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RANDOM EVOLUTION PROCESSES WITH FEEDBACK
RY

KYLE SIEGRIST

Abstract. A general random evolution Markov process is constructed which

switches back and forth at random among a given collection of Markov processes

("modes of evolution") defined on a common evolution state space and indexed by

an evolution rule space. Feedback is incorporated by allowing the path of the

evolution component to influence the changes in evolution rule. The semigroup of

the random evolution process is studied and is used to compare the process with

the operator random evolutions of Griego and Hersh. Using deterministic modes of

evolution, we generalize the Markov processes constructed by Erickson and by

Heath. We also study new random evolution processes constructed from Brownian

motions and from regular step processes.

1. Introduction. A random evolution process is a two component jump Markov

process. The first component switches back and forth at random among a collec-

tion of Markov processes ("modes of evolution") defined on a common "evolution

state" space and indexed on an "evolution rule" space. The second component

keeps track of which evolution rule the first component is following. The evolution

state is allowed to jump whenever the evolution rule changes. Feedback is incorpo-

rated by allowing the path of the evolution component to influence the time

between jumps and by allowing the evolution state immediately before a jump to

influence that jump.

The primary motivation for these processes is the theory of operator random

evolutions developed by Griego and Hersh [4], [5] and extended by Pinsky [15],

Kertz [12], [13], [14], et al. in which an underlying stochastic process (e.g. a regular

step process) is used to switch among a collection of "évolution operators" (e.g.

semigroups) defined on a Banach space. The Markov process approach has two

advantages over the operator approach. First, the Markov process approach allows

more interaction between the evolution state component and the evolution rule

component. In particular, feedback of the type described previously does not seem

possible in the operator setting. Second, the richer structure of the Markov process

setting allows the study of problems that cannot be formulated in the operator

setting.

Several authors have constructed special types of Markov processes in the

random evolution setting. Erickson [3] constructed a class of processes in which the

modes of evolution are deterministic and in which the jump rate parameter
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depends only on the evolution rule (eliminating a source of feedback). Heath [8]

constructed a process in which the evolution rule space is finite and in which the

deterministic modes of evolution are given by du/dx = v¡(u), i = 1,2, . . . , n.

Griego and Moncayo [6] extended Heath's technique to allow general Markovian

modes of evolution but again restricted the jump rate to depend only on the

evolution rule and kept the restriction of a finite rule space. The main goal of both

the Erickson and Griego-Moncayo papers was to construct Markov process ana-

logues of operator random evolutions. Heath's goal was to construct Markov

processes associated with certain hyperbolic systems of equations. Thus there is a

need to study random evolutions in a general Markov process setting.

The random evolution process is constructed in §§3-5 using essentially the

technique of Heath and Griego-Moncayo. Only minor complications are caused by

incorporating feedback and using an evolution rule space of arbitrary size. The

construction is accomplished in three main steps. First, a "composite" process is

constructed which simultaneously keeps track of each mode of evolution together

with its corresponding evolution rule. Next, a subprocess of the composite process

is constructed using the theory of multiplicative functionals. Finally, the paths of

the subprocess are pieced-together using a technique of Ikeda et al. [10], [11]

developed for continuous time branching processes. The intermediate processes are

emphasized because they are important tools, not only in the construction, but also

in the study of the random evolution process.

The operator semigroup and infinitesimal operator of the random evolution

process are studied in §6. Several interesting special cases are obtained by specializ-

ing the control parameters. In particular, the semigroup is used to compare random

evolution processes with operator random evolutions.

Several examples are studied in §7. The first two examples generalize the

processes of Erickson and Heath, respectively. In the third example, a random

evolution process is constructed from a collection of Brownian motions with

differing variance parameters. A connection is made between this process and the

multigroup theory for neutron reactors. In the last example, a random evolution

process is constructed from a collection of regular step processes. This process has

an interesting symmetry in that the evolution state and evolution rule components

have similar probabilistic structures.

2. Notation and basic data. A locally compact Hausdorff space with a countable

base will be called a semicompact. If £ is a semicompact, %(E) will denote the

a-algebra of Borel sets of E and B(E) the Banach space of bounded, measurable,

real-valued functions on E with supremum norm.

We will use standard notation and results for a Markov process X =

(0, 9H, 91t(/), X(t), 9(t), Px) with state space (E, <3>(E)), where £ is a semicom-

pact (see, for example, Blumenthal and Getoor [1] or Dynkin [2]). In particular, 911

(resp. 911(0) denotes the completion of 911 (resp. the completion of 911(0 in 911)

with respect to {Px: x E E). 9l_(resp. 91(0) denotes the a-algebra a{X(s): s > 0}

(resp. a{X(s): 0 < s </}) and 91 (resp. 91(0) the completion of 91 (resp. the

completion of 91(0 in 91) with respect to {/"*: ju a finite measure on (E, ® (E))}.
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We now fix two semicompacts E and F. Elements x E E are thought of as

"evolution states" and elements y E F as "evolution rules". Let S = E X F with

the product topology. S is also a semicompact and ®(S) = 9>(E) 0 %(F). If

CES and y E F, Cy will denote the cross-section {x E E: (x,y) E C). If /is a

function on S and y E F, f will denote the cross-sectional function on E given by

fy(x) = f(x,y). Similarly, we can define cross-sectional sets Cx and functions fx by

an element x E E. Of course, if C E 9> (S), x E E, and y E F then CyE% (E)

and Cx E ® (F).

If F is countable, we give F the discrete topology. Then F is a semicompact and

® (F) the power set of F.

The basic data for the random evolution process is as follows.

(a) For each y E F, a Markov process Xy = (üy, 91t,, 911,(0, Xy(t), 9y(t), Px)

with state space (E, %(E)). Each Xy is a possible "mode of evolution" on E.

(b) A "jump rate" function q: S—>(0, oo). q plays the role of an exponential

parameter in determining the time between changes in the evolution rule.

(c) A "jump" probability kernel Q((x, y), d(x,y)) on (S, 9>(S)). Q determines

probabilistically how the evolution rule and state change at a jump.

The dependence of q and Q on x E E is the cause of feedback in the random

evolution process.

3. The composite process. The first step in the construction of the random

evolution process is the formation of the composite process which simultaneously

keeps track of each mode of evolution together with its evolution rule. With F

finite, this process was constructed by Griego and Moncayo [6]. For a general F,

the following measurability requirement will be essential:

(3.1) Assumption. (x,y) m> Pyx(Xy(t) E Cy) E ®(S)/®[0, l]for C E <$>(S).

Recall that for y E F and A E ©(£), x h> Px(Xy(t) E A) E ® (£)/<$ [0, 1]

(this is required by the definition of a Markov process). Hence (3.1) is automatic if

F is countable. If F is uncountable, (3.1) can usually be satisfied by imposing

additional regularity conditions on the parameters (such as transition densities)

that define the X (see §7).

Without loss of generality, suppose that £ly¡ n &y = 0 for yx ¥=y2. Let £20 =

Uy<=F &y- For w0 E S20, w0 = tOy e Q,y and / > 0 define

Z0(f,«o) = (*.('> <°vM

and 90(t, w0) = 8y(t, uy). Define 91^ = {A E fl0: A n 0, E 91c,, for y E F) and

for / > 0 define  91^(0 = {A ç S20: A n Qy E 91^(0 for y E F).  Finally,  for

z = (x, y) E S, define P¿ on 91^ by

Po(A) = P;(A n Q,).

(3.2) Theorem. Z0 = (fi0, 91Lo, 9Ho(0, Z0(0 = (*„('), Yo(t)), 0o(t), P¿) is a

Markov process with state space (S, © (S)) and satisfies the following conditions:

(a) (Z0(t), P^) is equivalent to ((Xy(t),y), Px)for (x,y) E S.

(b) Z0 inherits the following properties (that is, if each Xy has the property, then so

does Zq): strong Markov, right continuous, left-hand limits, continuous, normal,

quasi-left continuous.
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(3.3) Remarks, (a) The results of Theorem (3.2) follow easily from the defini-

tions.

(b) Assumption (3.1) insures that z i-> P¿(Z0(t) E C) E ®(5)/®[0, 1] for C <E

iß (S) and / > 0 as required in the definition of a Markov process. The following

example shows that this assumption is necessary.

(3.4) Example. Let E = [0, oo) and F = (0, oo). Let tiy = E and 9H, = 911,(0

= % (E) for y E F and t > 0. Let B E F, B G $ (F). For y E B, x E Qy, and

t > 0 define Xy(t, x) = 9y(t, x) = x. Fot y G B, x E Qy, and / > 0 define Xy(t, x)

= 0y(t, x) = x + yt. Finally, let Px = ex for x E E and y E F. Each Xy is a

Markov process on (E, <& (E)). Let C = {0} X F. Then C E %(S) and

P0x^(Z0(l) EC)= Pyx(Xy(l) = 0) = ImxB(x,y)

which is not in % (S)/% [0, 1] since B £ 9, (F).

(3.5) Remark. In [6] (with F finite), Griego and Moncayo defined <3TI0 =

a{cdty,y E F; Í20} and 91^(0 = o{<5fiy(t),y E F; iï0). A standard argument

shows that if §y is a a-algebra on Sly for eachjy E F then A E a{@y,y E F; S20} if

and only if A n Sly E %y for each y and either A n fy = 0 for all but countably

many>> or A n ß, = ®y for all but countably many y. Hence, if F is countable, the

two definitions agree, but, if F is uncountable, the Griego-Moncayo a-algebras are

too small.

(3.6) Theorem, (a) A E 91tn(f +) // and only if A n tiy E 9Tc>(/' +) for each

y E F. Hence_ 91^/ + ) = 91^(0 // and only if cDTL>(i +)  = %,(t) for_each y E F.

(b) A E 9JLo if and only if A n B, E 91L, for each y E F. Hence 91tn = 91^ if
and only if 911^, = 911^, for each y E F. Analogous results hold with 91Lo replaced by

91Lo(0 and 911, by 911,(0-
(c) // A E 9Lq i/ie« A n fy G 91, for each y E F. If F is countable, the converse

is true. Analogous results hold with 9Lg replaced by 9Lg(0 and 'dlI_by 91^,(0, 9Lg

replaced by % and 91, by %, % replaced by %y(t) and 91, by 91,(0-

Proof. Parts (a) and (b) follow easily from the definitions, so we prove part (c).

Let % be the a-algebra {A E %: A n fi, E 91, for y E F}. If C E ®(S) and

/ > 0 then {Zo(0 E C} nQy = {Xy(t) E Cy} E 91, for y E F and hence %, Ç

%. But OC ç 9Lo by definition so 9Lg = %. Also if A E <$>(E) and t > 0 then

{^(0 G A} = {Z0(0 G ^ X {y}} E % fory G Fand hence

a{%,y E F; S20} ç % ç (A ç fl0: Anß.e^ for>> G F}.

If F is countable, the extreme members are equal by Remark (3.5).

Now let A G 91g. Fix y E F and let cbea finite measure on (E, % (E)). Let ¡u

be the finite measure on (S, íBíS)) defined by ¡x(C) = v(Cy). There exist A„

A2E%) such that A, Ç A Ç A2 and Pg^ - A,) = 0. But then A, n fiy, A2 n

tiy E <%y; A, n tty E A n Qy E A2 n %; and

0 = PS(A2 - A,) = ( ¡i(d(x,y))PQX^(A2 -Ax)=f v(dx)P^\A2 - A,)
JS JE

= f v(dx)Py^{(A2 - A,) n a,-) = p;((a2 n %) - (A, n %)).
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Therefore A n &y E C!K^. Suppose now that F is countable, A Ç ß0, and A n ß, G

9t, for eachjy G F. Let ¡u. be a finite measure on (S, 9>(S)). Fory E F define the

finite measure vy on (E, <$(£)) by vy(A) = n(A X {y}). There exist Y\, Ty2 G 9t,

such that T\ C A n ß, E T^ and

p?(n - it) = o
for each y G F. Define A,, A2 C ß0 by the conditions A, n ßy = Fx and A2 n ß,

= Yy2 fory G F. Then A„ A2 G 91^; A, E A E A2; and

F£(A2 - A,) = U(d(x,y))PQX*\A2 - A,)
Js

= 2  Í ", W/((A2 - A,) n a,)

= 2 ^;Kr2 - ri) = o.

Hence A G 9tg.

The following example shows that in the converse statement of (3.6)(c), the

assumption that F is countable is essential.

(3.7) Example. Let E consist of a single point x and let 9>(E) = {E, 0). Let

F = [0, 1]. Fory G F, let a, = { y} and 91t, = 91t,(0 = {ßy, 0}. For t > 0 define

-Y,(í,y) = x and 0,(í, y) = y. Let F/ = e, for y G F. Trivially, Xy is a Markov

process on (E, %(E)) for each y and 9t, = 91t,. Assumption (3.1) holds so the

composite process Z0 is well defined. Note that ß0 = [0, 1] and Z0(t,y) = (x, y) for

t > 0 and y E ß0. Let Í £ 8[0, 1]. Then {Zo(0 E {x} X B} = B so 91,, =

©[0, 1]. Now let A Ç [0, 1], AG 65 [0, 1]. Trivially, A n ß, G 9t, for each y

(A n ß, is either { y} or 0) but A G %>.

From Theorem (3.2) and Theorem (3.6)(a), (b) it follows that if each X is a

standard process on (E, %(E)) then Z0 is a standard process on (S, CS>(S)). The

point of (3.6)(c) is that, if originally, 91t, = 9t, for each y, it does not follow

(unless F is countable) that 91to = 91^.

4. The subprocess. From now on we will assume that each X (and hence Z0) is

standard. Suppose that q G iß(S)/<35(0, oo) is bounded and that q is continuous

for y G F. We suppose also that

rgy(Xy(s))ds= oo
•'o

almost surely for y G F (this will be true in particular if each q  is bounded away

from 0).

For t > 0 let

M0(t) = cxp(-jT'9(Z0(j)) ds).

Then A/0 = {M0(t): t > 0} is a continuous, strong multiplicative functional of Z0

satisfying M0(0) = 1 and M0(t) E 91^,(0/$ [0, 1] for r > 0. Note that on Qy,

M0(t) = My(t) = exp(- f'qy(Xy(s)) ds)

and My = {My(t): t > 0} is a continuous, strong multiplicative functional of A".
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Now let A be a point not in S and let 5A = S U {A}. Topologically, A is

adjoined to 5 as the one-point compactification of S if 5 is noncompact and as an

isolated point if S is compact. SA is also a semicompact and %(S¿) = 'S)(S) Li {C

U {A}: C G S)(S)}. A real-valued function f on S will be extended to SA by

defining/(A) = 0. With this convention, B(S) is a subspace of 5(5^).

The canonical subprocess

Z = (a, 9\, 9lt(0, Z(0 = (X(t), 7(0), 9(t), Fz)

associated with Z0 and M0 is a standard process with state space (S, ^(S))

(augmented by A) such that if/ G B(S) and z E S, then

F>(/(Z(0)) = E¿(f(Z0(t))M0(t)) (4.1)

(see [1, Chapter III]). The sample paths of Z evolve like the sample paths of Z0 up

to a random lifetime f, after which Z(0 = A. The "killing" is done at the rate

~dM0(t)/dt = q(Z0(t))M0(t).

Because of the assumptions on q, 0 < y < oo almost surely. Note that, in terms of

the basic data, (4.1) can be written

Ê^\f(Z(t))) = Eyx{fy(Xy(t))exp(-j\y{Xy(s)) ds))

and hence it follows that Z can also be thought of as the composite process of

{Xy: y E F} where Xy is the subprocess associated with X and M .

We will need the following result in the next section.

(4.2) Lemma. For z = (x,y) E S and C E <S> (S),

Pz( lim Z(s) eC;f</|- f'Êz(q(Z(s)); ¿(s) E C) ds
V su '     J°

(by convention we take limJÎa.- Z(s) = A if the limit does not exist).

Proof. By definition of the subprocess (see [1, Chapter III]),

P*(]JmZ(s) E C; S < t) = Fj( i'/{limrtiZo(r)ec) q(Z0(s))M0(s) ds)
\ nf- / \Jo i

But j —> Z0(s) has only countably many discontinuities almost surely so

P'(limZO) EC;S<t) = E$( f/{Zo(j)sc} q(Z0(s))M0(s) ds)
V sis ' °

= i'Ê*(q(Z(s)); ¿(s) G C) ds.
■'n0

Note that, in terms of the basic data, the equation in (4.2) can be written

P(WlimZ(j) G C;Í < t)

= jr'^(^(A,(5))exp(-jr^(^(r)) dr); Xy(s) G Cy) ds.

By the assumptions on q it follows that limJÎf-Z(j) exists in S almost surely.
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5. The random evolution process. Let Q(z, dz) be a probability kernel on

(S, % (S)) such that

Q((x,y),E X {y}) = 0,        (x,y)ES. (5.1)

We extend Q to a probability kernel on (SA, 'S (S¿)) by defining

Q(z, C) - Q(z, C - {A});       zeS,Cel(^;

ß(A, C) = eA(C);        C E ®(SA).

We now define /t: a X <S> (S¿) -» [0, 1] by

fi(«, C) = ö( lim   Z(r, Û), c).

By Example (2.1) of [11] we have the following:

(5.2) Lemma, ju, is an instantaneous distribution in the sense of Ikeda, et al. [11], that

is,

(a) For «eö,CH ¡Lt(â>, C) ¿s a probability measure on (SA, S> (S¿)).

(b) foz-CeS (SA), û h» Kw, C) g 9t/iB [0, 1).

(c) For any 9lt(0-stopping time f, ¡ti(¿>, •) = /u(0(f(w), û), ■) on {i < Ç} almost

surely.

It now follows that the pieced-together process

z = (a, 9it, 9it(0, z(0 = (*</), f(0), t„, ö(0, pz)

of Ikeda, et al. [11] associated with Z and /t is well defined.

(5.3) Theorem. Z is a standard process with state space (S, 9>(S)) (augmented by

A) and satisfies the following properties:

(a) rn is an ^(t)-stopping time for n = 0, 1, . . . and almost surely 0 = t0 < t, <

t2 < .... Also, Tj ° 9(h) = Tj+k — h if rk < h < Tk+X and almost surely t, ° 9(Tn) =

Tj+n-   T„ ¿O  °  9(Tn)  =   2(t   +   T„).

(b) (Z(0, t < t,; F2) w equivalent to (Z(t), t < f; Fz).

(c) For z E Sà, C E <S> (SJ, andt > 0,

F'(t, < /; Z(t,) G C) = P(l*(&, C); f(â>) < /). (5.4)

In our setting, Z has the following intuitive description: Starting in state (x, y),

Z(t) evolves like (Xy(t),y) (with Xy(0) = x) for 0 < t < t,. If Z is in state (x',y)

immediately before time t,, then at t„ Z jumps to state (x,y) with probabihty

<2((x',y), d(x,y)). Z(t) then evolves like (Xy(t - Tx),y) (with A/0) = x) for t, < /

< t2, etc. Condition (5.1) insures that the evolution rule changes at each jump time,

that is, F(t„ + 1) ̂  Y(Tn) for n = 0, 1, . . . almost surely. By definition of fi and

Lemma (4.2), (5.4) can be written in terms of the basic data as

F<-)(r, < t; Z(rx) E C)

= f'Ê^\q(Z(s))Q(Z(s), C)) ds
Jo

= f'Eyx(qy(Xy(s))exp(- fqy{Xy(r)) dr)<2{{Xy(s), y), C)) ds. (5-5)
-'o      V \  Jo > I
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The lifetime t¡ = inf{/ > 0: Z(t) = A} of Z is given by y = lim,,^,,,, rH. For e > 0

and z E S, Pz($ > e) > e~me so it follows from Theorem (2.5) of [11] that f = oo

almost surely and hence Z is conservative.

Basic in the construction of Z is the fact that jointly the evolution state and rule

at the jump times form an embedded Markov chain.

(5.6) Corollary, (a, 91t, 91t(r„), Z(t„), 0(t„), Pz) is a Markov chain on S with

transition probability

((x,y),C)^Ê^(^,C))

= ÇEyx[qy(Xy(s))^p[-¡\y(Xy(r)) dr)Q((Xy(s),y), C)) ds.

Z will be called the random evolution process associated with the basic data

{Xy: y E F), q, and Q. Note that only Assumption (3.1) is necessary for the

existence of this process. We will now interpret several special types of jump

kernels in the random evolution setting.

(5.7) Example. Suppose that Q((x,y), {x} X F) = 1 for (x,y) E S. Then

lim,ÎT X(t) = X(rn) for n = 1, 2, . . . almost surely. In this case, the random

evolution process is "continuous" in the sense that the evolution state does not

jump when the evolution rule changes. If, in addition, each X is a continuous

process then / m> X(t) is continuous almost surely.

(5.8) Example. Let QE be a probability kernel on (E, 'S (E)) and QF a probabil-

ity kernel on (F, S> (F)). Define Q by

Q((x,y), d(x,y)) = QE(x, dx) 0 QF(y, dy).

Then QE determines the change in evolution state at a jump and depends only on

the "previous" evolution state (i.e., the state immediately before the jump). Simi-

larly, QF determines the change in evolution rule at a jump and depends only on

the previous evolution rule. The changes in evolution state and rule are indepen-

dent given the previous state and rule.

(5.9) Example. Let QE be a transition probability from (S, %(S)) to (E, 9(E))

and QF a transition probability from (S, 'S (S)) to (F, 'S (F)). Define Q by

Q((x,y), d(x,y)) = QE((x,y), dx) 0 QF((x,y), dy).

Then both the changes in evolution state and rule at a jump depend on the

previous state and rule. The changes in state and rule are independent given the

previous state and rule.

(5.10) Example. Let QF be a probability kernel on (F, 'S (F)) and QE a transition

probability from (S X F,<S(S X F)) to (E, 'S(E)). Define Q by

Q((x,y), C) = f QF(y, dy)QE((x,y,y), Cy).
JF

Then the change in evolution rule at a jump depends only on the previous rule, but

the change in evolution state depends on the previous state and rule and on the

new rule.
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(5.11) Example. Consider the setting of Example (5.10) except let QF be a

transition probability from (S, <S(S)) to (F, %(F)). Hence Q has the form

Q((x,y), C) = ÍQF((x,y),dy)QE((x,y,y), Cy).
JF

Then the change in evolution rule at a jump depends on the previous state and rule

and the change in state depends on the previous state and rule and on the new rule.

(5.12) Remark. Suppose that Q has the form given in Example (5.8) or Example

(5.10) and that q is a function of y only. Then the random evolution process Z has

no feedback in the sense that X(t) has no influence on Y(t). In fact, it is easy to

show in this case that F'*1*0 is independent of x on a{ Y(s): s > 0} and that, for

each x E E,

Y = (ß, a{ Y(s): s > 0), a{ Y(s): 0 < s < t], Y(t), 9(t), P^)

is equivalent to the regular step process on (F, *S(F)) associated with QF(y, dy)

and q(y) (for a review of regular step processes, see [1, Chapter I]). If Q has the

form given in Example (5.9) or Example (5.11) or if q depends on x, then Z does

have feedback.

(5.13) Remark. Interesting modifications of the random evolution process could

perhaps be obtained by using multiplicative functionals other than the "exponen-

tial" one to determine the time between changes in the evolution rule. For example,

using the multiplicative functional

M0(t) = /[o,ro(c))(0

where t0(C) is the first exit time of the composite process Z0 from the nearly Borel

set C E S would cause the evolution rule to change each time Z leaves C.

The following result concerning the jump times of Z will be needed in the next

section.

(5.14) Theorem. For t > 0, Pz(rn <t)^0asn-+oo uniformly in z E S.

Proof. Let / > 0, a > 0, and z E S. Then

Ez(ear-) > Ez(e-aT% e^T* > e~°") > Ez(e^'; e^"r- > e^')

= e-"Pz(e^"r" > e^") = e~a'Pz(jn < t).

Multiplying the extreme members by e°" we have

Pz(jn < 0 < ec"Ez(e^").

Suppose that n > 1. Then

Ez(eaT") = Ez(e~aT-'Ez(e-aT°^T-')\GJii(Tn_x)))

= Ez(eaT-'Ez<-T-')(e^'r)).

But

Ez(e^) = Êz(e-"î) = E^Çe^q(Z0(s))MQ(s) ds)

I r™ \
< F¿(J     e-™\\q\\ ds) = \\q\\/a
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for all z E S. Therefore

Pz(rn < t) < ec"Ez(e^'r-'Ez'-T-')(e^XT))

<ea,Ez(e^-i)\\q\\/a.

Repeating the argument we have

Pz(r„ < 0 < («ill/«)"«-.

Letting a > ||<7|| we see that Pz(t„ < t) -^ 0 as n —» oo.

6. Semigroup theory. The goal of this section is to relate the semigroup and

infinitesimal operators of the random evolution process Z to the basic data. The

intermediate processes Z0 and Z will be useful tools. We will then be able to

compare the random evolution process to operator random evolutions.

Let Ty(t) (y G F), T0(t), T(t), T(t) denote the semigroups of the processes Xy

(y E F), Zq, Z, Z respectively. Of course 7^,(0 is defined on B(E) for each y;

T0(t),  f(t),  T(t) are defined  on B(S).  Let L,  (y G F),  Lq, L, L denote the

subspaces on which the corresponding semigroups are strongly continuous. Let A

(y E F), Aq, A, A denote the corresponding (strong) infinitesimal operators.

(6.1) Theorem. L*// G B(S). Then

(a)(F0(0A= Ty(t)fyforyEF.
(b) /// G Lq then fy G lyfory E F. If F is finite, the converse is true.

(c) If f E ^(Aq) then fy E ^(A^ for y E F. If F is finite, the converse is true.

(A0f)y = Ayfyforf G 6D(/f0) and y E F

Proof. Part (a) is immediate from the construction of the composite process.

Parts (b) and (c) follow from (a).

Note that, unless F is finite, the spaces L0 and ^(Aq) cannot be determined

explicitly from the spaces L, and °D (Ay), y E F. In particular cases, however, L0

and tf)(A0) can usually be determined directly.

(6.2) Theorem, (a) L = L0.

(b) If q leaves L0 invariant, then ^(A) = 6D(/10) and A = A0 — q.

Proof. These are well-known results for the subprocess (see, for example,

Dynkin [2]).

(6.3) Theorem, (a) Let f E B(S). Then t f-> T(t)f(z) is the unique solution of the

"renewal equation"

rt ~

T(t)f(z) = T(t)f(z) + f T(s)qQT(t - s)f(z) ds

that is bounded in t and z.

(b) L = L.

(c) If q and Q leave L invariant then ^(A) = ^(Â) and A = A + qQ.

Proof. Parts (b) and (c) are simple consequences of (a) and the assumptions on q

and Q so we need only prove (a). Let/ G B(S) and z E S. Then

T(t)f(z) = F'(/(Z(0)) = Ez(f(Z(t)); t<rx) + Ez(f(Z(t)); t > rx).



RANDOM  EVOLUTION PROCESSES WITH FEEDBACK 385

But (Z(0, t < t,, Pz) is equivalent to (Z(0, t < L Pz) and so (recalling that

/(A) = 0),

F'(/(Z(0); t < t,) - Êz(f(Z(t)); t < f) = f(t)f(z).

Also, t, is an 91t(0-stopping time, so by the strong Markov property and (5.5),

Ez(f(Z(t)); t > t,) - Ez(Ez(f(Z(t - t,(<o), 9(rx(co), W)))|91t(T,)); T,(«*) < r)

= F2(Fz<T|(w))(/(Z(r - t,(«), co'))); t.(co) < r)

- F/(F(' - rx)f(Z(rx)); r, < 0

= £Ê'(q(Z(s))JQ(Z(s), dz)T(t - s)f(z)) ds

=  f'f(s)qQT(t - s)f(z) ds.

Hence T(t)f(z) satisfies the renewal equation.

Now suppose that t h> u,(z) solves the renewal equation and that \u,(z)\ < K for

t > 0 and z G 5". By repeated applications of the renewal equation, we have for

each n,

u,(z) = F'(/(Z(0); t < t,) + • • • +£'(/(Z(0); t„_, <t<rH)

+ /T-"--.  f'"'-s"-<f(sx)qQ.
'0 ■'O

But the last term is bounded by
•/ rt~s\ ft —s

qQT(sn)qQu,_Sy-Jz) dsn- ■ ■ dsx.

Kf' ('-" . . .   f    * S"-Xf(sx)qQ ■ ■ ■ qQf(sH)\{z) dsn- ■ ■ dsx
Jo Jo Jo

= KPz(rn <r)->0

as n —> oo uniformly in z G S by (5.14).

(6.4) Corollary, (a) In terms of the basic data, the renewal equation becomes

T(t)f(x,y) = Eyx(fy(Xy(t))exp(-£qy(Xy(s)) ds))

+ ^Eyx[qy{Xy(s))exp(- j\y{Xy(r)) dr) j Q([(Xy(s),y), d(x,y))

■T(t- s)f(x,y)\ds.

(b) L - L0.

(c) If q and Q leave L0 invariant, then ^(A) = ^(Aq) and A = A0 — q + qQ. In

terms of the basic data,

Af(x,y) = Ayfy(x) - q(x,y)f(x,y) + q(x, y) f Q((x,y), d(x,y))f(x,y)

forf E ^(Aq).
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(6.5) Remark. Note that q and Q form the basic data for a conservative, regular

step process Z° = (Xo, Y°) on (S, 'S (S)). Since q is bounded, the semigroup F°(0

of Z° is strongly continuous on B(S) and the infinitesimal operator A0 of F°(0 is

given by A0 = -q + qQ with domain ^(A0) = B(S). Note then that the infinitesi-

mal operator A = A0 + A0 of the random evolution process Z is the sum of the

infinitesimal operators of two Markov processes on 5-the composite process Z0

associated with {Xy: y G F} and the step process Z° associated with the "control"

parameters q and Q.

(6.6) Example. Suppose that F = {1,2, ... ,n). Then B(S) can be identified

with (B(E))n. By Theorem (6.1),/ G ^(Aq) if and only if/ G ^(Aj for each i and

Aq can be thought of as the matrix operator

A0 =

For i,j G F, i =£j, let £?,-,■ be the operator on B(E) defined by

&/W = *(*• 0 f ß«*' 0. ¿* X UM*)J E

and for i E F let (?,.,. be the multiplication operator on B(E) defined by

QM - -?(*. <)/(*)•
Then v4° is the matrix operator [Q0] on 5(5). Hence A is the matrix operator

A0 + A0 on £(S). Note that feedback shows up in the fact that the coupling

operators Qy depend on the evolution state component x.

(6.7) Example. Suppose that Q has the form

Q((x, y), d(x,y)) = tx(dx)QF((x, y), </y)

where QF is a transition probability from (S, 'S (S)) to (F, iß (F)) satisfying

for (x, .y) G S. Note that this Q corresponds to a "continuous" random evolution

process in the sense of Example (5.7). For each x E E, y t-> £7(.x, .y) and

( y, dy) r-> ö/r( y, c/y) form the basic data for a conservative, regular step process Yx

on (F, 'S (F)). The semigroup Tx(t) of yx is strongly continuous on B(E) and the

infinitesimal operator Ax is given by /lx = -<?* + ^^Öf wim domain ^1(AX) =

5(F). In the notation of Remark (6.5), the semigroup A0 of Z° is related to the

semigroups A x of Yx (x E E) by

A°f(x,y) = Axfx(y)

for/ G ^(/l0) = 5(5"). Clearly Z° is equivalent to the composite process associa-

ted with { Yx: x E E). Hence, the infinitesimal operator A of the random evolu-

tion process Z is the sum of the infinitesimal operators of two composite processes

associated with two collections of Markov processes, each indexed on the common

A2 0

*.
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state space of the other. That is,

Af(x,y) = Ayfy(x) + Axfx(y).

Suppose now that Q has the form given in Example (5.10) and that q is a

function of y only. Recall that Y is equivalent to the regular step process on

(F, 'S(F)) associated with q and QF. For y, ¥=y2 G F, let QE(yx,y^ be the

operator on B(E) given by

QAy^y-dAx) = f QE((x,yx,y2),dx)f(x).
•>E

Finally, recall that Ty(t) is the semigroup on B(E) associated with the process X

for y E F. The operator random evolution associated with the basic data  Y,

{Ty(t):y E F),  {QE(yx,y2). yx =ty2 G E]  is the collection  {M[0, t]: t > 0}  of

random operators on B(E) defined by

M[0,t] = Trm(rx)QE(Y(0), Y(rx))Ty{Ti)(r2 - rx)QE(Y(rx), Y(r2))

'   '   '    TY(T»(t))('   ~   T"('))

where N(t) = n when t„ < t < t„ + 1. The "expectation" semigroup T~(t) is defined

on B(S) by

T~(t)f(x,y) = Ey(M[0, t]fno(x))

(for surveys on the theory of operator random evolutions see Pinsky [15] and Hersh

[9]).

(6.8) Theorem. Under the assumptions on q and Q given previously, the random

evolution process Z associated with {Xy: y E F), q, Q and the operator random

evolution {A/[0, /]: / > 0} associated with Y, {Ty(t):y E F], {QE(yx,y^: y, ¥=y2

E F) are equivalent in the sense that T(t) = T~(t).

Proof. Let / G B(S). Pinsky [15] shows that T~(t)f satisfies the renewal

equation

(T~(t)f)y = e-"^'Ty(t)L

+ Vq(y)e-^*Ty(s) f QF(y, dy)QE(y,y)(T~(t - s)fy) ds.
Jq Jf

On the other hand, by the assumptions on q and Q,

f(t)f(x,y) = e-^'Ty(t)fy(x)

and

QKx,y) = f QF(y, dy)QE(y,y)fy(x).
J F' F

Hence, the renewal equation ((6.3)(a)) for T(t)f becomes

(T(t)f)y = e'^'Ty(t)fy

+ í'q{y)e-"{y)sTy(s) f QF(y, dy)QE(y,y){T(t - s)f-) ds.
■>0 JF

Since the renewal equation has a unique bounded solution, T(t)f = T~(t)f.
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(6.9) Remark. The feedback that can be incorporated in the random evolution

process Z by using the general rate function q and jump kernel Q does not seem

possible in the operator setting. On the other hand, the operator setting is more

general in the sense that the function space B(E) can be replaced by an arbitrary

Banach space, the semigroups Ty(t) by more general semigroups (not necessarily

associated with Markov processes) and the jump operators QE(yi,y2) by more

general operators (not necessarily integral operators associated with transition

probabilities).

7. Examples and applications.

(7.1) Random evolution among deterministic evolutions. A function k: S X [0, oo)

—* E will be called a deterministic evolution function on E, parametrized by F if

the following conditions are satisfied:

(a) k(x, y, 0) = x for (x, y) E S.

(b) k(k(x, y, s), y, t) = k(x, y, s + t) for (x, y) E S and s, t > 0.

(c) (x, y) h* k(x, y,t)E(S (S)/% (E) for / > 0.

(d) t h» k(x, y, t) is right continuous and has left-hand limits for (x,y) G S.

It is simple to construct a conservative, normal, strong Markov process X on

(E, 'S (E)), right continuous and having left-hand limits, such that Xy(t) =

k(x,y, t) almost surely Px. If r h» k(x,y, t) is continuous, and the a-algebras 91t,,

91t, (0 defined appropriately, then Xy is standard.

Assumption (3.1) follows easily from condition (c) and therefore the random

evolution process Z associated with {Xy: y E F), q, and Q is well defined. If q is a

function of the evolution rule y only, then Z is equivalent to the process con-

structed by Erickson [3]. Erickson used a different method of construction and also

allowed more general topologies on the spaces E and F than we have used.

(7.2) A random velocity process. Let £ = R and let F be an arbitrary semicom-

pact. Let t> G 'S (S)/ 'S (R) and suppose that vy is continuous, bounded, and

nonvanishing for each y G F. There exists a deterministic evolution function k on

R, parametrized by F (see (7.1)) such that for (x, y) E S, t f-> k(x,y, t) is continu-

ous on [0, oo) and differentiable on (0, oo) with derivative

(d/dt)k(x,y, t) = vy(k(x, y, t)).

In fact, / f-» k(x, y, t) is merely the inverse of

x^  (xdi/v(i,y).
J X

By (7.1) the processes X , y E F, constructed from k and the random evolution

process Z associated with {Xy: y E £}, q, Q are well defined. For y G F, Xy could

describe the position of a particle moving in R with state dependent velocity

function vy. Hence, the first component X of Z would describe the position of a

particle moving in R whose velocity function and position are subject to periodic,

abrupt, random changes. Feedback allows the time between changes to be in-

fluenced by the path of the particle and the changes themselves to be influenced by

the position of the particle at the time of change. This process, with F finite, was

constructed by Heath [8].
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Suppose now that v is continuous, bounded, and bounded away from 0 (jointly

in (x,y)). Let C0(S) be the Banach subspace of B(S) of bounded, continuous

functions vanishing at oo. Suppose that q is continuous (in additon to the condi-

tions imposed in §4) and that Q leaves C0(S) invariant. Standard arguments,

together with Theorems (6.1)—(6.3), show that the semigroup F(0 of Z leaves C0(S)

invariant, that T(t) is strongly continuous on C0(S), and that the C0(S)-infinitesi-

mal operator A of Z is given by

Af(x,y) = v(x,y)(df/dx)(x,y)

-q(x,y)f(x,y) + q(x,y) f Q((x,y), d(x,y))f(x,y)
Js

for/ G <%(A) = {/ G C0(S): df/dx E C0(S)}.

(7.3) Random evolution among Brownian motions. Let £ = R and let F be an

arbitrary semicompact. Let b E 'S (F)/%((), oo) and suppose that b is bounded

and bounded away from 0. For y G F, let X be the Brownian motion process on R

with parameter b(y). Thus, Xy is standard, continuous, conservative and has

transition density

py(t, x, x) = (2trb( y)0~'/2exp(- (x - xf/2b(y)t).

From the assumptions on b, (x,y, x) h> py(t, x,5c)E(S(S)0 S> (E)/<S (0, oo) for

t > 0 and this in turn implies Assumption (3.1). Thus, the random evolution

process Z associated with {Xy: y E F), q, Q is well defined. For each y, Xy could

describe the position of a particle diffusing through R with parameter b(y). Then

the first coordinate X of Z would describe a particle moving in R whose diffusion

parameter and position are subject to abrupt, random changes. Once again,

feedback allows the path of the particle to influence these changes. Of course, each

X could be replaced by a more general diffusion process (with coefficients

parametrized by y E F). Using Brownian motions leads to more explicit results.

Let U be the Banach subspace of B(S) of bounded, measurable functions which

are uniformly continuous in x, uniformly with respect to y. Standard arguments

together with Theorems (6.1)—(6.3) show that L = U and that the infinitesimal

operator A of Z is given by

Af(x, y) = (b(y)/2)(d2f/dx2)(x, y)

~l(x,y)f(x,y) + q(x,y) \ Q((x,y), d(x,y))f(x,y)

for/ G q)(A) -{/£{/: d2f/dx2 E U).

Suppose now that F = {1,2,...,«} and that Q is given by

Q((x, i), A X {j}) = PiJ(x)ex(A)    if i *J EF,xER,

Q((x, i), A X {/}) = 0   if i G F, x E R,

where p0: R —> [0, 1] is uniformly continuous for / i=j G F and

S Pi/*) = 1
i*j
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for each x E R. Suppose also that q¡ is uniformly continuous for each /'. Define

q¡j(x) = q¡(x)py(x) for x E R and /' ¥=j E F and define qu(x) = -q¡(x) for x E R,

i E F. In this setting, the infinitesimal operator of Z is given, in matrix form, by

A =

bx(d2/dx2)

b2(d2/dx2)

bn(d2/dx2)

+ [*(*)]•

Operators of this form appear in the multigroup model for neutron reactors (see

Habetler and Martino [7]). This model approximates the behavior in a reactor by

assuming that the neutrons may exist only in one of n energy levels. Due to

collisions with atoms of the reactor medium, the neutrons periodically change from

one energy level to another. The multigroup equations are derived from the

Boltzmann equation by statistical methods and hence the process Z may be useful

as a probabilistic interpretation of the model.

(7.4) Random evolution among regular step processes. Let r E ®(S)/?B(0, oo) be

bounded and let RE be a transition probability from (S, 'S(S)) to (£, $(£))

satisfying RE((x,y), {x}) = 0 for (x, y) E S. For each y G F, x h» r(x,y) and

(x, dx) y-* RE((x, y), dx) form the basic data for a conservative, standard, regular

step process Xy on (£, $(£)). Let R be the probability kernel on (S, 'S(S))

defined by

R((x, y), d(x,y)) = RE((x,y), dx) 0 ^(dy).

Then r and R form the basic data for a conservative, standard, regular step process

Z0 on (S, 'S (S)). Clearly Z0 is equivalent to the composite process associated with

[X : y G F) and hence the notation is consistent (in particular, the composite

process is well defined). Since the sample paths of Z0 are right continuous and

piecewise constant, we can construct the random evolution process Z associated

with {Xy:y E F), q, and Q without assuming that qy is continuous for each y, as

was done in §4.

From Theorems (6.1)—(6.3), the semigroup F(0 of Z is strongly continuous on

B(S) and the infinitesimal operator A is given by

Af(x,y) = r(x,y) [ RE((x,y), dx)f(x,y) - r(x,y)f(x,y)
■>E

+ q(x,y) f Q((x,y), d(x,y))f(x,y) - q(x,y)f(x,y)
Js

for/ G ^(A) = B(S). Note the similarity between the evolution state terms and

the evolution rules terms. Note also that Z is equivalent to the regular step process

on S with exponential parameters r(x, y) + q(x, y) and jump kernel

r{x,y)

r(x,y) + q(x,y)
RE((x,y),dx)0ey(dy)

q{x,y)

r(x,y) + q(x,y)
Q((x,y),d(x,y)).
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Suppose now that Q has the form given in Example (6.7). Then

Af(x,y) = r(x,y) [ RE((x, y), dx)f(x,y) - r(x,y)f(x,y)
JE

+ a(x,y)[QF((x,y),dy)f(x,y) - q(x,y)f(x,y).
J F

In this setting, the form of Af(x,y) is completely symmetric in x and y. It follows

that we can also construct the random evolution process Z in the "other direction"

by reversing the roles of the evolution states and evolution rules. That is, Z is also

the random evolution process associated with { Yx: x E £}, r, and R (see Example

(6.7)).
By symmetry and Corollary (5.6), we can form two Markov chains by restricting

Z to the jump times of either component.

This symmetric random evolution process should be useful in modeling the joint

evolution of two interacting systems in which the states of each system are the

evolution rules of the other. An example of such a setting is the joint growth of two

interacting populations. Thus let £ = F = {0, 1,2,...}. For each_y G F, let X be

a birth-death process on £ with birth rate \(x) and death rate ft,(x). X describes

the population of colony I when the population of colony II is fixed at>\ Similarly,

for each x E E, let Yx be a birth-death process on F with birth rate yx(y) and

death rate vx(y). Yx describes the population of colony II when the population of

colony I is fixed at x. The random evolution process Z constructed from {Xy: y E

F} and { Yx: x G £} describes the joint growth of both populations.
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