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SOME COUNTABILITY CONDITIONS

ON COMMUTATIVE RING EXTENSIONS

BY

ROBERT GILMER1 AND WILLIAM HEINZER2

Abstract. If 5 is a finitely generated unitary extension ring of the commutative

ring R, then 5 cannot be expressed as the union of a strictly ascending sequence

{Ä„}"_| of intermediate subrings. A primary concern of this paper is that of

determining the class of commutative rings T for which the converse holds-that is,

each unitary extension of T not expressible as U 5° 7¿: is finitely generated over T.

1. Introduction. In [1], the notions of (*)- and (**)-modules are introduced in

connection with the problem of determining whether a commutative ring R is

Noetherian if FffA']] = F-F[[A']] (power series ring extension) for each prime

ideal P of R. The definitions are as follows. The unitary module M over the

commutative ring R is a (*)-module if each countably generated submodule of M is

contained in a finitely generated submodule of M, M is a (**)-module if M cannot

be expressed as the union of a strictly ascending sequence of submodules. In

general,

M finitely generated => (*) => (**),

and neither of the reverse implications holds. But it is shown in [1] that the class ®s

of rings over which each (**)-module is finitely generated includes the subclasses of

Noetherian rings, finite-dimensional chained rings, and If'-rings.

In this paper, we investigate the analogues of conditions (*) and (**) for ring

extensions. Specifically, if F is a commutative ring with identity and S is a

commutative unitary extension ring of R, then we say that S is a (*)-extension of R

if each countably generated extension F[{s,};°] of R in S is contained in a finitely

generated extension of R in S; S is a (**)-extension of R if S is not of the form

UjliSj, where {5,}°!, is a strictly ascending sequence of subrings of S containing

R. Again S finitely generated over R => S is a (*)-extension => S is a (**)-extension,

and neither of the reverse implications holds in the general case. The problem of

determining the classes of rings for which each (**)-extension (or (*)-extension) is

finitely generated is the central focus of this paper.

After proving some preliminary results in §2, we prove in §3 that if the integral

domain J is a (**)-extension of its subring D, where D has Noetherian spectrum,
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satisfies d.c.c. for prime ideals, and has each of its ideals countably generated, then

y is a finitely generated extension of D (Theorem 3.7); in §5, this result is extended

in Theorem 5.3 to show that an arbitrary (*)-extension of a ring satisfying the same

three conditions is a finitely generated extension. Theorem 3.10 is the result that a

(**)-extension F of a Noetherian ring R is finitely generated over R if and only if T

is Noetherian.

Let A: be a field, let S be the direct product of k with itself over an infinite index

set A, and let k* be the diagonal imbedding of k in S. In §4 we observe that S is

not a (*)-extension of the field k*, and that S is a (**)-extension of k* if and only if

k is finite (Proposition 4.3 and Theorem 4.7). We are indebted to Leonard Lipschitz

for the result that for k finite, S is a (**)-extension of k* that is not finitely

generated. This result shows that there are some fairly stringent limitations on

possible extensions of the results of §3.

Finally, in §6, we define 91L to be the class of rings R such that R has

Noetherian spectrum, d.c.c. for prime ideals holds in R, and either (3) each ideal of

R is countably generated, or (4) each ideal of R contains a power of its radical. We

prove in Theorem 6.1 that 911 is contained in the class l3r, defined in [1], consisting

of rings over which each (**)-module is finitely generated. Noting that 91L properly

contains the union of the classes of Noetherian rings, finite-dimensional chained

rings, and W/*-rings, it follows that Theorem 6.1 represents an actual expansion of

<§ as known from [1].

All rings considered are assumed to be commutative rings with identity. If F is a

subring of S, we assume that R and S have the same identity element, which is the

meaning of the word unitary in the statement that S is a unitary extension ring of

R; a subring T of S containing R is referred to as an S-overring of R, and the term

overring of R refers to an S-overring, where S is the total quotient ring of R.

2. Preliminaries. In this section, we list some results concerning conditions (*)

and (**) that are used frequently in the rest of the paper. Also, by examining the

case of overrrings of an integral domain, we show that no pair of the conditions (*),

(**), and finite generation is equivalent.

Proposition 2.1. Consider the following conditions on a unitary extension S of a

commutative ring R.

(1) S is finitely generated over R.

(2) S is a (*)-extension of R.

(3) S is a (**)-extension of R.

Then (1) implies (2) and (2) implies (3).

Proof. That (1) implies (2) is patent. If (3) fails and if S is the union of the

strictly ascending sequence {F,}°1, of 5-overrings of R, then choose s¡ G Ri+X —

R¡ for each i. The ring F[{s,}°°] is contained in no R¡, and hence in no finitely

generated extension of F in 5; that is, (2) fails if (3) fails.

The proof of the next result is standard, and is therefore omitted.
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Proposition 2.2. Let S be a unitary extension ring of R, let T be an S-overring of

R, let U be a multiplicative system in R, and let A be an ideal of S.

(1) If S is a (*)-extension of R, then S is a (*)-extension of T, U~XS is a

(*)-extension of U lR, and S/A is a (*)-extension of R/(A n R).

(2) If S is a (**)-extension of R, then S/A is a (**)-extension of R/(A n R).

(3) If S is a (**)-extension of R and if {C,}°11 « a sequence of subsets of S such

that S = R [ U i°C,], then S = R [ (J "= i C¡] for some n; in particular, if S is countably

generated over R, then S is finitely generated over R.

Let D be an integral domain with quotient field K and let / be an overling of D.

We consider briefly in the remainder of this section the problem of determining

conditions under which K (or J) is a (*)- or (**)-extension of D. Even in this

context we see that K a (*)-extension of D need not imply that K is finitely

generated over D; in §4 we give an example of a (**)-overring J of a domain D

such that J is not a (*)-overring of D.

We say that a family {Da} of overlings of D is of finite character if each element

of K belongs to all but a finite number of the domains Da ; the domain D is of finite

character if there exists a family {Va} of valuation overlings of D of finite

character such that D = D aVa, and in this case, {Va} is called a defining family

for D. Thus, a Krull domain is a domain of finite character in which each Va can

be taken to be discrete of rank one [4, §43].

Proposition 2.3. Let {/),}°L, be a family of overrings of the domain D such that

{Z),}^ has finite character. If J is an overring of D that is a (**)-extension of D, then

J is contained in all but finitely many of the domains D¡.

Proof. Let Jn = DfL„ D¡ for each n. Then D <z Jx Q J2Q • • • , and since

{/?,} has finite character, then K = U,"i •/• Thus J = UT (J n J¡), which means

J = J n Jk for some k, and hence J Q Dt for each / > k.

Proposition 2.4. Assume that J is an overring of the domain D and that A is a

multiplicative system in D.

(1) If J is a (*)-extension of D, then JN is a (*)-extension of DN. Conversely, if D is

semi-quasi-local with maximal ideals Mx, M2, . . . , Mn and if JD_M is a ^-exten-

sion of DM for each i, then J is a (*)-extension of D.

(2) The analogue of (I) for (**) is also valid.

Again the straightforward verification of Proposition 2.4 is omitted. The second

statement in (1) does not generalize to the case where D has infinitely many

maximal ideals. For example, the rational field Q is not a (**)-extension of Z, but

Q is a simple extension of ZpZ for each prime p.

Proposition 2.5. Assume that D is a domain of finite character with quotient field

K. Then K is a (**)-extension of D if and only if D is a semi-quasi-local Bezout

domain such that K is a (**)-extension of DM for each maximal ideal M of D.

Proof. It follows from Proposition 2.4 that the stated conditions are sufficient in

order that K should be a (**)-extension of D. Conversely, if AT is a (**)-extension of
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D and if { Va) is a defining family for D, then Proposition 2.3 implies that { Va] is

finite. Thus, D is a finite intersection of valuation rings on K, hence a semi-quasi-

local Bezout domain [9, (11.11)], [4, (7.4)], and Proposition 2.4 shows that K is a

(**)-extension of DM for each maximal ideal M of D.

If D is a domain with quotient field K and with integral closure D, then it is true

in general that A" is a (**)-extension of D if and only if AT is a (**)-extension of D.

If D is Noetherian, then D is a Krull domain, and Proposition 2.5 shows that K is a

(**)-extension of D in this case if and only if D is a semilocal PID. From this

observation, the following corollary follows easily.

Corollary 2.6. Assume that D is a Noetherian domain with quotient field K ^ D.

The following conditions are equivalent.

(1) D is a one-dimensional semilocal domain.

(2) K is a simple ring extension of D.

(3) K is a (**)-extension of D.

Corollary 2.6 presages both Theorem 4.7 and Theorem 5.1, which show, respec-

tively, that a domain that is a (**)-extension of a Noetherian subring D is finitely

generated over D, and that an arbitrary (*)-extension of a Noetherian ring R is

finitely generated over R.

If D is a Bezout domain, then DM is a valuation ring for each maximal ideal M

of D. Hence, the next result represents a deeper analysis of Proposition 2.5. The

hypothesis that V contains no minimal prime is included in the statement of

Proposition 2.7 because, as is well known, K is finitely generated over V if and only

if V has a minimal prime ideal.

Proposition 2.7. Let V be a valuation ring with quotient field K, and assume that

V has no minimal prime ideal. The following conditions are equivalent.

(1) K is a (*)-extension of V.

(2) K is a (**)-extension of V.

(3) K is not countably generated over V.

(4) If {P¡}JLi i* a sequence of nonzero prime ideals of V, then f) fL\P¡ =£ (0).

Proof. The known ideal theory of valuation rings implies that (3) and (4) are

equivalent, and (2) implies (3) since (2) and the negation of (3) imply that K is

finitely generated over V, contrary to the hypothesis that V has no minimal prime

ideal. Thus, we prove that (4) implies (1). Let {x,}°l, be a countable subset of

K — V so thaty, = X;"1 G V for each /'. Since y/y¡ V is a nonminimal prime ideal of

V, then y, V contains a nonzero prime F, of V. Let y be a nonzero element of

D," \P¡. Since y G ykV for each /' and each positive integer k, it follows that each

xk belongs to J'y"1, whence K[{x,}f ] Ç K[y_1] and K is a (*)-extension of V, as

asserted.

An arbitrary well-ordered set is, to within isomorphism, the set of nonzero

proper prime ideals of a valuation ring, ordered under Pa < Pß if Pa D Pß. In

particular, there exists a valuation ring W with no minimal prime ideal such that no
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countable set of nonzero prime ideals of W has intersection (0) (see, for example,

[5, p. 1139]). For such a valuation ring W, it follows from Proposition 2.7 that the

quotient field of W is a (*)-extension of W, but is not finitely generated over W.

We remark that there is a natural extension of Proposition 2.7 to the case of an

arbitrary overring of a valuation ring. This result is stated without proof in

Proposition 2.8.

Proposition 2.8. Let W be a proper overring of the valuation ring V, let P be the

center of W on V, and let S be the set of prime ideals of V that properly contain P.

The following conditions are equivalent.

(1) W is a (*)-extension of V.

(2) W is a (**)-extension of V.

(3) W is either finitely generated, or not countably generated, over V.

(4) Either (a) S contains a minimal element, or (b) S contains no minimal element

and no countable subset of S has P as its intersection.

As previously remarked, we give in §4 an example of a (**)-overring J of a

domain D such that / is not a (*)-overring of D.

3. (**)-extension. Much of this section is concerned with the problem of de-

termining conditions on an integral domain D in order that each (**)-extension

domain of D is finitely generated over D. In Theorem 3.7, we prove that sufficient

conditions for D to have this property are that D has Noetherian spectrum, each

ideal of D is countably generated, and D satisfies d.c.c. for prime ideals. In

Theorem 3.10 we show that a (**)-extension F of a Noetherian ring R is finitely

generated over R if and only if T is Noetherian.

Theorem 3.1. Assume that K is a subfield of the field L and that L/K is not a

finitely generated field extension. Then there exists an infinite strictly ascending

sequence K < Kx < K2 < ■ ■ •   of intermediate fields such that L =  U,"i K¡.

Proof. We consider separately the cases where the transcendence degree of L/K

is finite or infinite. If the transcendence degree of L/K is infinite, then by possible

passage to a purely transcendental extension of K, we assume without loss of

generality that a transcendence basis B = {x}°t,, of L/K is countably infinite. Let

Kx be the algebraic closure of K(xx) in L, let K2 be the algebraic closure of K^x^

in L, etc. It follows from the fact that F is a transcendence basis for L/K that

L = U," ! K¡ and that K¡ < K¡+, for each /'. Thus, the proof is complete in the case

where tr.d. L/ K — oo.

If tr.d. L/K is finite, then by adjoining a transcendence basis of L/K to K, we

may assume that L/K is algebraic, but not finite dimensional. Choose a sequence

{x,}°l, in L such that the sequence K < K(xx) < K(xx, x2) < ■ ■ • strictly

ascends. By Zorn's Lemma, there exists a subfield Kx of L containing K such that

Kx is maximal with respect to the property that the sequence Kx C Kx(xx) C

Kx(xx, x2) Ç • • • strictly ascends. Using Zorn's Lemma again, there exists a

subfield K2 of L containing Kx(xx) such that K2 is maximal with respect to the

property that the sequence K2 Q K^x^j Q K2(x2, x3) Ç • • •   strictly ascends. By
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induction, we obtain an ascending sequence Kx < K2 < • • • < K„ < ■ ■ ■ , where,

for each «, Kn+X is a subfield of L containing Kn(xn) such that Kn + X is maximal

with respect to the property that the sequence Kn+X Ç Kn+X(xn+X) C

Kn+i(xn+i, xn+2) C ■ ■ ■ strictly ascends. Let F = UfLi K¡- We prove that F = L.

Let 0 El L and let /( Y) be the minimal polynomial for 9 over F. For some «,

/( Y) G Kn[ Y], so F and Kn(0) are linearly disjoint over K„. Therefore K„(9) <

Kn(0)(xn) < Kn(0)(xn, x„+1) < ■ ■ • . Maximality of Kn then implies that 9 G K„,

so that L = U"-i ^n> as asserted. This completes the proof of Theorem 3.1.

Corollary 3.2. Assume that the integral domain D2 is a (**)-extension of its

subring Dx. If K¡ is the quotient field of D¡, then K2/Kx is a finitely generated field

extension.

Proof. If K2/Kx is not finitely generated, then K2 is expressible as U"_iF„,

where {Fn}5° is a strictly ascending sequence of intermediate fields. Then D2 =

UT (D2 n F„), where £>, Ç D2 n F, and D2¥=D2n F„ for each n. This con-

tradicts the hypothesis that D2 is a (**)-extension of £>,, and therefore establishes

the corollary.

We could give a much shorter proof of Theorem 3.1 if the following question (Q)

had an affirmative answer.

(Q) Assume that K is a subfield of the field L and that L/K is not finitely

generated. Does there exist an intermediate field F such that L/ F is countably

generated, but not finitely generated!

This question seems to be open, however, since an affirmative answer to (Q)

would imply that the following conjecture, stated by Bialynicki-Birula [3] (see also

[7]), is correct.

Conjecture. Any nonprime field contains a proper subfield of countable (finite or

infinite) codimension.

While Theorem 3.1 deals with the case where L/K is not finitely generated as a

field extension, the (**)-condition is stated in terms of ring generators. Proposition

3.3 addresses this discrepancy. Except for the statement in Proposition 3.3 that the

domains Di are integrally closed, Proposition 3.3 is implied by Theorem 3.7.

Proposition 3.3. Assume that K is a subfield of the field L and that L is not

finitely generated as a ring extension of K. Then there exists a strictly ascending

sequence K < Dx < D2< ■ ■ ■    of integrally closed subrings of L such that L =

Proof. If L/K is not finitely generated as a field extension, then Proposition 3.3

follows from Theorem 3.1. Thus, assume that L = K(9X, . . . , 0n) is finitely gener-

ated over K where, necessarily, some 9¡ is transcendental over K. Without loss of

generality, we assume that 9X is transcendental over K and that L is algebraic over

K[9X]. As K[9X] is a principal ideal domain with infinitely many maximal ideals, it

follows from Corollary 2.6 that K(9X) is the union of a strictly ascending sequence

{/,}°1, of (necessarily integrally closed) overrings of ^[0,]. If D¡ is the integral

closure of J¡ in L, then it follows that K < Dx < D2 < • ■ ■ <£>„<■•• and

L = (J f F>,> where each D¡ is integrally closed.
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Theorem 3.7 introduces a class of domains D such that each (**)-extension

domain of D is finitely generated. The statement and proof of Theorem 3.7 requires

some new terminology and two preliminary results. Let M be a unitary module

over the commutative ring R with identity. We say that M is w0- Noetherian if each

submodule of M is countably generated; R is an w0-Noetherian ring if each ideal of

R is countably generated.

Proposition 3.4. A countably generated unitary module over an u0-Noetherian ring

is an w0-Noetherian module.

Proof. Let M = 2J"Äx, be a countably generated unitary module over the

<o0-Noetherian ring R and A be a submodule of M. Since

A = Ü [n n ¿ RxX
n = 1  \ i—l /

it suffices to prove that each submodule A n 2"_,/?x,. is countably generated; to

do so, we use induction on «. For « = 1, A n Rxx is Ä-isomorphic to an ideal of R

containing Ann(x,), and hence A n Rxx is countably generated since R is w0-

Noetherian. If A n (ZkRx¡) is countably generated, then to prove that A' = N n

(Zk+lRx¡) is countably generated, we need only show that N'/(N' n 2*Fcx,) is

countably generated. This follows since

A'/ |A' n S Fx,-j » Í N' + 2 Rxj/ ¿ Foc,,

a cyclic /?-module.

Proposition 3.5. Consider the following conditions on a ring: (1) Noetherian

spectrum, (2) d.c.c. for prime ideals, and (3) <o0-Noetherian. If R is a ring satisfying

one of these three conditions, then each finitely generated unitary extension ring of R

satisfies the same condition.

Proof. Let S = R[sx, . . ., sn] be a finitely generated unitary extension ring of R.

If R has Noetherian spectrum, then S has Noetherian spectrum by Corollary 2.6 of

[10].
Assume that R is to0-Noetherian. Since S is a countably generated F-module,

then S is an w0-Noetherian F-module, hence an w0-Noetherian ring.

Finally, assume that R satisfies d.c.c. for prime ideals. To prove that S satisfies

the same condition, it is sufficient to prove this for the polynomial ring R[X] in

one variable over R ; there it follows from the known result that if Px < P2 < P3 is

a chain of three prime ideals of F [A], then F, n R < P3 n R [4, (30.1)].

We state next a result in the same vein as Proposition 3.5. Proposition 3.6 is not

used in the proof of Theorem 3.7, and we do not include the routine verification of

its validity.

Proposition 3.6. Let R be a ring with only finitely many maximal ideals

Mx, . . . , Mn. If m is one of the conditions (1), (2), or (3) of Proposition 3.5, then ir is

satisfied in R if and only if tr is satisfied in each RM.
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Theorem 3.7. Assume that the integral domain J is a (**)-extension of its subring

D. If D is <o0-Noetherian, has Noetherian spectrum, and satisfies d.c.c. on prime

ideals, then J is a finitely generated ring extension of D.

Proof. Let L and K denote the quotient fields of J and D, respectively. By

Corollary 3.2, L/K is a finitely generated field extension. Thus, there exists a finite

subset {9¡}n of J so that L = K(9X, . .., 9n). As Dx = D[9X, . . . , 9„] satisfies the

same three conditions that D satisfies by Proposition 3.5, and since / is a

(**)-extension of />,, it suffices to prove Theorem 3.7 in the case where J is an

overring of D.

Let S be the set of prime ideals P of D such that J g DP. If S is empty, then

J = D and J is finitely generated over D. Otherwise, S has minimal elements since

D satisfies the d.c.c. for prime ideals; let 9" be the set of minimal elements of S.

We show first that 9" is finite. If not, then we choose a countably infinite subset

{F,}~ , of 9", and for each positive integer n, set Dn = n,"„ DP¡. Then D Q Dx Ç

D2C ■■ ■ and DQDxc\JQD2c\JQ-Ç=J. Note that J n Dn c J for each

« since Dn C DP. Finally, we show that J = U,", (J D £>,.)-that is, that J ç

U," i Dt. Let t G J and let A, = {d G D\dt G D} be the conductor of t to D. We

show that t G DP implies that F, is a minimal prime of A,; since A, has only

finitely many minimal primes (D has Noetherian spectrum), it will then follow that

t belongs to all but a finite number of the localizations DP, and hence t G Dn for

some «. Now t G DP implies that A, ç P¡, whence F, contains a minimal prime F

of A,. Since A, <Z P implies that t G />/», and hence that J £ Dp, we conclude from

the choice of P¡ G 9" that F, = F is a minimal prime of A,. This contradicts,

however, the hypothesis that J is a (**)-extension of £>. Hence 9" is finite.

Let 9" = {F,, . . . , Ps], and choose a nonzero element x of f"ï;_iF,. The quo-

tient ring D[l/x] of D is the intersection of all localizations Dq of D such that Q is

prime in Z) and x G £?. Note that / Ç Z)ß for each such Q, for if not, then Q

contains some P„ and hence x G Q. Consequently, J Ç Z)[l/x]. By Proposition

3.4, 7 is a countably generated /»-module, hence a countably generated ring

extension of D. Because J is a (**)-extension of D, it follows that J is a finitely

generated ring extension of £>, and this completes the proof of Theorem 3.7.

The class 91 of domains satisfying conditions (l)-(3) of Proposition 3.5 includes

the classes of Noetherian rings and finite-dimensional valuation rings [8, Corollary

11], and hence, by Proposition 3.6, the class of finite-dimensional semi-quasi-local

Bezout domains. Thus, 91 is reminiscent of the class ?F considered in [1, §4]

consisting of rings over which each (**)-module is finitely generated. In §6 we show

(Theorem 6.1) that, in fact, 91 is a subclass of <3r. At this point we note that while

each W/*-domain is in l3r [1, Theorem 4.7], a W-^-domain need not be w0-

Noetherian; we correct this omission in Theoem 6.1 by providing an alternate to

the w0-Noetherian condition in its statement. In this connection, it would be

interesting to determine if each (**)-extension domain of a W'-domain D is finitely

generated over D.

Sharply in contrast with the case of (**)-extension domains, we give an example

in §4 of a (**)-extension ring R of a field k such that R is not finitely generated
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over k. In the remainder of the section we show, however, that there are some

positive results in this direction if suitable restrictions are placed on the extension

ring.

Proposition 3.8. Assume that T is a unitary ring extension of the Noetherian ring

R, that T is reduced with only finitely many minimal prime ideals Px, P2, . . . , Pn, and

that T/Pi is finitely generated over R/(P¡ D R) for each i. Then T is a finitely

generated extension of R.

Proof. We imbed F in S = (T/Px) 0 • • • ®(T/Pn), noting that S is a finitely

generated F-module. The hypothesis implies that S is also a finitely generated ring

extension of R. A theorem of Artin and Täte [2, Theorem 1] then implies that T is

a finitely generated ring extension of R.

Proposition 3.9. Assume that S is a unitary extension of the ring R, that T is a

finitely generated ring extension of R in S, and that S = T + N, where N is a finitely

generated nilpotent ideal of S. Then S is a finitely generated ring extension of R.

Proof. Assume that A = (ax, . . . , an), and let Sx = T[ax, . . . , an\. We prove

that S = Sx. Since S = Sx + A and since A is nilpotent, it suffices to prove that

S = Sx + Nk implies that S = S, + A*+1. Take x G A*, x = 2*_,•*,«!„ where

s¡ G S and {/«,■}, is the set of monomials in ax, a2, . . . ,a„ of degree k. We write

each s¡ in the form /, + «,, where t, G F and «, G A; thus x = 2,i,m, + 2,«,«i, G

S, + A* + 1. It follows that A* ç 5, + A*+1, so S = Sx + Nk+1, as was to be

proved.

Theorem 3.10. Assume that T is a (**)-extension of the Noetherian ring R. Then T

is finitely generated over R if and only if T is Noetherian.

Proof. The Hubert Basis Theorem implies that T is Noetherian if T is finitely

generated over R. Conversely, assume that T is Noetherian and let {F,}"_, be the

set of minimal primes of T. By Proposition 2.2, T/Pi is a (**)-extension of

R/(P¡ n R) for each i, and hence T/(r\1-lPi) is a finite ring extension of

Ä/(n?(F, n R)) by Proposition 3.8. As n,P, is a finitely generated nilpotent

ideal of T, we then conclude from Proposition 3.9 that T is finitely generated over

R.

As stated previously, the next section of the paper is devoted to the presentation

of an example showing that even for a field R, a (**)-extension of R need not be

finitely generated over R.

An analogue of Theorem 3.10 is valid if the condition that R is Noetherian is

weakened to the assumption that R satisfies conditions (l)-(3) of Proposition 3.5;

this is the content of the next result.

Theorem 3.11. Assume that the ring R has Noetherian spectrum, is u0-Noetherian,

and satisfies d.c.c. for prime ideals. Let T be a (**)-extension of R. Then T is finitely

generated over R if either of the following conditions is satisfied.

(i) T is a reduced ring with only finitely many minimal prime ideals.

(ii) T is u0-Noetherian and has only finitely many minimal primes.
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Proof. To prove (i), let {F,}"_, be the set of minimal primes of T. For each i,

T/P¡ is a (**)-extension of R/(P¡ n R). By Theorem 3.7, T/P¡ is finitely generated

over R/(P¡ C\ R). Then as in the proof of Proposition 3.8, it follows that T can be

imbedded in S, where 5 is a finitely generated ring extension of R and a finite

module extension of T. Since R is w0-Noetherian, S is an to0-Noetherian F-module.

In particular, F is a countably generated ring extension of R, and hence a finitely

generated extension of R since F is a (**)-extension of R. This establishes (i).

To prove (ii), let B be the nilradical of T. By (i), it follows that T/ B is finitely

generated over R/(B (~\ R). Thus, by a possible finite ring extension of R, we can

assume without loss of generality that F = R + B. It is then clear that F has

Noetherian spectrum and satisfies d.c.c. for prime ideals. Consider first the case

where R is reduced. In this case, we show that F is a (**)-ideal of T. Let {Bi}\f_x be

an ascending sequence of ideals of F with union B. Then T is the union of its chain

[R + B¡}fL\ of subrings. Therefore T = R + B¡ for some i, and since R is

reduced, B = B¡. Consequently, F is a (**)-ideal, and Theorem 6.1 of §6 shows that

B is finitely generated. By Proposition 3.9, it follows that F is finitely generated

over R in the case where R is reduced. In the general case (we still assume that

T = R + B), the preceding case shows that T/(B n R)T is finitely generated over

R/(B n R), hence T = S + (B n R)T for some finitely generated ring extension

S of R. Because B n R is a countably generated nil ideal of R, B n R can be

expressed as the union of an ascending sequence {C,}°1, of nilpotent ideals of R.

Since F = UT (5 + C,F) and F is a (**)-extension of R, it follows that T = S +

C¡ T for some i, whence F = S + C¡"T for each M, and F = S since C¡ is nilpotent.

Therefore F is finitely generated over R, and this completes the proof of Theorem

3.11.

4. Some examples. Let k be a field and let A be an infinite set. We denote by kN

the direct product of k with itself over the index set A, and we denote by k* the

diagonal imbedding of k in kN. Since the ring kN is not Noetherian, it is not a

(*)-extension of k* by Theorem 5.1. In this section, we show that kN is a

(**)-extension of k* if and only if A: is a finite field. To simplify the notation, we

write S instead of kN. Thus, we think of S alternately as either the set of all

functions from A into k, under pointwise addition and multiplication, or as

sequences {x,},eA, over R indexed by A, where addition and multiplication are

coordinatewise. For / G S, we denote by %(f) the support of /-that is, %(f) =

{« G A|/(«) ^ 0}; the support of {xn}nfEN is similarly defined as {/ G A|x, ^ 0}.

As is well known, the ring S is absolutely flat (or von Neumann regular), meaning

that each ideal of S is idempotent or, alternatively, that Sp is a field for each proper

prime ideal P of S. A significant difference between the cases k finite or k infinite

is indicated by the next result.

Proposition 4.1. If k is a finite field with q elements, then xq = x for each x G S

so that S is integral over k*. If k is infinite, then S is not algebraic over k*.

Proof. The first statement is clear. If k is infinite, choose a sequence s = {s,},0

G S with infinitely many distinct coordinates. If f*(X) is a nonzero polynomial



COMMUTATIVE RING EXTENSIONS 227

over k*, then f*(X) corresponds to a unique diagonal element {/(A)} of AJA"]*'.

Moreover, f*(s) = {f(s¡)} °1, is nonzero since fiX) has only finitely many roots in

k; thus, s is not algebraic over k*.

Corollary 4.2. Assume that the field k is finite. Let R be an S-overring of k* and

let M be a maximal ideal of R. Then R is absolutely flat, R = k* + M, and

R/M ^k.

Proof. Assume that \k\ = q. That R is absolutely flat follows from the fact that

xq = x for each x G R. Also, the field R/M is such that each of its elements

satisfies the equation xq = x. Therefore R/M is finite with at most q elements.

Since k* Q R and k* n M = (0), it then follows that R = k* + M and R/M ^ k.

Proposition 4.3. If k is infinite, then S is not a (**)-extension of k*.

Proof. Choose s G S so that s is not algebraic over k*. Then G = {fis)\f(X) is

a nonzero element of A:*[A]} is a multiplicative system in 5e that does not contain 0.

Hence, there exists a prime ideal F of 5 that misses G. Thus, s + F is an element of

the field S/P transcendental over k*. By Proposition 3.3, S/P is not a (**)-exten-

sion of k*, whence S is not a (**)-extension of its subring k* + P. Finally, this

implies that S is not a (**)-extension of k*.

We remark that the proof of Proposition 4.3 shows that, in general, if R2 is a

unitary extension of the commutative ring Rx with identity and if R2 is not integral

over Rx, then there exists a prime ideal F of R2 such that R2/P is not integral over

RX/(P n Rx). On the other hand, if R2/M is integral over RX/(M n /?,) for each

maximal ideal M of R2, then R2 need not be integral over Rx. For example,

F[X]/M is integral over F for each maximal ideal M of the polynomial ring F[A]

over the field F.

As expected, the proof in Theorem 4.7 that 5 is a (**)-extension of k*, for k

finite, is more difficult than the proof of Proposition 4.3. The proof of Theorem 4.7

uses several preliminary results.

Proposition 4.4. Assume that the field k is finite and that Rx and R2 are

S-overrings of k* such that Rx < R2. Then there exist distinct maximal ideals A/,, M2

of R2 such that Mx n Rx = M2 n Rx.

Proof. Since R2 is integral over Rx, each maximal ideal of F, is the contraction

of a maximal ideal of R2. Choose s G R2 — Rx, and let C be the conductor of s to

Rx. We show that each maximal ideal of Rx containing C is the contraction of more

than one maximal ideal of R2. To do so, we prove the contrapositive: if M is

maximal in Rx and is the contraction of a unique maximal ideal of R2, then

M 2> C. The maximal ideals of R2 that contract to Af on F, are those which

contain MR2. Since R2 is absolutely flat, it follows that MR2 is maximal in R2. Let

H = F, - M. Then (Rx)„ sa RJM sa k and (R^ sa R2/MR2 sa k by Corollary

4.3. Since (RX)H is naturally imbedded in (R^jj and each of these sets is finite, we

conclude that (RX)H = (F2)w. This equality is easily seen to imply, however, that

for each x G R2, the conductor of x to F, is not contained in M. In particular,

C g M and this completes the proof.
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For an arbitrary field k, it is proved in [1] that each maximal ideal M of S is a

(**)-ideal-that is, M is not the union of a strictly ascending sequence of ideals of S.

This result motivates the hypothesis of Proposition 4.5.

Proposition 4.5. Let R be an absolutely flat ring such that each maximal ideal of

R is a (**)-ideal. Assume that A is an ideal of R contained in infinitely many

maximal ideals of R. Then A is contained in uncountably many maximal ideals.

Proof. By passage to the ring R/A, it suffices to consider the case where

A = (0). Since (0) has infinitely many minimal primes, R is not Noetherian. Let M

be a maximal ideal of R that is not finitely generated, and assume that the set

{A/,-}" of maximal ideals of R distinct from M is countable. For each i, choose

x,, G M - M¡. Then M = V({*,}D = ({*,}î°) is a countably generated (**)-ideal

which is not finitely generated, an impossibility.

The statement of the next result uses the following terminology. Let S = {Aa}

be a family of ideals of the ring R. An element A in S is said to be isolated in S if

A is not contained in the union of the members of § distinct from A. No

restrictions on the cardinality of k are needed in Proposition 4.6.

Proposition 4.6. Let % be a countably infinite set of maximal ideals of the ring

S = kN', and assume that each element of S is isolated in S. If S = {F,}^., u

{Qi)T~\ is a partition of S into two infinite subsets, then (D ?P¡) + (H To.) = s-

Proof. For each i, we assume that / is an element of F, that belongs to no other

element of S and that g, G Q¡ belongs to no other element of S. Without loss of

generality, we assume that each/ and each g, is idempotent, so that regarding these

elements as sequences over k, they are (0, l)-sequences. For/ ¥= i, we have 1 — /,

1 - g, G Pj n Qj, and hence/ - g,. = (1 - g,) - (1 - /) G n j+,(Pj n Qj). Also,

/ - g, is in neither F, nor Q¡. Let e¡ = (/ — g,)2; e¡ is a (0, l)-sequence with the

property that e, G H (-F) n Qf), e¡ & F, u Q¡. Consider the sequence {/>,}°1, de-

fined as follows:

bx = fxex,    b2 = (1 - ex)e2f2,   b3 - (1 - e,)(l - e2)e3f3,-

We note first that each b¡ is a (0, l)-sequence, and that %(b¡), the support of ¿>„ is

disjoint from %(bj) for i <j since %(b¡) ç %(e¡) and %(bj) ç %(l - e,) = A -

%(e¡). Thus, it is meaningful to write the "infinite sum" ¿» = 2^L,Z>,; it denotes the

(0, l)-sequence with support U?Li%(b¡). Hence b is idempotent, and we complete

the proof by showing that b G (1? P¡ while 6 £ U," i Ô, (so that 1 - b G

H," i Q¡, and H Î°F(- and C\ J°ô, are comaximal, as asserted). To show that b G F„

note that />,,..., ¿»,_, G F, since ex, . . . , e,_, are in F,. Moreover, b¡ G F, since

/ G F,.. Now

M I b) = Ü %(bj) Q %(l - *,),
\i+i   /      i+i

and hence e¡'2i+lbi = 0. Since e¡ G P¡> it follows that 2°^,Z>, G F,, and hence

b = /», + •• • +/», + 2* xbj G P¡. The same arguments show that b - b¡ G Q..

But b¡ = (I - ex), . . . , (1 - e,_,)e,/ G Q¡ since none of the factors is in Q¡.

Whence, b G Q¡ for each /' and this completes the proof of Proposition 4.6.
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If F, is a subring of R2 and F is a prime ideal of R2, then we say that F is

unibranched over Rx if F is the unique prime of F2 with contraction F n Rx on Rx;

this terminology is used in the proof of Theorem 4.7.

Theorem 4.7.3 If k is a finite field, then S = kN is a (**)-extension of k*.

Proof. Assume, to the contrary, that S = U,°li R¡, where {F,}J° is a strictly

ascending sequence of S-overrings of A:*. By Proposition 4.4, there exists a maximal

ideal of Rx that is the contraction of more than one maximal ideal of S. Let F, and

Qx be distinct maximals of 5 with the same contraction to Rx. We note that if M is

an arbitrary maximal ideal of S, then M is generated by M n R„ for some n since

(M n Rx) Q (M n R2) G . . . is an ascending sequence of ideals with union M,

and M is a (**)-ideal. Thus, there exists « > 2 so that F, and Qx are unibranched

over Rn. Hence, by replacing the sequence {F,}°1, by the sequence Rx < Rn <

Rn+X < ■ ■ ■ , we assume without loss of generality that F, and Qx are unibranched

over R2. We continue this process, obtaining distinct primes P2, Q2 of 5 with the

same contraction to R2 such that P2 and Q2 are unibranched over R3. By induction,

we obtain an infinite set of pairs P„ Q¡ of distinct primes of 5 such that P, and Q¡

have the same contraction to R¡, but are unibranched over F1 + , for all i. Note that

there is no duplication in the listing {F,, Qx, P2, Q2, . . . }, for if i <j, then F, and

Q¡ are unibranched over Fy, while F7 and Qj are not unibranched over Rj.

We propose now to obtain a subsequence {(P„., Q„)}T-i so mat each element of

the set S = {Pn}°° u {Q„)T IS isolated in S. This is done recursively, obtaining

first a subsequence {(F^, Qa)}fLx of {(F„ Q,)}™ so that Pa> and Qa¡ are isolated in

{pa¡}T U {Qa,)T' as follows. The ideal fl "P,- = -4 is contained in infinitely many

maximal ideals of S, and hence in uncountably many maximal ideals of S by

Proposition 4.5. Choose a prime ideal F of S, distinct from each F, and each Q¡,

such that fl TPi £ P- Let /i De an idempotent element in F, - (F u ß,). Then

D "F,- can be expressed as 5 n C, where F is the intersection of the primes F, that

contain /, and C is the intersection of those P, that contain 1 - /. Then BC Q P

with B !Z P implies that C Q P, and hence infinitely many of the primes P,

contain 1 — /,. Thus, we obtain a subsequence

P„ *„. Ps2, ■■■ (2)

of
Py,P2,P3,..., (1)

where {P,.}" is the family of ideals F, that contain 1 — /,; without loss of

generality, we assume that 1 — /, G Rs, so that 1 - /, E P, n /?s = ß, for each

t > 1. Hence, F, is isolated in the set

*-{J»,}u{<Mu{J»Xu{Gl};'.

Now we basically repeat this process for £?, and the set 9^; to wit we choose a

prime ideal (9 of S containing Qx n (D Toi) sucn that (2 £ 9"> and we choose an

3Koppelberg and Tits [8] show that if 9(X) is the ring of subsets of the infinite set X, then ty(X) is

not the union of an infinite strictly ascending sequence of subrings. This statement is, of course,

equivalent to the case of Theorem 4.7 where k = GF(2).
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idempotent g, G ß, — (F, u ß). In this way we obtain a subsequence

Öl. ßi,. ßr2> • • • (3)

of

ßi. a,. a2. • • • (4)

such that F, and ß, are isolated in the set {F,} u {ß,} U {PA? U {Q,.}?. We let

«, = 1. Assume that we have subsequences

P P    P    P (5)

and

ß„,> ■ ■>Qnm< Qus QUl> • • • (6)

of (1) and

ß„ ß* • • • (7)

so that each F^ and each ß„, is isolated in

^^}:u{#u:u{aa:u{ajr-
Let G be a prime ideal of 5 containing (D^) n (D^PJ such that Gí%.

Choosing an idempotent

fm+i e fm, -NU (F, u a»)) u g u aA

we obtain, as in the case m = 1, a subsequence

^»l'   '   •   -   '   P%,'  P"l'  P<=l'  P»2'   ■   ■   ■ W

of (5) so that each Pn, each Qn, and F„ is isolated in the set

K};u {ôj;u {pu¡} u {ôu,} u {>,),-u {aj;.

Because the notation is cumbersome, we omit the extension to a subsequence

where Qu is also isolated. We then set nm+x = ux. By mathematical induction we

obtain the desired subsequence {(Pn¡, ß^)}°° of {(F,, ß,)}00. By Proposition 4.6, the

ideals fl T^n, an<^ H Tß«, are comaximal. Choose an element/ G nï° F^ such that

1 - / G DT Qn,- For some t we have/ G Rv whence/ G F^ n R^ = ß„, n Rv

and this contradicts the fact that Q^ is a proper ideal of S. We conclude that S is a

(**)-extension of k*.

It follows from Theorem 5.1 that a (*)-extension of a Noetherian ring is a finitely

generated extension. Since kN is obviously not finitely generated over A:*, Theorem

4.7 provides an example where (**) does not imply (*); this example can be

extended to that of an overring of an integral domain as follows. Let k be a finite

field; the ring kN is the homomorphic image of an appropriate polynomial ring /

over k. Let D be the inverse image of k* under the homomorphism; thus

D = k + A, where A is the kernel of the homomorphism. Since A ¥= (0), the

domain J is an overring of D (in fact, / is the integral closure of D), and because of

the corresponding properties for kN and k*, it follows easily that / is a (""^-over-

ring of D, but not a (*)-overring of D. Also in this connection, we remark that D
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and J provide an example of an integral (**)-ring extension that is not a (**)-mod-

ule extension. It is easy to see that the converse is always true-that is, if a ring

extension S of R is a (**)-F-module, then S is also a (**)-ring extension of R.

5. (*)-extensions. Assume that F is a ring satisfying conditions (l)-(3) of

Proposition 3.5-that is, R has Noetherian spectrum, is «0-Noetherian, and satisfies

d.c.c. for prime ideals. We prove in Theorem 5.3 that each (*)-extension of R is

finitely generated over R. Because of the simplicity of its proof, we present the

special case of Theorem 5.3 in which R is Noetherian in Theorem 5.1. Results of §4

show that analogues of these results for (**)-extensions fail miserably.

Theorem 5.1. A (*)-extension of a Noetherian ring is a finitely generated extension.

Proof. Let F be a (*)-extension of the Noetherian ring R. By Theorem 3.10, it

suffices to prove that F is Noetherian, and for this purpose, it is enough to show

that each ideal of F is a (*)-ideal [1, Proposition 1.2]. Let / be an ideal of T, let

{/,}5° be a countable subset of /, and let S be a finitely generated extension of R in

F containing F[{i,}J°]. Then S Noetherian implies that / n S is a finitely gener-

ated ideal of S containing {i,}f. Thus, (/ n S)T is a finitely generated ideal of F

contained in / and containing {/,}î°. Hence / is a (*)-ideal, and this completes the

proof of the theorem.

Proposition 5.2. Assume that S is a unitary extension ring of the ring R. If S has

infinitely many minimal primes, then there exists a countable subset {s¡}°°=x of S such

that the ring F[{5,}5°] has infinitely many minimal primes.

Proof. Choose a countably infinite set {F,}°1, of minimal primes of S. Pick

x, G F,. Since x, belongs to a minimal prime of S, there exists y, G S — F, such

that x,y, is nilpotent. Next pick x2 G F2 — F, andy2 G S — P2 such that x2y2 is

nilpotent. Having chosen x,, y,, . . . , x„, yn, choose x„+, G F„+, —

(F, u • ■ • U P„) andyn+, G S — P„ + 1 so that xn + xyn+x is nilpotent. By induc-

tion, we can find an infinite such double sequence {x,,y„ x2,y2, . . . }. Let

T = R[xx,yx, x2,y2, ...]', we claim that F has infinitely many minimal primes.

For each i, let ß, be a minimal prime of F contained in F, n T. We show that

Q¡ 7e Qj if i <j. Thus Xjyj nilpotent implies xjyj G ß, n ß,. Now y. G /^ 2 ß

implies Xj G Qj and Xj G F, implies xy & Q¡ C F,. Therefore ß, ¥= Qj and F has

infinitely many prime ideals, as asserted.

Theorem 5.3. Assume that R is an w0-Noetherian ring with Noetherian spectrum

and with d.c.c. on prime ideals. If T is a (*)-extension of R, then T is finitely

generated over R.

Proof. We show first that F has only finitely many minimal primes. If not, then

Proposition 5.2 shows that there exists a countably generated extension 5 of F in F

such that S has infinitely many minimal primes. Because F is a (*)-extension of R,

there exists a finitely generated extension Sx of R in T containing S. Then Sx has

Noetherian spectrum, and hence has only finitely many minimal primes. Since each

minimal prime of S is the contraction to S of a minimal prime of Sx, it follows that
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S has only finitely many minimal primes, a contradiction. Hence T has only

finitely many minimal primes, as asserted. Part (i) of Theorem 3.11 then shows that

F is finitely generated over F if F is reduced. In any case, if B is the nilradical of T,

then by a possible finite ring extension of R, we assume without loss of generality

that T = R + B.

Assume first that R is reduced. In this case, we prove that F is a (*)-module over

R. Thus, let {¿>,}°i, be a countable subset of B, and choose tx, . . . , tk G T so that

F[{¿>,}°°] ç R[tx, . . . , tk). Since F = R + B, we may assume that each /, G B.

Because B n R = (0), it then follows that each b¡ belongs to the F-module

generated by all monomials in {tx, . . ., tk], a finite set since each /, is nilpotent.

This proves that F is a (*)-module over R. Then Theorem 6.1 of the next section

shows that B is a finitely generated F-module, so T is finitely generated in the case

where R is reduced. In the general case, the preceding case shows that T = S +

(B n R)T for some finitely generated ring extension S of R, and the remainder of

the proof is identical to that of Theorem 3.11 from the same stage. This completes

the proof of Theorem 5.3.

6. An expansion of the class 9\ Define 911 to be the class of rings R such that (1)

R has Noetherian spectrum, (2) d.c.c. for prime ideals is satisfied in R, and either

(3) R is io0-Noetherian, or (4) each ideal of R contains a power of its radical.

Conditions (l)-(3) are the defining properties of the class 91 of domains consid-

ered in §3. We prove in Theorem 6.1 that 9H is a subclass of the class S7 of rings

over which each (**)-module is finitely generated; this is the motivation for the

addition of condition (4) in the definition of the class 9H-Theorem 4.7 of [1] shows

that S contains the class of W*-rings, and while a H^-ring satisfies conditions (1),

(2), and (4), such a ring need not be co0-Noetherian. Thus, each of Theorems 4.2,

4.7, and 4.10 of [1] follows from Theorem 6.1. Note that the class 911 contains rings

that were not known to be in *3 from the results of [1]. There exist, for example,

two-dimensional, countable, strongly Laskerian rings that are not Noetherian; such

a ring R satisfies (l)-(4), and hence is in 911, but R is not Noetherian, is not a

finite-dimensional chained ring, and is not a H/*-ring.

Theorem 6.1. A (**)-module over a ring in the class 911 is finitely generated; that

is 91L is a subclass of the class 9\

Proof. Assume that R G 911. We show first that R/A G 9r for each radical

ideal A of R. If this is not the case, then since R has Noetherian spectrum, there

exists a radical ideal B of R maximal in the set of radical ideals A of R such that

R/A G 9. Replacing R by R/B, we can therefore assume that F is a reduced ring

with the property that there exists a nonfinitely generated (**)-module M over R,

whereas R/C G S for each nonzero radical ideal C of R. We propose to show that

this assumption leads to a contradiction. Let A be a nonzero proper ideal of R and

let C = V A. Either (3) or (4) implies that the ideal C/A of R/A is the union of an

ascending sequence Ax/A ç A2/A G . . . of nilpotent ideals of R/A. Since

(R/A)/(C/A) ^ R/C G <5, it follows from Lemma 4.3 of [1] that the ring R/A is

in S. If R is not an integral domain, the proposed contradiction is now easy to
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obtain: let x and y be nonzero elements of R such that xy = 0. Then M/xM is a

(**)-module over R and over R/(x) and hence is finitely generated over R since

R/(x) G 'S'. Also, xM is a (**)-module over R and over R/(y) [1, Lemma 4.8],

hence a finite generated F-module by the same argument. Consequently, M is a

finitely generated F-module, contrary to assumption. This leads to consideration of

the case where R is an integral domain.

In the case where R is an integral domain, we let H = R — {0} and let K = RH

be the quotient field of R. Then MH is a (**)-module over K, hence a finitely

generated vector space over K. It follows that there exists a finitely generated free

F-submodule F of M such that M/F is a torsion F-module. As M/F is a

(**)-module over R and our aim is to prove that M is finitely generated, we assume

without loss of generality that M is a nonzero torsion module over R. Let A be the

set of primes P of R such that Ann(«i) G P for some m G M. Since R satisfies

d.c.c. for prime ideals, the set A contains minimal elements; let {Pa} be the set of

minimal elements of A. We consider separately the cases where {F0} is finite or

infinite. If {F„} is finite, we choose a nonzero element x G D aPa- For each

m G M, we have x G \/Ann(m), so x"m = 0 for some «. Let Mn = [m G M\x"m

= 0}. Then A/, G M2 G . . . and M = U~_, Mn. Since M is a (**)-module, we

have M = Mn for some «. Thus, A/ is a (**)-module over R/(x"), hence finitely

generated over R/(x") and over R. This contradiction leads to the case where {Pa}

is infinite. In this case, choose a countably infinite subset {F,}°L, of {Fa}, and for

each positive integer r, define

Mr = [m G A/|Ann(w) ¡Z F, for any i > r).

It is clear that Mr is a submodule of A/ and that A/, Ç A/2 G . . . . We note that

Mr =£ M for each r, for there exists mr G M such that Pr is a minimal prime of

Ann(«jr), and hence mr G M — Mr. Also we note that M = {J%x Mr, for if

m G M, then Ann(m) has only finitely many minimal primes in R. Thus, the

assumption that A is infinite contradicts the fact that M is a (**)-module, and this

resolves the case where R is an integral domain. Finally, we conclude that the

assumption that R/A & S for some radical ideal A of R is false, so in particular,

R/^(0) G 'S. Since either (3) or (4) implies that y/(0) is the union of an ascending

sequence of nilpotent ideals of R, we then conclude as in a previous argument that

R G S, and this completes the proof of Theorem 6.1.

In connection with Theorem 6.1 and the results in [1] concerning the class 'S', it

would be interesting to determine if any one-dimensional integral domain with

Noetherian spectrum is in 9\ We conclude this article with the following result

showing that this is at least the case for integrally closed domains.

Proposition 6.2. If R is a one-dimensional integrally closed domain with

Noetherian spectrum, then R is in 5.

Proof. We first show for any nonzero x in R that R/(x) is in 9\ Since R is

integrally closed, there exists a set {Va} of valuation rings such that R = C\aVa.

Hence (x) = C\axVa. We observe that for each positive integer «, An =

{y G R\y" G (x)} is an ideal in R. For if y, z G An, then (y - z)n G xVa for each
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Va, so that (y - z)n G xR, and y - z G An. Moreover, A" G (x). We have y/(x)

= U"_i An = A, and since R is one-dimensional with Noetherian spectrum, R/A

is a finite product of fields and hence is in 9\ By [1, Lemma 4.3], F/(x) is in 9\

Let M be a (**)-module over R. We wish to show that M is finitely generated,

and for this purpose, as in the proof of 6.1, we may assume that M is a torsion

F-module. Moreover, again as in the proof of 6.1, the fact that M is a (**)-module

implies that the set A of prime ideals P of R such that Ann(«i) G P for some

nonzero m G M is a finite set, say A = {F,, . . . , Ps}. Since M is a torsion module,

each F, ^ (0). Let y be a nonzero element of nj_iP,-. For each m G M, we have

y G VAnn(w), soy"w = 0 for some «. Let Mn = {m G M\y"m = 0}. Then A/, G

M2 G . . . , and M = Mn for some «. Thus, Af is a (**)-module over R/(y").

Hence M is finitely generated.
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