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THE C. NEUMANN PROBLEM AS A COMPLETELY

INTEGRABLE SYSTEM ON AN ADJOINT ORBIT

BY

TUDOR RATIU

Abstract. It is shown by purely Lie algebraic methods that the C. Neumann

problem-the motion of a material point on a sphere under the influence of a

quadratic potential-is a completely integrable system of Euler-Poisson equations

on a minimal-dimensional orbit of a semidirect product of Lie algebras.

1. The C. Neumann problem. The motion of a point on the sphere S"~x under the

influence of a quadratic potential U(\) = {-Ax ■ x, x G R", A = diag(a,, . . . , an) is

a completely integrable Hamiltonian system. For n = 3 this has been shown by C.

Neumann in 1859 [12] and for arbitrary « by K. Uhlenbeck [16], R. Devaney [3], J.

Moser [10], [11], M. Adler, and P. van Moerbeke [2]. In this paper we show how

this problem fits naturally in the framework of Euler-Poisson equations [4], [5], [14],

[17] proving that the C. Neumann problem is a Hamiltonian system on a minimal-

dimensional adjoint orbit in a semidirect product of Lie algebras. Thus its complete

integrability will follow entirely from Lie algebraic considerations.

The equations of motion are

x¡ = -a,x¡ + Xx¡,       i = 1, . . . , «, (1.1)

where the Lagrange multiplier X = Ax ■ x — ||x||2 is chosen such that x G S"~l

during the motion. Set x = y and get the equivalent system to (1.1)

*, = y>,       y, = -a,xt + (Ax-x- \\y\\2)Xi,        ||x|| =1,       x • y = 0.  (1.2)

The following crucial remark that motivated the present investigation is due to

K. Uhlenbeck and can be verified without any difficulties.

Lemma 1.1. Put X = (xtxj), P = {ytXj — x¡y). System (1.2) is equivalent to

X=[P,X],       P=[X,A],        ||x|| = 1,        x-y = 0. (1.3)

Remark that if one replaces X and A by X - Id/« and A — (Tr(A))ld/n

respectively, where Id is the « X « identity matrix, equations (1.3) remain un-

changed. From now on we shall assume that in (1.3) this change has been made so

that X, P, A G sl(n). The next section gives a Lie algebraic interpretation to these

equations.
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2. The equations of motion as a Hamiltonian system on an adjoint orbit. We start

by recalling a few facts about the ad-semidirect product © ad X © of a semisimple

Lie algebra © with the abelian Lie algebra © having underlying vector space @. If

(£i> ̂ i), (¿2> Vz) e ® ad x ®> meu" bracket is defined by

[«„ *,), «2, nd] = ([¿.. fe], [Ii, %] - [fo *])• (2-1)
If k denotes a bilinear, symmetric, nondegenerate, bi-invariant, two-form on @, the

form ks, called the semidirect product of k with itself and defined by

*,<(!„ Ut), (l2, ih» - «(fi. %) + «(fe Ii) (2-2)

is a bilinear, symmetric, nondegenerate, bi-invariant, two-form on © ad X ©.

Let G be a Lie group with Lie algebra ©. The Ad-semidirect product G Ad X ©

is a Lie group with underlying manifold G X © and composition law

( ft, !,)( ft, ¿2) = ( ft ft, Ii + Ad,£). (2.3)

Note that the identity element is (e, 0) and the inverse (g, £)_1 = (g\ — Ad -i£).

The Lie algebra of G Ad X © is © ad X ©. The adjoint action of the Lie group

G Ad X © on © ad X © is given by

Ad,,,,,«, t,) = (Ad,|, Ad,r, + [», Ad,*]). (2.4)

In the considerations that follow, the orbit symplectic structure plays a central

role (see Abraham and Marsden [1] and Ratiu [14] for proofs). If a Lie algebra ©

has a bilinear, symmetric, nondegenerate, bi-invariant two-form k,

«t(Ad,Ö([rj, Ad,{], [S, Ad,{]) - -k([t,, $], Ad,|) (2.5)

for £, Tj, f G ©, g G G, defines the canonical symplectic structure on the adjoint

orbit G ■ £ through f. If £\ £": © -> R, the Hamiltonian vector field of E\G ■ £ is

given by

**|ct(Ad,í) = - [ (grad £)(Ad,£), Ad,£] (2.6)

and the Poisson bracket of E\G ■ £, E'\G ■ £ is

{E\G- & E'\G • £}(Ad,£) = -«([(grad £)(Ad,£), (grad E'){Adgij)}, Ad,£)

(2.7)

where grad denotes the gradient with respect to k.

For the semidirect product these formulas become

»(t,nX[(fcn),(fi,fí)].[(fcn).<r2í'fá)])

^-K,((í,T,),[a„fí),a2,?í)})> (2-8)

**({, t?) = - ([(grad2 £)(£, r,), £], [(grad2 £)(£, r,), r,] + [(grad, £)(£, r,), £]),

(2.9)

{£, £'}(£, t,) = -k(£, [(grad2 £)(£, V), (grad, £')(£, r,)])

- K(£, [(grad, £)(£, r,), (grad2 £')(& r,)])

- k(t,, [(grad2 £)(£, 1,), (grad2 /?')(!, il)]), (2-10)

where (grad,, grad2) denotes the usual gradient with respect to k X k; note that the

gradient with respect to k is (grad2, grad,).
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Assume that © = ® © 9?, where SÎ is a vector subspace and 31 a Lie subalgebra

of ©, 31 having N as underlying closed Lie subgroup of G. Denote by n^, n^ the

projections of © on S and 31 respectively. Then ©* = ®* © SR*. The nondegener-

acy of k on © defines the isomorphisms 31-1- = &*, ñ± — 31* and thus the

coadjoint action of N on 31* induces an action of N on ®x given by

N X^ ^(n,Ç)^,n^AdntG@-L (2.11)

where Ust±: ©—»®x denotes the canonical projection defined by the direct sum

decomposition © = SÎ"1 © 3l±. Thus the orbit N • £ equals

A/-£= (IV(Ad„ £)|« e N) g®x,      £eS\ (2.12)

whose tangent space at £ G N ■ £ is

^(iV.£) = {nHx[£,T,]|7,G3î} G^. (2.13)

The symplectic structure on N ■ £ equals, by (2.5),

toi(£)(nfi,[r,,£],nR,[f,£]) = -K([T,, ?],£),       ÏgN-ÇG^,    (2.14)

and the Hamiltonian vector field defined by E\N ■ £, £: © —> R, is, by (2.6),

*W£) = -n^[n*(grad £)©>£]>       ÏGN-tQ^. (2.15)

Finally the Poisson bracket of E\G • £, £'|G • £ is given by (2.7),

{E\G- £, E'\G- £}(£) = ^([^(grad £)(£), n^grad £')(!)], I),    (2-16)

for £ G N ■ £ ç $-"-. All previous considerations naturally live on the duals but this

is the form we shall use for the C. Neumann problem; see Ratiu [14] for a parallel

description on duals.

We shall apply all previous results to a specific Lie algebra. Let

© = sl(n) ad X sl(n), G = Sl(n) Ad X sl(n), 31 = so(n) X sym, N = SO(n) X sym,

® — sym X so(ri), where sym c sl(ri) denotes the vector space of all symmetric

matrices. Clearly 31 is a Lie subalgebra and ® a vector subspace of ©, N a Lie

subgroup of G with Lie algebra 31. Thus by our general considerations N acts on

^±. It is easy to check that with respect to *,, where k(A, B) = -\Tt(AB), &1- = ®,

3Î1- = 31. In what follows we shall determine explicitly a particular A'-orbit; note

first that in the case above IIR± in formula (2.11) is not necessary, i.e. the action of

N on ®x is given by (2.4).

If y, z G R", denote by y ® z the matrix having entries ytx, and remark that if

g G SO(n), g(y <8> z)g-' = (gy) ® (gz). Let z = (1, . . . , 1)/V«~  and take (z ® z

- Id/«, 0) G g-1. Let g G SO(n) be arbitrary and denote x = gz. Then ||x|| = |jz||

= 1 and g(z ® z — Id/«)g_1 = x <&> x - Id/« which is a matrix X having all

off-diagonal entries equal to x¡Xj and diagonal entries xf — l/n. Thus the first

component of the A/-orbit through (z ® z — Id/«, 0) is the matrix X occurring in

Lemma 1.1. We compute the second component. If 6 G sym, XtJ = x¡Xj, X¡¡ = xf

— l/n, then

[0, X]t = ( j|   0Äxt - *,.C(x, 0))*, - *,.( S   »¿* - x,C(x, 0)),
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where C(x, 9) = 2¿, x¡xk9ik. Put .y, = 2^=1 i^ikxk ~ x¡C(x, 9)) and remark that if

y = (yx, . . . ,y„), x ■ y = 0 since ||x|| = 1. Thus the second component of the

A/-orbit consists of matrices P G so(n), Ptj = y,x, — x^y¡, x • y = 0. We showed

hence that this AZ-orbit consists of pairs (A", P) G sym X so(n) with X, P defined as

in Lemma 1.1.

Remark that the correspondence (A", P) = X(x, y) defines a diffeomorphism of

this orbit onto the tangent bundle TS"~X of the unit sphere S"~x in R". A tangent

vector at (X, P) to this orbit is [(A", P), (£, r/)] for (£, 17) G so(n) X sym and is of the

form (V, W) G sym X so(n), where Vy = vjxi + x,v>,, v¡ = 2*_, **£*,, rV0 = w,Xj

- xtwj + y,Vj - yjv¡, w, = 2nk = x(yk£ki - xki\kl) + x,1kJ x,xki^ as a short calcula-

tion shows. Thus the tangent map of X is given by ( V, W) \-, (v, w), where

v = (vx, . . . , v„), w = (wx, . . . , wn).

TS"~X has a natural symplectic structure induced by the canonical symplectic

form - 27= 1 dx¡ A dy¡ of R2". By (2.8) the canonical symplectic structure u on the

orbit is given by

u(X, P)([(X, P), (£', V)], [(X, P), (£2, v2)]) = kY[(£2, -n2), (£', „»)], (AT, />)).

Let V, W, \', W be defined by £', 17', ¡ = 1, 2. We have by bi-invariance of ks,

antisymmetry of £2, symmetry of tj1, and by (2.8), (2.14)

{\,u)(x, y)((v', w1), (v2, w2)) = «(*>)((»", Wx), (V2, IV2))

= -kM2,V2),(V1,Wx))

= \ Tr(£2W") + i Tv(r,2Vx)

- 2 U2 *&) -ÎIpIÎ y&) +ÎUÎ xrfk)
n

= - 2 {yWk - K»l)
fc-i

= (-îdxkAdyk)((.x,^,(S^)).

This shows that A is a symplectic diffeomorphism:

t n \I " \
K^=i- 2   dx,f\dy\\TSn~x.

Let L: sl(n) -^ sl(n) be given by L(£) = -£. L is clearly a K-symmetric isomor-

phism. The following Euler-Poisson Hamiltonian (see [4], [5], [15], [17] for motiva-

tions) £(£, tj) =j(c(tj, L(tj)) + k(A, £) for A G sl(n) a fixed diagonal matrix, in-

duces a Hamiltonian vector field on the A/-orbit through (z <2> z — Id/«, 0) given

by (2.15), (A", P)r^>([P, X], [X, A]), i.e. we get equations (1.3). Hence we proved

the following.
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Theorem 2.1. The N = so(n) X sym-orbit through (z ® z - Id/«, 0) in ®x = ®

= .sym X ío(«), z = (1, . . . , 1)/V« , consists of all pairs (X, P), XtJ = x¡Xj for

i *j, Xu = xf - l/n, P¡j = y,Xj - x¡yj, \\x\\ =1, x • y = 0. With the Kirillov-

Kostant-Souriau symplectic structure this (2« — 2)-dimensional orbit is symplectically

diffeomorphic via (X, P) \-, (x, y) to TS"~X with the symplectic structure induced from

R2n by -27.1 dx> A dy¡. The Hamiltonian E(X, P) = -{-k(P, P) + k(A, X) defines

on this orbit the equations of motion of the C. Neumann problem

X=[P,X],        P=[X,A],        ||x|| = 1,        x-y = 0. (2.17)

Remark. M. Adler and P. van Moerbeke [2] have independently observed that

(2.17) is a Hamiltonian system in a semidirect product.

3. The complete set of integrals and their involution.

Lemma 3.1. The equations X = [P, X], P = [X, A], ||x|| = 1, x • y = 0 are equiva-

lent to

(-X + PX + A\2y=[-X + PX + AX2, -P - AX] (3.1)

for any parameter X.

The proof is a straightforward verification. It follows that the functions

(l/2(* + l))Tr(-A" + PX + AX2)k + x are conserved on the flow of (3.1). If ft-»

(AYi), P(t)) denotes the now of (2.17), then t (-> - A"(i) + P(t)X + AX2 is the flow

of (3.1) and we conclude that the coefficients of X in the expansion of

(1/2(Â: + l))Tr(-A" + PX + AX2)k + x are conserved along the flow of (2.17). Let

ft(X, P) be the coefficient of X2k in this expansion for k = 1, ...,«— 1. We shall

prove in this section that all ft are in involution. The method of the proof follows

Ratiu [13], [15] closely.

Theorem 3.2. Let © be a Lie algebra with a bilinear, symmetric, nondegenerate,

bi-invariant, two-form k. Let f,g: © -> R satisfy [(grad/)(£), £] = 0, [(grad g)(£), £]

= Ofor all £ E ©. Denote /„(£, tj) = /(£ + ar, + a2e), g6(£, tj) = g(£ + ¿n, + b2e) for

e G © fixed and a, b arbitrary parameters. Then ft, gb Poisson commute in the

bracket of © ad X © defined by its symplectic decomposition in adjoint orbits.

Proof. Clearly (grad, /„)(£, tj) = (grad /)(£ + cm + a2e), (grad2 /„)(£, 17) =

a(grad/)(£ + at\ + a2e) and similarly forg6. By (2.10)

{/„, ft}(I, V) = ™<[(grad, /J(£, t,), (grad2 gj(£, r,)], £)

- ,c([(grad2/J(£, 7,), (grad, &,)(£, r,)], £)

- K([(grad2/J(£, 17), (grad2 g6)(£, tj)], tj)

= -K((a + ¿>)£ + abr\, [(grad/)(£ + crq + a2e),

(grad g)(è + bn + b2e)})

= (b2/ (a - ¿>))K([£ + a-q + ah, (grad/)(£ + aq + a2e)],

(grad g)(£ + br, + b2e))

+ {a2/ (a - ¿>))/c([£ + br, + b2e, (grad g)(£ + ¿n, + b2e)],

(grad/)(£ + ar, + a2ej) = 0



326 TUDOR RATIU

by hypothesis. By continuity {ft, gh) =0 holds also for a = b.   □

Remark. The condition [(grad /)(£), £] = 0 for all £ G © is the infinitesimal

version of Ad-invariance of / as an easy computation shows.

Theorem 3.3. Let G be a Lie group, N a closed subgroup, with Lie algebras © and

31 respectively. Assume © = §\ © 9?, ® a vector subspace, [®, 31] G ñ, and that © has

a bilinear, symmetric, nondegenerate, bi-invariant, two-form k. Assume that f, g:

© —» R Poisson commute on ©, i.e.

k([(grad/)(£), (grad g)(£)],£) = 0,

for allé G ®. If either

(1) §t is a Lie subalgebra, or

(2) n^n^grad/XT,), nR(gradg)(T,)] = 0 for all r, G ®±,

then on any N-orbit in s^±, the functions f, g Poisson commute.

Proof. Let tj g ®±. By hypothesis and (2.16) we get

0 = -rc([(grad/)(Tj), (grad g)(r,)], tj)

= {f\N ■ v, g\N ■ vHv) - K^tn^grad/KTjXn^gradgXî,)],^).

The second term vanishes in either hypothesis 1 or 2.    □

Remark. Both theorems have identical versions on duals and k is not needed

there.

These two general theorems prove the involution of the functions ft in the

following way. In Theorem 3.2 take © = sl(n) and let

<*>*(£, tj) = (1/2(A: +_0)7>(-£ + tjA* + 1 + AX2k + x)k + \

Then {<¡>k, <£,} = 0 on sl(n) ad X sl(n) for any parameters Xk+X, Xl+X, i.e. <t>k+x is

constant on the flow defined by <j>l+x no matter what A^,, A/+i are> i-e- iae

coefficients of Xk +, in <¡>k +, are constant on the now defined by <f>/+, for all Xl+X.

Hence {ft, $,} = 0 for all X, and thus {ft,f,} = 0 for any k, I. In Theorem 3.3 take

© = sl(n) ad X sl(n), @ = sym X so(n), 31 = so(n) X sym and remark that [®, 31]

G sX.ft,fi Poisson commute on © by what we just proved, so in order to conclude

that they Poisson commute on the A/-orbit through (z ® z — Id/n, 0) we have to

check condition (2) of Theorem 3.3 for tj = (A", P) G Si"1 = ®. An easy computa-

tion shows that

f^p) = 2jkTY)Tr

k
-,2,A,XAk-'+        2 A'PAJPA'

i = 0 i+j + I=k-1
i,J,l>0

(3.2)

so that the gradient of ft with respect to ks is

(gradft)(X, P) = I -  2   AiPAk-x~J,Ak\G so(n) X sym = 31       (3.3)

and hence nR(grad/*)(*, P) = 0.

Theorem 3.4. The functions ft, k = 1, . . . , « — 1, are constants of the motion in

involution for the C. Neumann problem. /, = -£, £ = energy function.
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Remark. Equation (3.1) is Hamiltonian in the Kac-Moody extension of sl(n); see

Adler and van Moerbeke [2].

4. Independence. Throughout this section we assume that A = diag(a„ . . . , a„)

has all entries distinct.

Let T = span{A^(A", P)\k = 1, . . . , « — 1}. We have to show that generically

dim(T) - n - 1.

Denote by Ukj the coefficient of A' in the expansion of (—X + PX + AX2)k.

From (3.3) it follows that (gradft)(X,P) = (-Ukak_x,Ukak), so that °V =

ad(A-,/>)<2n, where ^ = span{(- Uk2k_x, Uk>2k)\k = 1, ...,«- 1}. Since Uk2k =

Ak and A has all entries distinct we conclude that {Ak\k = I, . . . , n — 1} are

linearly independent in sl(n) and thus dim(So) = « — 1; in particular dimCT) <

dim(6Eo) = « — 1 which was already obvious from the definition of CY.

Let (¡y = span{(— Uk2k_x_2J, Uk2k_2j)\k = j, ...,« — 1} where we make the

convention that any Uki with / < 0 is identical zero; thus dim((î ) < « — j, j =

1, ...,«- 1. Denote ^ = ad(X P)&j,j = 0, 1, . . . , « - 1, so that T = %.

Lemma 4.1. 77ie linear map fA P: sl(n) X sl(ri) —» j/(«) X i/(«) defined by

fA,P&-n) = ([v,P]-[ï,A],[A,r,])

is injective on all &j,j = 1, . . . , « — I, for generic (X, P).

This is a direct, but somewhat lengthy verification (see [15] for a more com-

plicated similar proof).

Lemma 4.2. The following relations hold for any k = 1,...,«— 1:

- [ ¿W,, X] + [ Ukak_j_x, P] + [ VJt^.^A] = 0.

This is obvious if one notes that the expression above is the coefficient of A7 in

the expansion of [(- X + PX + AX2)k, - X + PX + AX2] = 0.

We have thus by the two prior lemmas

ad(jf,/>)(— Uk2k_x_2J, Uk2k_2J)

= ([ ÍW.-2,, x], [x, ukak_2J] + [ uK2k_x_2j, p])

=  ([ t4,2*-2-2,-, P]   + [ Vk,2k-3-2J,A],  [A,  Ukak_2J_2])

= JA,P\~ Uk,2k-2j-3> Uk,2k-2j-2)>

i.e.fAP(âj+x) G ad(XP)(âj) = 'Yj. ftp injective implies dim^) > dim(âJ+x),j =

0, 1, ...,«- 1. Assume from now on that for anyj = 1, ...,«— 1, XJ J= 0; this

condition is generically satisfied. Since UJ0 = (— iyAv we conclude ad^^O, C^q)

= (0, 0) and hence dim(&j) > 1 + dimC^T) fory > 1. Hence we obtain

dim(<3j) > 1 +dim(&j+x),      j = 1, ...,«- 1, &n = 0. (4.1)

Clearly &n_x = span(0, Un_xo) so that dim(6Ün_,) = 1. Repeated application of

(4.1) yields then dim((£,) > « — 1, which combined with « - 1 > dimCVo) >

dim(6E,) gives dimCY) = « - 1.
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Theorem 4.3. Let A = diag(a,, . . . , an) have all entries distinct. The C. Neumann

problem is a completely integrable Hamiltonian system, « — 1 generically independent

integrals in involution being given by

fk^x'p) = 2(kTT)TT

k
-^AiXAk~i+        2 A'PAJPA'

i=0 i+j+l=k-\
i,j,l>0

Remarks. (1) The geodesic spray on an ellipsoid in R" with all axes distinct is

also completely integrable and given by the Euler-Poisson equations on the same

orbit

X=[Q,X],        P=[Q,P]+[X,A~X],

for Q0 = -P^/afij, with Hamiltonian £(A", P) = -\k(P, Q) + k(X, A~x). It has

the same integrals^ since the previous equations can be written as

(-X + PX + .4A2y = [-A- + PX + AX2, -Q - A~XX].

This follows easily from the work of Moser [10], [11] and has been independently

observed by Adler and van Moerbeke [2] who also linearize the flow.

(2) The geodesic spray on S"~x corresponds to A = 0 in the C. Neumann

problem, or to A = Id in the ellipsoidal problem. The Euler-Poisson equations on

the same orbit are X = [P, X], P = 0 and the integrals in involution are

MX, p) =

Jpk-(^TTPk)ld,x\,       k = even,

Tr(Pk+x),       k = odd.
2(k + 1)

The Hamiltonian is —fx(X, P) = -\k(P, P). The prior proof of independence can

be easily modified step-by-step to show that X¡k,k= I, . . . , n - 1, are generically

independent.
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