only maps preserving arbitrary meets and directed joins are

considered4 then the opposite lattice of 9*(L) is an algebraic lattice; hence, in

particular, 9*(L) has a compatible compact Hausdorff (zero-dimensional) topology.

In §2 we prove that whenever L is either a topological lattice or topological

semilattice then 9*(L) has no compatible Hausdorff topology if L has the unit

interval as a homomorphic image. Hence, topologically 9(L) and 9*(L) are, in

general, quite different.

In the Appendix we exhibit some examples which expand on the material in § 1.

Preliminaries. Given a lattice L, let D = {(x, x)|x G L). A subset X of L X L is

said to be a D-ideal iff D u (D V X) u (D /\ X) Q X. A lattice congruence (or

merely congruence) [<i>] is an equivalence relation on L which is also a Z)-ideal of

Lx L.

Note that for any lattice L, D and L X L are congruences.

For each lattice surmorphism <f> from L onto a lattice M, there is a unique

congruence [<p] = {(x,y)\<p(x) = <}>(y)}. Conversely, for each congruence [<b] we

obtain both a unique image of L, <p(L) = {x Q L\y G x iff (x,y) G [<£]}, and a

unique lattice homomorphism § from L onto <f>(L) such that <i>(x) = x.

By a topological lattice L we mean that L is a lattice endowed with a topology

such that both the meet and join are continuous binary functions from L X L

into L.

Given a topological lattice L, we assume that for any [</>] G 9(L), </>(L) has the

inherited quotient topology; thus, <J> becomes a continuous homomorphism.5

If X is some predetermined topological space and Y Q X then Cl Y will denote

the closure of Y in X.

If [<(>] = C\[4>] in L X L, then [<£] is called a closed congruence. The complete

lattice 9*(L) of all closed congruences has the same meet as 9(L), namely

set-theoretic intersection. Thus, we use the usual intersection symbol "n" to

represent both meets. However, we distinguish between the joins of 9(L) and 9*(L)

by letting "V" denote the join in 9(L) and "V" the join in 9*(L). In general, all

that can be said regarding the joins is that if {[<f>J|a G &} Q 9*(L) then Vae# [4>J

The primary reasons for examining closed congruences occur when L is a

compact Hausdorff topological lattice. First, it is well known from general topology

that for any compact Hausdorff topological space X and any equivalence relation

3By compatible we mean that order convergence of chains implies topological convergence.

4In other words, L and all of its compact semilattice quotients are zero dimensional.

5It is not difficult to show that tj^L) is a topological lattice. But the fact that the composition of the

two continuous functions, meet (respectively, join) in L and </>, produces a continuous function does not

suffice to prove that the meet (respectively, join) in <p(L) is continuous.
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E on X, E is closed in v X I iff the quotient space X/E is Hausdorff. Thus,

whenever L is compact Hausdorff, 9*(L) contains exactly those congruences whose

images are also compact Hausdorff. Second, it is not difficult to show that if L is

compact Hausdorff then [<j>] G 9*(L) implies <b preserves arbitrary meets and

arbitrary joins. The importance of this last statement is twofold:

(i) every compact Hausdorff topological lattice is complete;

(ii) a homomorphism of a complete lattice that does not preserve arbitrary meets

and arbitrary joins may produce an image radically different from the domain (cf.

[2]).
Finally in all that follows, unless otherwise stated, L will always be a topological

lattice, and 7 will denote the unit interval [0, 1] with the usual topology.

1. Let us first state some facts concerning the construction of both congruences

and closed congruences.

Throughout this section X is assumed to be a subset of L X L, and X' will

denote the transitive closure of X.

(1.1) Remark. If A' is a 7>ideal then A" is a 7)-ideal.

Proof. Note that D u (D V A") u (D A X') Q D u (D V X)' u (D A X)' Ç

X'.   □

When X is also symmetric (that is, (x, y) G X implies (y, x) G X), we get

(1.2) Remark. If X is a symmetric 7J>-ideal then X' is a congruence.

Proof. Since X is symmetric and contains the diagonal, X' is an equivalence

relation. By Remark (1.1), A"' is a 7)-ideal.    □

If X satisfies Remark (1.2), then X' is the smallest congruence containing X.

However, there is no guarantee that A" is topologically closed. Thus, to construct

the smallest closed congruence, we adjoin the limit points of A' obtaining Cl(A').

Although this set is a symmetric 7>ideal (as will be shown), it may not be

transitive. Furthermore, the number of times topological and transitive closure

must be alternately applied to guarantee a closed congruence may depend on the

cardinality of L X L. What we, in fact, create by this alternation process is a

collection of sets satisfying the following.

(1.3) Definition. For X C L x L, let TX = Cl(A'), and for each ordinal j we

define TjX by transfinite induction such that:

(i) TXX = TX,
(ii) PX = T(P~XX), ifj is not a limit ordinal,

(iii) PX = U ,<, TX, ifj is a limit ordinal.

It is evident from this definition that:

(a) for any A, A C TX; hence in particular, TO Q TkX whenever./ < k;

(b) a symmetric 77-ideal is a closed congruence iff TX = X.

To further clarify the sets produced in Definition (1.3), we present a series of

propositions; the first two of which are used to generate the smallest closed

congruence containing a given symmetric 7J)-ideal.

(1.4) Proposition. 7/A is symmetric then all TJX are symmetric. If X is a D-ideal

then all TJX are D-ideals.
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Proof. Since both transitive and topological closure preserve symmetry, T must

also. A straightforward transfinite induction yields the symmetry of all PX.

For the second assertion, note that since L is a topological lattice, the topological

closure of a D-\dea\ is a D-\deal. This together with Remark (1.1) implies that TX is

a 7)-ideal. By constructing another transfinite induction, all PX are 7>ideals.    □

Note that set-theoretic considerations require the existence of an ordinal k such

that TkX = PK for all j > k, since otherwise L X L would have arbitrarily high

cardinality. Let A* denote TkX.

(1.5) Proposition. If X is a symmetric D- ideal then A* is the smallest closed

congruence containing X.

Proof. By Proposition (1.4) X* is a symmetric 7?-ideal. Thus, since T(X*) =

Tk+xX = TkX = X*, A* is a closed congruence. Let [<f>] be a closed congruence;

then for any Y <Z [<j>], Y* Ç [<¡>] and Cl( Y) Q [<p]. Therefore, if X Ç [<i>] then

TX Q [<i>] and, by transfinite induction, T^A Ç [<p] for all ordinals j. Hence,

A* Ç [#    □

At this point the reader might question whether such transfinite inductions as in

the above propositions are actually necessary to construct a closed congruence. The

answer is affirmative and example (3.1) of the Appendix illustrates this fact.

It follows immediately from Definition (1.3) and the definition of *, that * can be

considered as a closure operator on the power set of L X L; that is, for A,

Y Q L x L we have

(i) X Q A*,
(ii) A* = A**, and

(iii) if A C Y then A* G Y*.

Similarly, Proposition (1.5) implies that the restriction of * to 9(L) is also a closure

operator.

The following two propositions introduce a set of functions necessary to our

investigation of the * operation.

(1.6) Proposition. Let f be a continuous function from L X L into L X L such

that f(X') C (/A)'; then f(X*) Q (fX*).

Proof. If / is continuous then /(Cl( Y)) Q Cl(fY) for any  Y <Z L X L. This

together with the condition, /(A') <Z (fX)', yields /(T'A) = /(C1(A~')) Ç C1(/(A'))

ç Cl((fX)') = T(fX). By applying yet another transfinite induction, we obtain

fiPX) Q P(fX) for all ordinals j. Hence,/(A*) Q (fX)*.    □

(1.7) Proposition. Let (u, v) G L X L and define f: L X L^> L X L by f(x,y)

= (v A (w V x), v A (" V y))- Then f satisfies

(a) Proposition (1.6),

(b) (u Av,v)= fiu, v),

(c) ifX is a D- ideal then fX Ç A,

(d) // [<i>] is a congruence and (u, v) G [<f>] i/ie/t f(L X L) C [<}>].
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Proof, (a). Since L is a topological lattice, / is clearly continuous. Moreover, the

inclusion,/(A') <Z (fX)', is straightforward.

(b) Clear.

(c) Note that for any Z>-ideal A, fX = (v, v) A ((«, «) V X) C D A (D V X) <Z

X.

(d) (u, v) G [<¡>] implies (v A "> «), (v, v /\u) £1 [<p]. Thus, by letting "°" repre-

sent transitivity such that (a, b) ° (b, c) = (a, c), we have fix, y) = (v A (" V

x), v) o (v, v A (" V >0) = [(t. A (w V x),   v A (« V *)) V(dA«, «)] » [(« a ("

V>0, t> a (k V >0) V(mA «)] e (7) v r>D ° (# V [<i>]) = M ° [</>] = [#   D
The following lemma provides the fundamental observation in establishing that

the * operation preserves finite intersections when restriced to members of 9(L).

(1.8) Lemma. If X is a symmetric D-ideal and hj>] G 9(L) then X* n [<f>] Q

(X n [<i>])* = smallest closed congruence containing X n [<f>].

Proof. Let (u, v) G A* n [</>]. Using the same notation as in Proposition (1.6)

and (1.7), recall that (u /\v,v)= fiu, v) which is certainly a member of/(A*). By

applying Proposition (1.7a) we obtain/(A*) Q (fX)*. Now Proposition (1.7)(c) and

(d) implies fX Q X n [<i>], and the monotonicity of * gives (fX)* C (X n [<p])*.

Together these inclusions imply that (u A v, v) G (A n [<f>])*. A symmetric argu-

ment shows that (u A v, ") G (A n [<f>])*. Thus, by relying on the symmetry and

transitivity of (A n [<!>])* we obtain (u, v) G (A n [<£])*.

Finally, note that A n [</>] is a symmetric 7J)-ideal; so Proposition (1.5) justifies

our last assertion,    fj

To expedite the remainder of our investigation, we define a map, *, from 9(L)

onto 9*(L) such that *([<i>]) = [<?]*. That is, the map * is the restriction of the

canonical map associated with the operation * such that the domain and range of

the map are restricted to 9(L) and 9*(L) respectively. Of course the * map may

also be viewed as a closure operator on 9(L).

(1.9) Theorem. 77ie map * from 9(L) onto 9*(L) preserves finite meets (i.e.

intersections) and arbitrary joins.

Proof. Let [<¡>], [*] G 9(L). Then *([<¡>] n [*]) Q *([£]) n *([*]) is derived from

the monotonicity of the * operation. For the reverse containment, we have

*(|>]) n *([*]) =[<#>]* n [*]* ç ([*] n [*]*)•    by Lemma (1.8)

- ([$] n [^])**    ''y Lemma (1.8) and the monotonicity of *

£ ír</>l n i'*!'!)*    by the idempotency of *

-*([>]   n[^])-

Thus, the * map preserves finite meets.

The argument for arbitrary joins is not difficult and can be shown directly, or

may be based on the fact that a closure operator on any lattice preserves arbitrary

joins whenever they exist,    fj
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There are quite simple examples which show that the * map does not preserve

arbitrary meets. Example (3.2) of the Appendix illustrates this for the * map from

9(1) onto 9*(I).

(1.10) Remark. If g is a function from a complete Brouwerian lattice A onto a

complete lattice B such that g preserves finite meets and arbitrary joins then B is a

complete Brouwerian lattice.

Proof, g preserves the defining infinitary equation for Brouwerian lattices,    fj

(1.11) Theorem. 9*(L) is a complete Brouwerian lattice.

Proof. 9(L) is a complete Brouwerian lattice. Hence the theorem follows from

Theorem (1.9) via Remark (1.10).    □

(1.12) Corollary. 9*(L) is a distributive lattice.

Proof. Any Brouwerian lattice is distributive (cf. [1, pp. 45-46]). □

Since 9*(L) satisfies one of the infinite distributive laws, a natural question is:

does it satisfy the other? That is, for [<f>J, [*] G 9*(L), a G &, is (Cl „eS [<t>JM*]

= H „eäftNI^l) also true? The answer is negative, and in fact even more can

be said. A complete lattice M is lower continuous if whenever there exists a

monotone decreasing chain {d\a G &} in M then

(A   d\ V x =   A   K V *)
VaeS        ' «Eg

for any x G M. In Example (3.3) of the Appendix we show that 9*(I) is not lower

continuous.

To obtain the final results of this section a few preliminary remarks are in order.

If a and b are elements of the lattice M, then the maximal element of (x G M\a

A x < b) (when it exists) is called the relative pseudo-complement of a in b, and is

denoted b: a.

A Brouwerian lattice M (not necessarily complete) is defined to be a lattice such

that any pair of elements in M have a relative pseudo-complement (cf. [1, pp.

45-46, 128]).

If M is a lattice with a least element, 0, and a G M, then the element 0: a (when

it exists) is referred to as the pseudo-complement of a.

In a complete Brouwerian lattice every element is pseudo-complemented, and it

is well known that the set of pseudo-complements with the inherited order form a

complete Boolean algebra in which the meet is the same as in the original lattice

(cf. [1, p. 129]).

The following proposition provides sufficient information to relate the * map

and the relative pseudo-complements of 9(L) and 9*(L).

(1.13) Proposition. Let M be a lattice and G a closure operator on M that

preserves finite meets. If a, b G M, ßb = b, and (b: a) exists then (b: a) = (b:

Qa) = Q(b: a) = relative pseudo-complement of Qa in b with respect to the lattice

Q.M.
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Proof. Let "t" denote the meet in QM.

Claim. For any c, d G M, Gc A Gd = Q(c A d) = Gc I Gd = ß(ßc A d).

Proof of Claim. Using the closure and meet preserving properties of G, the

following chain of inequalities proves our claim:

Gc f\Gd > G(c f\d) = Gel Qd = G(Gc) I Gd = G(Gc A d)

= G(Qc) Î G(Gd) = G(Gc A Gd) > Gc A Gd.

To show (b: a) = (b: Ga), we have

a A (6: ßa) < G(a A (6: 6a)) = G(Ga A O 6a))    (by the Claim)

< b,   since Ga A (¿>: 6a) < b and ßZ> = ¿>.

Thus, (b: Ga) < (¿>: a) by the maximality of (b: a). For the reverse inequality,

Ga A (6: a) < G(Ga A (6: a)) = &(a A (¿>: a))    (by the Claim)

<b.

So, (b:a) = (b: Ga).

For the second equality we have Ga A G(b: a) = ß(a A (b: a)) (by the Claim)

< b. So, ß(6: a) < (b: Ga) = (b: a) < G(b: a). Therefore equality holds.

To show that (b: a) is the relative pseudo-complement of Ga in b with respect to

QM, note first that (b: a) = G(b: à) G QM. Now if x G QM (i.e., x = Qx) and

Ga i x < b, then Sa A -* < b by the Claim. Thus, x < (¿>: ßa) = (b: a).    O

(1.14) Remark. Proposition (1.13) implies that the relative pseudo-complements

in b with respect to the lattices M and QM are the same. Therefore, upon

substituting 9(L) for M, and * for G in Proposition (1.13) we see that for

[<j>] G 9*(L) the set of relative pseudo-complements in [<£] with respect to either

9(L) or 9*(L) is the same. In particular, when considering pseudo-complements we

obtain the following result.

(1.15) Theorem. L is Hausdorff iff the pseudo-complements of 9(L) and 9*(L) are

identical.

Proof. If L is Hausdorff then D is a closed congruence. Substituting D for [<¡>] in

Remark (1.14) implies that 9(L) and 9*(L) have the same pseudo-complements.

Conversely, since D is the pseudo-complement of L X L in 9(L), we get

D G 9*(L) which implies L is Hausdorff.    □

(1.16) Corollary. L is compact Hausdorff iff the pseudo-complements of 9(L)

have compact Hausdorff images.

Proof. L is compact Hausdorff iff the image of each closed congruence is

compact Hausdorff. This together with Theorem (1.15) gives the result in the

forward direction. The converse is identical to that of Theorem (1.15).    □

2. In discussing the topological nature of lattices of closed congruences, the

following definitions and remarks will be useful.

A topological semilattice is a semilattice endowed with a topology such that the

semilattice operation (whether meet, or join) is continuous. If S is a topological

semilattice such that the meet (join) is continuous, then we define a semilattice
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congruence [<¡>] as an equivalence relation on S such that D u (D A [<i>]) Q [«p] (or,

D u (D V [$]) Q [$] m the join case). Of course,the remarks in the preliminaries

are also applicable in the context of a topological semilattice S, its semilattice

congruences 9(S), and its closed semilattice congruences 9*(S).

Also, note that any semilattice congruence on 7 is a lattice congruence. Thus,

9*(I) denotes both the closed semilattice congruences and the closed lattice

congruences.

The key to our result lies in the following theorem where we employ an argument

similar to one used by E. E. Floyd in [3].

(2.1) Theorem. There does not exist a compatible Hausdorff topology on 9*(I).

Proof. Suppose 9" is a compatible topology on 9*(I). Let {t/,}°l, be an open

base for the topology on 7 such that Cl(U¡) n Cl(U¡_x) = 0. Let [\p¡] = {(x,.y)|x,.y

G Cl(c/)) U D; thus, [i//J G 9*(I) and [^,] n M-il = D- It is not difficult to show

that for each positive integer /' there is a sequence {[<£,-, ]}JLi Q 9*(I) such that the

terms of the sequences have the following relationships.

O)M £ Wí,]^/x/.

(ÍÍÍ)[<Py]  £ [<r>,<7+l)]>

(iv)VJ»_1[.i>(/]=7x7.
Let 0 be any neighborhood of the congruence 7 X 7 in 9\ By the compatibility

of 9", the sequence {[<i>i,]}°li converges to 7 x 7 in 9". Hence, there exists [<¡>XJ] G 0

for some./. Let [p,] = [<j>XJ] for some suchy. Now [p,] = (7 X 7) n [px] = (V°l x[<t>2J])

n [px] = VJLx(l<p2j] n [p,]) by Theorem (1.11). Since the sequence {[<p2>] n [p,]}".,

is monotone increasing, the compatibility forces convergence to [p,]. Therefore, this

sequence is also eventually in 0. Define [p2] = [<j>2j] n [px] where [<¡>2J] n [pj G 0.

Note that [p2] does not contain Ux in any equivalence class.

Similarly, [p2] = (7 X 7) n [p2] = (V^.^D n [p2] = V^.íj^] n [p2]) and, by

compatibility, {[£3,] n [P2DJI1 converges to [p2]. Again, picky such that [<f>3j] n [p2]

G 0 and call this element [p3]. Note that [p3] does not contain Í7, or U2 in any

equivalence class.

Continuing, we obtain the sequence {[p,]}"!] such that [pi+x] Q [p,].

By the compatibility of 5r, {[p,]}Jli must converge to D," i[p,-]. Also, since

{ÍP¡])T-i £ 0 we have D," M] G C1(0). However, n,°l,[p,] contains no £7, in any

equivalence class. Therefore H ,°li[p,] = 7J. This means that every neighborhood 0

of the element 7 X 7 in 9" contains the congruence D in its closure C1(0 ). So 9" is

not Hausdorff.    □

(2.2) Corollary. If L is a topological (semi) lattice with the unit interval as a

(semi) lattice homomorphic image, then the lattice of closed (semi) lattice congruences

has no compatible Hausdorff topology.

Proof. The following proof suffices for both cases. Suppose 9^ is a compatible

Hausdorff topology for 9*(L). Let <b be the homomorphism from L onto (p(L) = 7.

Thus, [<f>] G 9*(L). If [p] G 9*(L) such that [</>] Q [p] then there exists a homomor-

phism pç from 7 = <b(L) onto p(L) such that the following diagram commutes.
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<t>(L) = 7

L -» p(L)

Let (f[(p]) = {[p] G 0*(L)|[<J>] ç [p]}. It is easy to show that the map g from (|[<f>])

into 9*(I) such that g([p]) = [pj is a complete lattice isomorphism. Moreover, the

restriction of 9" to (|[<f>]) is a compatible Hausdorff topology. Therefore by making

U open in 9*(I) iff g~x(U) is open, we obtain a compatible Hausdorff topology for

9*(i), a contradiction to Theorem (2.1).    fj

Appendix.

(3.1) Example. The transfinite inductions in §1 are necessary. For S c L X L,

let [S] be the smallest congruence containing S. Let [a, b], a < b, be a line segment

from the unit interval. Let [\px] denote the following congruence on [a, b]: {(x,y)\b

-(b - a)/2" <x,y <b -(b - a)/2n+x for some n = 0, 1, 2, . . . }. Pictorially,

[\px] may be represented as

(a,b)

(a, a)

n

i

(b,b)

(b,a)

It is not difficult to show that [Cl^]] has the following diagram.

1 (b, b)

(b,a)

Thus, Cl[Cl[i^,]] = [a, b] X [a, b] is the closed congruence generated by [\(/x].
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Let

M = {(x,y)\b - ((b - a)/2"+1)(l + l/2m) < x,y

<b-((b - a)/2" + x)(l + l/2m+x)forn,m = 0, 1, 2, 3, . . . }.

Note that [\p2] is also a congruence on [a, b], and has the following diagram.

Moreover, it is not difficult to show that [Cl^]] = [</<,]. Hence to obtain the closed

congruence generated by [\p2], we must alternate the closure and congruence

generating operators such that the closure operator is applied three times.

(a,b)

(a, a)

Similarly, we can define a congruence [\p3] such that [Cl[i//3]] = [\p2]. Continuing,

a congruence [\pn] can be defined for each positive integer such that [Cl[ip„]] =

[^n-il whenever n > 2.

Starting with the diagonal D, we construct our example as follows.

First replace {(x, x)|l/3 < x < 2/3} with the congruence [\px] on [1/3, 2/3] to

get the diagram

(1,1)

0,0)

Next, replace {(x, x)|l/9 < x < 2/9} and {(x, x)|7/9 < x < 8/9} by [4*2] on

the intervals [1/9, 2/9] and [7/9, 8/9], respectively.

For the «th step replace the middle third of each untouched segment of the

diagonal with [\pn]. Let [S] denote the resulting set. Thus, [S] can be represented as

follows.

Ü
„JD

(b,b)

(b,d)

(0,1)

(0,0)
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-"P

0'

*
0'

It is not difficult to show that [S] is a congruence, and moreover, no finite

number of applications of closure and congruence generation will suffice to

produce the closed congruence associated with [S].   □

(3.2) Example. The map * from 9(1) onto 9*(I) does not preserve arbitrary

meets.

Proof. Let [p„] = {(r, s)\k/2n <s,r <(k + l)/2", k = 0, I, . . . ,2" - 1} \j D,

for each positive number n. It is easy to show [pn] G 9(L) for all n. Now

rC-i[pJ = A so *(rC-i[oJ) = A However, [pj* = 7x7 for all n, so

n^x[p„]* = I XI.   □
(3.3) Example. 9*(I) is not lower continuous.

Proof. For each positive integer n, let [pn] = {(r, s) G 7 X I\k/3" < /-, s <

(re + l)/3", /c = 0, 2, 4, 6, . . . , 3" - 1} u 7). It is not difficult to see that [p„] is a

closed congruence for each n. Let [\p¡] = (~) ñ_i[p„]> so [»//,•] G 9*(L). Let [<p] =

{(/•, j) G 7 X 7|r, 5 are in the same component of 7 - C where C is the Cantor

set} u D. It is also easy to see that [<|>] G 9*(L). Now [$„] V [</>] = 7 X 7 for all n.

Hence rC-id^] V M) =7X7. But fl *,[*,,] = A so (n?.J*J) V [*] = [*].
Therefore ( n „œ- it^D V [</>] # D „M- lö^l V [<*>])•    D
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