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A FAITHFUL HILLE-YOSIDA THEOREM

FOR FINITE DIMENSIONAL EVOLUTIONS

BY

M. A. FREEDMAN

Abstract. As a natural generalization of the classical Hille-Yosida theorem to

evolution operators, necessary and sufficient conditions are found for an evolution

U acting in i?" so that for each s > I, U(s, t) can be uniquely represented as a

product integral IrJ[/ + V\~ ' for some additive, accretive generator V. Under these

conditions, we further show that í/(£, f) is differentiable a.e.

I. Introduction. In his landmark paper [7], J. S. Mac Nerney establishes a

one-to-one correspondence S between an evolution class 0 911 and a generator

class 0 &, where 0 911 is the set of all functions U taking T = {(s, t)\s > t) into

% £-(X), the bounded linear operators on a Banach space X, such that

(a) U(a, b)U(b, c) = U(a, c) for all a > b > c,

(b) U( •,•)—/ is of bounded variation in the norm-topology of X;

while 0 & is the set of all functions V from T into © £-(X) which satisfy

(c) V(a, b) + V(b, c) = V(a, c) for all a > b > c,

(d) V( •, • ) is of bounded variation in the norm-topology of X.

The invertible map S from 0 & onto 0 911 is given by

a

&(V)(a,b) = Jl[I+ V],        F6fiÄ,
b

ë-\U)(a,b)~'2[U-I],        t/G 6 911.

With property (a) above referred to as the evolution property and property (c)

referred to as the generator property, we can thus say that every evolution U in

0 911 is generated by a unique generator V in 0 & through the product integral

formula

a a

U(a, b) = II [/ + V]    where V{a, b) = 2 [ U - I].
b b

J. V. Herod and R. W. McKelvey [4] first succeeded in extending Mac Nerney's

results to the case of unbounded generators. Their theory is broad enough to

include the classical Hille-Yosida theorem, which states a one-to-one correspon-

dence between the class of densely defined w-accretive operators A on a Banach

space X and the class of strongly continuous, contractive semigroups T(t) on X,
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where if T(t) is the semigroup associated with A, then T(t) = exp(-^4), / > 0. In

other words, Herod and McKelvey are able to enlarge Mac Nerney's classes 0 8,

and 0 911 to classes & and 9H, respectively, where the generator class & is large

enough to contain generators of the form V(s, t) = (s — t)A and the evolution

class 911 is large enough to contain evolutions of the form

U(s, t) = exp(- (s - t)A).

Furthermore, & and 91L are kept in one-to-one correspondence via the invertible
onto .

map © : a -* "Jit given by

a

&(V)(a,b) = Jl[I+ V]-1    and    &~\U){a, b) = £ [/ - U]
b b

for Kin & and U in 91L.

Similar to the classes 0 & and 0 911, membership in the classes & and 91L also

requires that K(-, •) in & and U(-, •) — /, with U in 91L, satisfy a bounded

variation condition. The Hille-Yosida theorem itself, however, makes no such a

priori bounded variation requirement on either the class of strongly continuous,

contractive semigroups or on the class of densely defined, accretive operators. Yet,

remarkably, one of the dramatic conclusions of this theorem is that every strongly

continuous, contractive semigroup T(t) is /-differentiate for all t > 0. Herein lies

the chief motivation for this paper-placing no a priori bounded variation assump-

tions on an evolution U, what conclusions can be made about the differentiability

oi U(s, t).

II. Definitions and results. In the case where U is acting in the finite dimensional

Banach space X = RN, under the sup-norm || • || with ||{*,}f_i|| = suPi<,<n|-*,|,

we show in Corollary II that every norm-continuous, contractive evolution U(s, t)

is differentiable a.e. in the s and t variables. Such an evolution U will be said to

belong to the class %N. That is, we define %N as the class of all functions U from

T into © t(X) which satisfy

(i) U(s, t)U(t, r) = U(s, r) for all s > t > r,

(ii) U(s, t) is jointly continuous and U(s, s) = / for all s, and

(iii) || U(s, OH < 1 for all s > t.

Corresponding to %N we define the generator class fN as the set of all functions V

from T into % t(X) which satisfy

(iv) V(s, t) + V(t, r) = V(s, r) for all s > t > r,

(v) V(s, t) is jointly continuous,1 and

(vi) ||[7 + V(s, t)]x\\ > Hxll for all x in RN and s > t.

Property (vi) is called the accretive property for V. Thus %N shall be called the set

of norm-continuous, accretive generators.

We now state the finite dimensional version of the Hille-Yosida theorem applied

to evolution operators.

'Observe that V(s, s) = 0 for all i follows immediately from (iv).
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Theorem I. There is a reversible function & from the class fyN onto the class %N

such that each of the following is a necessary and sufficient condition for the member

( V, U) of % X %N to belong to &. Given a > b,

(i) U(s, t) = W,[I + V]-1 for alls >t in [b, a], and

(ii) V(s, t) = 2*[/ - U]for all s > t in [b, a).

The proof of this theorem will be offered after we provide the succeeding lemmas

needed to prove the existence of the product integral in (i) for V in fyN and the

existence of the sum integral in (ii) for U in %N.

We begin with

Lemma 1. If V G fN, then V is of norm-bounded variation on every closed interval

in the sense that for each a > b there exists a number y > 0 such that for all

partitions b - *0 < /, < • • • < t„ = a of [b, a], 27_,|| K~(/,., /,._,)|| < y.

Proof. If K(£, f) = [V0(£, f)]i«,y<Ar> men given a > b, it will suffice to show by

the compactness of the interval [b, a] and the fact that all norms in a finite

dimensional linear space are equivalent, that for each t G [b, a] there exists an

open neighborhood of /, A/,, such that for each 1 < i,j < N, there is an increasing

function on N„ &,(•), which satisfies | V/g. f )| < g0(0 - g^) for all É > f G Nr

In the present sup-norm setting, the accretive property of V may be expressed as

sup
\<i<N

N

2 [«„+ Vu{£,S)]Xj
J-i

>    sup   {|x|}
\<j<N

(')

for all (xj) 6 Ä" and all £ > $, where 8y = 0 if / ¥=j and Su = 1.

Suppose that for / G [b, a], e, > 0 is such that for all £ > f in N, = (t — e„ t +

e,), if 1 < ij < N, then | V^£, f )| < ±. Then by letting xk = Sik in relation (') we

see that Vkk(£, f ) > 0 for all £ > £ and k = 1, 2, . . . , N. Hence, if we define

&*(£) = f^té. b), then gw is increasing on [b, a] and 0 < Vkk& £) < £,*(£) -

gkk(S) for alU > S in [6, a].

Now, for fixed 1 < i =£j < N, let

xp =

Therefore, for all £ > f G A7,

1, J» - i,

1

3' '""-'•
0, otherwise.

2 [«* + M^)k = i + k„«, n +
Vyil n
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and

p~\
VjÂl S)

O + ̂ O)

i     i
3 + 3

1 = 2
9     9

and for A: ̂  i and A: ̂ y,

2 K+ ^(u)]^ n,(¿ f )

1    1   4
<3+9=9

^(fc f )

Relation (') now yields that for all £ > f G A7,,

1 + K,.(i,n + ^#^>i.

Likewise, by choosing

1,       P = ',

1~3'

0,       otherwise,

P =J,

we obtain 1 + K,(|, 0 - (F/fc f)/3) > 1. Thus | K.(£, f)l < 3Ka(fc f) for all £ >
f G AT,.    Q.E.D.

The multiplicative counterpart to Lemma 1 is

Lemma 2. If U G %N then I — U is of norm-bounded variation on every closed

interval (in the sense of Lemma 1).

The proof of this lemma relies on

Lemma 3. Let {A(s, t)}s>¡fER be a family of operators on the Banach space

X = RN in the sup-norm topology, such that

(i) A(s, t) is continuous and A(s, s) = I for all s, and

(ii) \\A(s, OH < 1 for alls > t G R.

Then for each t there exists an open neighborhood N, of t such that for all

€ > í e Nt

0 < det A(S, O < AtM, f),        i = 1, 2, .... AT.

Remark. In the sup-norm topology on X = RN a linear operator A = [A*]:

X -> X has norm ||/1|| = sup,</<JV 2f_,M¿,|.

Proof. The determinant of a matrix is the sum of all possible signed products of

its entries, one entry taken from each row and column. Thus the determinant

consists of the sum of AM terms, one of which is the product of its diagonal

elements. Therefore, det/l(£, f) is a continuous function and we conclude from

hypothesis (i) that given / there exists ô, > 0 such that for all £ > £ G (/ — 5„ t +

8X) both 0 < det A(£, £) and 0 < AM, f ), / = 1, 2, . . . , N, hold.
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If for each pair £ > f G (/ - ó1,, t + 8X) we define

A(£, £) = Au(í, £L422(£, t) ■ • ■ ANN(t, f) - det/l(£, f)

we have, using hypothesis (ii),

^n(£,n-det/l(£,0

= au& no - 4J&, oa33(i n • • ; ̂ „(£, n) + a(£, n

i = 2 yV

/v      n    a   ft r\

> 2  S-î^lVtOI + Afc»-
( = 2   7=1 iV

Now A(£, f) is the sum of A! — 1 terms, say A(£, f) = S^J1 ?,-(£, f)> where each

?,•(£> f ) is the signed product of A elements from A(£, £) such that no two factors of

<?,(£, ?) come from the same column or from the same row of A(%, f ). Thus each

term ^,(£, £) can contain at most A — 2 diagonal element factors, or equivalently,

must contain at least two off-diagonal element factors. Therefore, each ç,(£, £) may

be expressed as #,(£, f ) = A^M, O -P,(£, ?). where w, =^ n¡ and by hypothesis (i),

limi£ _£,_o ^i(£> f ) = 0- We may further assume that w, > 2 above, since each

#,(£» f ) term contains at least one off-diagonal element not from the first row of

/1(£, f ). By grouping terms together with common off-diagonal elements, we obtain

A(£,n=   2   M#&*Wtf).
2</<Ar

i<y<^

where   each   ö,y(£, f)   term   is   the   sum   of   Pk(£, £)   terms  and   thus   satisfies

limii-n-o e#> n = o.
Now let d2 be such that 0 < 52 < 5, and for all £ > £ G (í - ô2, t + è^) = A7,

>|ôy(i?)|    foralh^7.

Then clearly for all £ > f G A,

2  2 ^^M-fe 0| > 2 2 \Q&n\ \a&0| >|A(£,01-
1=2   y-1 'V ;=2   7=1

Hence 0 < det A(£, £ ) < /!,,(£, f ) for all £ > f G A, and / = 1. That a neighbor-

hood of t can be found for which the above relation holds for all 1 < i < N is

evident from the symmetry of the preceding proof with respect to the diagonal

elements of A(£, f).

We now return to the

Proof of Lemma 2. It will suffice to show, by a usual compactness argument,

that with i/(£, f) = [t/y(£, ï)\x<iJ<N, given a > b and t G [b, a] there exists an



568 M. A. FREEDMAN

open neighborhood of t, 91, and a function h increasing on 91 such that

*®-™>[mta     i*j, ()
for all £ > f G 91 and 1 < ij < A.

In fact, since the family of operators {U(s, t)}s>l satisfies the hypotheses of

Lemma 3, we may let 91 = A,, the open neighborhood of t presented in the

concluding statement of Lemma 3. Therefore, for / = 1, 2, . . ., A and £ > f G 91

we have 0 < det i/(£, f ) < Uu(l f) < 1. Hence

0 < 1 - i/„(£, S) < M(£, 0-1.       £ > ? G 91, 1< / < A,

where ju(£, f ) = [det t/(£, f )]_1 satisfies

p$ £)/*(?> P) = M(£, p) > 1    for all £ > J > p G 91.

As well, since || i/(£, f)ll < 1 for all £ > f, it follows that 0 < |cA(£, f)l < K& O

- 1 for all £ > f G 91 and 1 < /' ¥=j < A. We complete the proof by setting

h(-) = jii(-, b). Hence relation (") is satisfied, for if £ > J G 91, then /i(£) - /i(f) =

(,!({, f) - l)Kf, 6) > M«, O - 1 > 0.    Q.E.D.
As a final prelude to the proof of Theorem 1, we present

Lemma 4.//FG fN and U G %N then for all a > b,

Ú[/+ Vyx    and    2['~ U]
' t

exist and are continuous for all s > t G [b, a].

Remark. Given a Banach space ( Y, | • |) of operators, a > b and a Y-valued

function y defined on [b, a] X [b, a], the sum integral of J exists on [¿>, a] if for

each j > / in [b, a] there is an element of Y, denoted as 2* J, such that for each

e > 0, a partition 5" of [t, s] exists where if 71 = {7)}"_0 is a refinement of S then

|2?_, J'T¡, 7)_,) - 2* 71 < e. On the other hand, the definition of the product

integral of J on [b, a] — W, J, for s > t G [Z>, a]-with the convention that

u?-, HT,, Tt_x) = 7(7;, Tn_x)J(Tn_v Tn_2) ■ ■ ■ J(TV T0), is obtained by replac-

ing the summation sign 2 above with the product symbol II.

Indication of Proof. We shall have repeated occasion to make use of the

operator identity

n n n ri i — 1

n a,,- n b,,= 2  n ¿*,k - *,] n 4. (*,
(=1 1=1 i=l   7=/+l 7=1

Now, given a > b and V G ^ we first show that II*[/ - V] exists for all í > /

in [b, a]. In fact, if a = {a,}"_, is a partition of [r, i] then, employing (*) with
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B¡ = / gives

U [I- F(a,,a,_,)]-[7- V(s, t)]
1 = 1

/-I

2 V{ot, a,_,) u [/ - V{oj, a,_,)] + £ K(a„ o,_,)
/-I/=! 1 = 1

7-1

in/t=i2 %»i-.)2 n^a,-,) IT [/- F(ffjts^.,)]
/=1 7=1

:  2 [^,)-g(a,-I)]2[?(a;)-g(a,._1)]        [ 1 + *(**)-*(**_,)]
(-1 7 = 1 £=1

<   fi [1 + g(a,) - *(«,._,)]-[! + *(*) - g(t)],
i=i

where g is an increasing function which dominates V on [b, a]. Moreover, as is

evident from the proof of Lemma 1, g can also be chosen to be continuous. We

thus conclude, via relation (*), that if t = {t,-}"_0 is a refinement of a then

i = i
n[/- k(t(,th)]- ri[/- rçWi)]í=i

m n

<   Il [1 + g(T,) - g(r,_,)] -  Il [1 + g(a,) - g(a,_,)].

However, as is easily shown, if ¿%(£, f ) is defined to be g(£) — g(f ) then IT,[1 + dg]

exists and equals e^'^'K This then implies that W,[I - V] exists and is continu-

ous for all í > / in [b, a].

We show next that W,[I + K]"1 also exists on [b, a] and, in fact, equals

H'[I — V]. For, if a = {o,}"_0 is a partition of [/, s] then by identity (*) and the

accretiveness of V we obtain

/-i
IT[/+ %o,,,)]-'- n [/- n^o-,.-,)]

i=i

¿(    n    [/- V(oJ,oJ_l)])[V(ol,ol_l)]2Íl[l+V(oJ,oJ_1)]-1
/-lU-i+I / 7=1

<  2      fi    [1 + g(oj) - gioj-^gio.) - g(a,_,)]2
1=1   7=1+1

«

<e™-«'))2[g(<>l)-g(ol-i)]2
/-i

< e«»-«'\g(s) - g(0) max [ g^) - gfa,.,)],

which goes to zero as o becomes a finer and finer partition of [t, s].
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Next, for U G %N we show that 2*[7 — U] exists and is continuous on [b, a].

Given s > t, let a = {a,}"=0 be a partition of [t, s]. Then

t[i- */(<%,«,-,)] -[/- t/(*,0]
1-1

2 [7- t/(a,, <,,._,)]['- tf(0,_„/)]
r = 1

i=i

= 2 *<«*-i)[*0%) - *<*,-,)] - h(t)[h(s) - «(')],
i=i

where h is an increasing function which dominates 7 — U on [£, a], and, as is clear

from the proof of Lemma 2, can be taken to be continuous. Therefore, if

t = {t,)7=i is a refinement of a then

2[7-í/(t,.,t,_,)]- 2 [/-£/(<>„ «,-.)]
;=i i = i

< 2 ^(-,-,)[Mt,) - *(vi)] - 2 M^-Ot^a,) - Ma,-,)]
i=i i=i

whence it follows that 2*[7 - U] exists and is continuous on [b, a] and for all

s > t G [b, a]

2 [/-[/]-£/- [/(*,/)]< r* <& - a(o[a(í) - a(o]-    (**)

Q.E.D.
We now provide the

Proof of Theorem I. Given V G %N, first observe that &(V) = U[I + V]~} is

in 3C^, since the evolution property (i) and the contraction property (iii) are

inherited directly from the corresponding properties on the finite product ap-

proximations to the product integral, while the continuity property (ii) was demon-

strated in Lemma 4. Likewise, if U G %N, we may show 2[7 - t/] G fN. Note,

first of all that the generator property (iv) and the accretive property (vi) are

inherited from the corresponding properties on the finite sum approximations to

the sum integral. Specifically, with respect to (vi), given s > t, if {o,}"_0 is a

partition of [t, s] and x G X then

(2[/-i/(a,a,_,)] + 7); >(»+ 1)||*||- «||*|| =||*||.

As for the continuity property (v), this follows from Lemma 4.

In order to verify the equivalence of conditions (i) and (ii) in Theorem I and

thereby establish S as a bijection with S-1(t/) = 2[7 - U], we introduce a third

condition (A), taken from relation (**) of Lemma 4, which we claim is equivalent to

both condition (i) and to condition (ii). Namely, for ( V, U) G %N X %N and a > b
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there is a continuous, increasing function h on [b, a] such that for all s > t in [b, a]

\\V(s, t) - I + U(s, 0|| < f'hdh - h(t)[h(s) - h(t)]. (A)
""/

Clearly, relation (**) of Lemma 4 gives us that condition (ii) of Theorem I implies

condition (A). Lemma 4 also provides us with the result II[7 + V]~] = II[7 — V],

for V G fN, which shall be useful in establishing succeeding implications.

Suppose condition (i) holds. Given s > t and {<r,}"_i a partition of [t, s] we

proceed to show that condition (A) holds.

V(s,t)-I+ U[I- n^a,-,)]
i = i

i = i
2 %a,_,)/-  II[7- V^aj.d]

7=1

7-1

2 n<T„a,-.)2 %";-.) II [7- V{ak,ok_x)]
1 = 1 7=1 k = \

< e[^-^»| 2g(°,-,)[g(°,) - *(*,-.)] - s(0[g« - g(0] j,

where g is a continuous, increasing function which dominates V. Thus (A) holds

with h = elgia)-g(b)lg.

Next, assuming condition (A), if (V, U) G ^N X OC^ and {a,}"=0 is a partition of

an interval [t, s] then for some continuous, increasing function we have

v{s,t)- 2 [/- i/fo.o,..,)]
1 = 1

<  2 \\V(a„ 0i_{) - I + t/fo.o,.,)
i=i

< fhdh- i *(«,■_,)[AK) - «K-i)]
i=i

whence, K(j, 0 = 2* [7 - U], and thus condition (A) implies condition (ii).

Finally, we show that (ii) —» (i). Since we have seen that (ii) —> (A), there exists a

continuous, increasing function h on [b, a] such that given s > t and {<r,}"_0 a

partition [r, s],

IT [7- %«,._,)] - !/(/,*)
i = i

/-i
2      II    £/(o,-, Oj_x)[l - V(ap a, _,) - i/(o„ *,_,)] II [7 - F(a,, a,_,)]
,= 1   7 = ,+ l 7=1

<e
[«(a)-«(6)1 r a^-^k->)[%)-%-.)] ,

[jt      i=i j

where Í/ G DC^, K = 2[7 - U] and g dominates V on [¿>, a].   Q.E.D.

Corollary I. 7/ F G fyN then the partial derivatives of V(£, f ) exist a.e.
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Proof. We write K(£, £) = [¥„& $)]l<IJ<ir,. Now given a > b, VM, S) can be

represented on [b, a] as Ky(£, £) = g(£) _ g(0 where g(-) = F^(-, ¿>) is of bounded

variation, hence is differentiable a.e., on [b, a].    Q.E.D.

Corollary II. If U G %N then 3i/(£,, £2)/3£, exists a.e., i = 1, 2, and satisfies

£/(£„ £2) a.e.,       t = 1,
3£/«i. ¿2)

8*

9¿.

d«2
i=2,

wAere K G ^ « /Ae generator for U.

Proof. By the identities

t/(£ + 5, ?) - t/(£, f ) _ ({/(£ + 5, £)-7) t/(t O

(V)

and

t/fe f + s) - u(t 0 = ^ ? + 3)(/- t/q + g,n)

which hold for all £ > f and 8 G (0, £ - $), it will suffice to establish for all £ > £

hm —i-t-^-=-^-    a.e.,
sio o d£

Hm   /-^+^)-^?»     a.e.

(1)

(2)
«10 ô 3f

in order to prove the corollary holds at least with right-hand derivatives appearing

in (V).

With respect to (1), given £ G R and 8 > 0 let a = {ai}"_i be a partition of

[£, £ + 5] and let g be an increasing function which dominates V on [£, £ + 8].

Then, for all f < £ we have

IT;,,[7 - K(a„ g,._,)] - I |   F(£ + 8,S) - V(£, £)

1 •£
< -5 2 g(<*,) - g(o,-,) max

O  ;_i \<i<n1=1

g(£ + Ô) - g(£)

/-i

7-  II[7- K(o,, «,_,)]
7-1

max 117 - i/(a,_„ £)|| + efi

< 8iè + 8¡ - 8{i)      max    ¡\I-U(o,m+es,
8 pS[{,£+«]M

where limÄi0 es = 0 uniformly in n. By first letting the partition a become finer and

finer (i.e. n —> 00), and then letting 5|0, since g is differentiable a.e., we conclude

(1) holds true. Similar arguments give equation (2), and the completion of the proof

of (V) now continues along these same lines.

Remarks. (1) The preceding corollary is decidedly not true in the case X = CN.

In fact, with A = 1, let £/(£, f) = exp(/(g(£) — g(f)))> where g is a continuous,
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nowhere differentiable, real-valued function. Then U is a norm-continuous, con-

tractive evolution on X, but clearly t/(£, f ) has no partial derivatives.

(2) The results of this paper do not necessarily hold if the sup-norm, used

throughout in conjunction with the contractive and accretive conditions, is re-

placed by an arbitrary norm on 7? N. Consider, for example,

u(é n = í cos(g(¿) " 8{n)    sin(g{0 - *a))
y*'"}     [-sin(g(£)-ga))     cos(g(£)-gtt)).

acting in Euclidean R2, where g is as in (1) above. It is easily verified that U is an

evolution and that for each s > t, U(s, t) is unitary. Therefore, U is a Euclidean

norm-continuous, contractive evolution for which Corollary II fails. In fact, it is

possible here for g to be oscillating so rapidly that even 2*,[7 — U] does not exist,

thus also ruling out Theorem I. A sufficient condition for Theorem I to hold true

for the present example is f,(dg)2 = 0, in which case V(s, t) = 2,[7 - U] can be

shown equal to (g(s) - g(0)[°-i ¿J-

(3) In [6], Y. Komura defines the generator A(t) of a strongly continuous,

contractive evolution U set in an arbitrary real reflexive Banach space E to be the

strong limit of h~\U(t + A, 0 — I] as A —>0+. He is then able to characterize

those evolutions U which have densely defined generators A(t) such that for x in

an appropriate subset of E, A(-)x is strongly measurable and ||y4(-)*|| is monotone

nonincreasing. While Kömura's results hold in a much more general setting than

that of the present paper, his class of evolutions is, however, very restrictive. For

example, those strongly continuous, contractive evolutions given by £/(£, f ) =

e~(A()-AO)i where /', /" > 0, would not be included since U has generator

/!(£) = /'(£)7 and therefore ||/4(-)*|| is monotone increasing. From the perspective

of the present paper, [6] is grounded too deeply in semigroup theory (consider, for

example, the choice of definition for the generator of an evolution) and does not

attempt to exploit the duality between multiplicative and additive functions via the

powerful tools of product and sum integrals.
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