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AN ELEMENTARY PROOF OF THE

LOCAL KRONECKER-WEBER THEOREM

BY

MICHAEL ROSEN

Abstract. Let AT be a local field. Lubin and Täte have shown how to explicitly

construct an abelian extension of K which they prove to be the maximal abelian

extension. Their proof of this result uses local class field theory. When K is a/>-adic

field we give an elementary proof which even avoids the use of higher ramification

groups. Instead we rely on facts about the principal units in a finite abelian

extension of K as a module for the Galois group.

The Kronecker-Weber theorem asserts that the maximal abelian extension of Q,

the rational numbers, is obtained by adjoining all the roots of unity to Q. When K

is a local field a similar theorem was proved by Lubin and Täte [5].

A description of the Lubin-Tate construction goes as follows. Let K be a local

field, 77 a uniformizing parameter, p the characteristic of the residue class field, and

q = p-t the number of elements in the residue class field. Let fix) = Xq + ttX and

f=f°f° • • • ° f, i.e. / composed with itself n times. The field obtained by

adjoining the roots of/" to K will be denoted by L¿n) and the union of these fields

by L^. Finally, denote by U the field obtained by adjoining the roots of the

polynomials X" — 1, n prime to;?, to K. U is the maximal unramified extension of

K. The theorem asserts that the compositum ULn is the maximal abelian extension

of K. It is reasonable to call this result the local Kronecker-Weber theorem.

Both the Kronecker-Weber theorem and the local version are most easily proved

using class field theory. In the global case there is a long history of "elementary"

proofs. In the local case there is an elementary proof due to Hazewinkel [2] and

more recently one due to Lubin. The former takes place in the context of

pro-algebraic groups whereas the latter uses the detailed theory of the higher

ramification groups and the Hasse-Arf theorem.

In this paper we give another proof in the case where K is a/>-adic field. No use

will be made of the higher ramification groups.

The main idea of our proof is remarkably simple. The tools we need are

Kummer theory, the structure of K*, and in Galois extensions of K the structure of

the principal units as a module for the Galois group.

1. In this section we deal with the tamely ramified extensions and reduce the

proof to a question about the maximal abelian/?-extension.
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First, some notation. A will be the maximal abelian extension of K, A the

maximal abelian p-extension of K, and ß the maximal abelian/»-extension of K in

ULW.

Lemma 1. Every abelian extension of K is contained in the compositum of an

unramified extension and a totally ramified abelian extension.

Proof. G(A/K) maps by restriction onto G(U/K) « Z. The latter group is free

in the category of profinite groups. Thus the map splits. The result follows from

this.

Lemma 2. Every abelian tamely ramified extension of K is contained in UL^X\

Proof. The method of Lemma 1 shows that we may confine our attention to

abelian extensions which are totally and tamely ramified. By a standard result,

these are of the form K(eVy ) where e\q — 1 and y is a uniformizing parameter.

There is a unit u E K such that 7r = -uy. It follows easily that K(eVy ) is

contained in the compositum of L^l) and K(q~xVu ). The latter field is unramified

over K.

Lemma 3. If A = ß the theorem is true.

Proof. We have A = Ar, where T is the maximal "prime top" abelian extension

of K. By Lemma 2, T c ULm. Thus the theorem is true if A c UL„, but this is

equivalent to A = ß.

To prove A = ß we use the following strategy. Clearly, SÎÇA and there is an

onto map C7(A/ZC)—> G(Q/K). If the kernel is trivial then A = ß. To show the

kernel is trivial we will show that both Galois groups are finitely generated Zp

modules isomorphic to each other. The result will then follow from the fact that an

onto endomorphism of a Noetherian module is necessarily one-to-one.

From Lubin-Tate theory [5], G(L„/ K) is isomorphic to the group of units in K.

We also know G(U/K) s¿ Z. Since U and LT are disjoint over K it follows that

G(ß/K) ?» Zp+X X Pp, where n = [K : Qp] andps is the maximal power of p such

that K contains aps root of unity.

The proof now separates into two cases depending on whether 5 = 0 or not. The

case s = 0 is technically much easier, but the idea is the same in both.

2. Suppose s = 0. We must show G(A/K) « Z" + 1. Since G(A/K) is an abelian

compact pro-/7-group mapping onto G(ß/K) & Zp+X it suffices to show

G(A/K)/G(A/KY has Z/pZ dimension n + 1. For a given field E, let Ex be the

maximal elementary abelian /^-extension of E. We want to show [ZC, : K] = p" + x.

The idea is to consider E = K(Çp), use Kummer theory to discuss Ex, and then

recover Kx.

Since Çp E E we know Ex «s E(PVË* ). Now, Kx c Ex and [KXE : E] =

[Kx : K] since [E : K] is prime to p. By Kummer theory ZC,Zi corresponds to a

subgroup of E* containing E*p. Call this subgroup A. We want to identify A and

show A/ E*p has dimension n + 1 over Z/pZ.

It is easy to see that KXE is the maximal intermediate extension of Ex/E which is

abelian over K.
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Let © = G(E/K) and x be the homomorphism from © to (Z/pZ)* defined by

S; = f/T) for r E @.

Lemma 4. An element a E E* belongs to A if and only if aT = ax(T> mod E*p.

Proof. Set F = KXE. The group A is simply F*p n E. We recall how one sets up

the isomorphism between A/E*p and the character group of G(F/E).

For a E A there is an a G F such that ap = a. If t E G(F/E) we write

^a(/) = a'~ '. The map a —> ̂a leads to the required isomorphism.

Suppose t E G(F/K) restricts to a generator of © and let / E G(F/E). Since

K(a)/K is abelian we have a'T = a" which implies (a'_1)T = (aT)'_1 and so

*„(0T = *A0- Now, notice *a(/)T = *a(/)*(T) = *„*„(/). Thus a7 =

ax(T) mod Zs*''. To prove the converse, one simply reverses the steps.

This lemma is due to I. Shafarevich.

We now view E*/E*p as a module for the group ring Z/pZ[®]. Considered in

this way the above lemma says that A/E*p is the x-component of E*/E*p. We

wish to compute its dimension over Z/pZ. The following lemma shows we need

only consider the group of principal units, (7(1), of E.

Lemma 5. A/E*p m [U(l)/U(X)p](x).

Proof. Suppose t e © is a generator and let k be an integer, 0 < k <p, such

that k mod/? is x(T)- If a E A then aT = ak mod E*p. Let ord be the order with

respect to some uniformizing parameter of E. If s = ord a, then we see s = ks + pr

for some integer r. It follows that/7 divides i and so we may assume a is a unit.

Since U/ Um has order prime to p we may even assume a is a principal unit. This

completes the proof.

The principal units of E are acted on by the />-adic integers and may thus be

considered as a Zp[®] module. The structure of this module is a consequence of the

following result due to Krasner [3].

Lemma 6. Let E/K be a Galois extension of p-adic fields with group G. Suppose

[E ■ K] is prime to p. Then the principal units of E as a Zp[G] module is the direct

sum of the torsion subgroup and a free module of rank n = [K : Q'].

We will give a quick proof of this in the appendix. The important point is that

the proof does not involve class field theory.

We are now in a position to complete the proof of the main theorem in the case

where £ E K. The remarks at the beginning of this section reduce the proof to the

assertion that A/E*p has dimension n + 1 over Z/pZ. By Lemma 5 we need only

prove the same assertion about [Um/UWp](x). By Lemma 6 we need to compute

the Z/pZ dimension of the x-component of

t(E*)/t(E*f ® Z/pZ[@] ® ■ ■ ■ ®Z/pZ[®}.

Here t(E*) denotes the torsion subgroup of E* and the sum is over n copies of

Z/pZ\%\. Simple calculations reveal the following two facts.

(i) t(E*)/t(E*y « pp as © modules.

(ii) The x-component of Z/pZ[®] is cyclic over Z/pZ generated by 2„ x(°) l°-
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Putting all this together we see that, indeed, the Z/pZ dimension of A/E*p is

n + 1 as required. The proof is complete.

3. In this section we assume Çp, E K but Çp,+\ E K where í > 1. If p = 2 we

assume further that V^T E K.

Recall that G(ß/A~) as jUp, X Zp+X where ß is the maximal /»-extension of K in

the Lubin-Tate extension ULn. The Galois group G(A/K), where A is the maximal

abelian p -extension of K, is a Zp module. Using Kummer theory we see that the

Z/pZ dimension of G(A/K)/G(A/Ky is the same as that of K* / K*p. The

dimension of the latter group is n + 2. Since G(A/K) maps onto G(ß/ÄT) we may

conclude

G(A/K)^C X Z/+1,

where C is either isomorphic to Zp or is cyclic of order p ' with t > s. To prove the

theorem we need to show r = s. If C is bigger then clearly [Ks+X : K] = (ps+x)n+2,

where Ks+X is the maximal abelian /^-extension of K with exponent dividing ps+x.

We will prove the theorem by showing {Ks+X : K] < (ps + x)n+2.

Since Çp,+ i E K, Ks + X/K is not a Kummer extension. As in the last section we

first add the requisite root of unity to K. Let L = K(Çp,+ ,). Then Ls+X/L is a

Kummer extension and we can use its properties to say something about Ks+X/K.

Let M be the maximal abelian extension of K in Ls+X. Notice that we have the

following series of inclusions K c L c Ks+X E M E Ls+X. Clearly [L : K]= p.

We will show that [M : Ks+X] = p. It then follows that [Ks+X : K] = [M : L\ M/L

is a Kummer extension and we will use arguments similar to those in the last

section to determine [M : L]. The crucial piece of information necessary will be the

structure of the principal units in L as a module for © = G(L/K). This has been

determined by Borevich in [1].

Lemma 7. Let M be the maximal abelian extension of K in Ls+X. Then [M : Ks+X]

= P-

Proof. We first note that ZC(f 2,+j) is in M and is cyclic of order ps+2 over K

(recall that when p = 2 we are assuming that V^T E K). Let G = G(LS+X/K),

H = G(LS+X/L), and © = G(L/K). Let t E G be an element which restricts to a

generator of G(K(Çp2,+i/ K)). Since t restricted to L is nontrivial every element of G

is of the form r'h where 0 < / < p and h E H. Finally, let t0 = tp' restricted to

M. t0 acts nontrivially on ^2^2 and so has order/». We claim Ks+X = M^T°>.

Since t0 is a ps'' ' power we have Ks+X E A/<To>. Suppose a E M and aT° = a.

Consider K(a)/ K. This is an abelian extension. If X is in the Galois group, then

X = r'h restricted to K(a). Since t and h commute on K(a) we find Xp' = t0 on

K(a). But t0 is the identity on K(a) so X has order dividingps+x. It follows that

a E Ks+X and we are done.

We denote the group ring Z/ps+xZ[®] by R. Let g be a generator of ©. The

norm element of R, namely 2f ~¿ g', will be denoted by N. The homomorphism ^

from © to (Z/ps+xZ)* is defined by ^p.*i = $p*iT?. Since © is cyclic of orderp one

can choose a generator g E © such that ^(g) is the coset of 1 + ps. If A is an R
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module we define

A(*) = {a E A\ to = *(T)a,T E ©} = {a E A\ ga = (1 + ps)a).

We note that if (0) -> A —> Z? -» C -» (0) is an exact sequence of finite Ä modules,

then |£(¥)| < \A(*)\ |C(*)|.

Lemma 8. [M: L] = |(L*/L**'+')W|-

Proof. Since M/L is a Kummer extension, the character group of G(M/L) is

isomorphic to M*p'    nL*/L*p'   . The proof now proceeds as in Lemma 4.

Let a E M with ap' = a E L. K(a)/K is abelian. Let g be extended to an

automorphism of M and h E H. Then agh = ahg which implies (ag)h~x = (ah~x)g.

Thus, Xa*{h) - X»(A)* - Xa(A)*(i) = X**Uh). It follows that a* =

a*(g) m0(j ¿*/>' Yjjg steps can be reversed so that the latter condition on an

element a E L* insures that itsps+x root generates an abelian extension of K. Thus

(L*/L*p'* )(^) is isomorphic to the character group of G(Mj'L) and the lemma

follows.

Before discussing the structure of L* as a © module we need a few technical

lemmas about ^-components.

Lemma 9. Let A be an R module which is acted on trivially by © and as an abelian

group is cyclic of order ps+x. Then A(^r) = pA. In particular, |^4(^)| = ps.

Proof, a E A^) if and only if ga = (1 + ps)a. Since g acts trivially this is

equivalent to 0 = psa. This condition clearly characterizes/vl.

Lemma 10. R(^) is a cyclic group of order ps+ ' generated by

,=o

Proof. This is a straightforward exercise.

Lemma 11. Let T = R/NR, N the norm element. Then T(^) is a cyclic group of

order p generated by the image of e in T.

Proof. We first note that if b E T(^) then pb = 0. To see this remember

gb = (1 + ps)b so that

0 = Nb = Í 2 (1 + p'j\b = pb + l S i\psb.

If p is odd then the sum is divisible by p and the assertion is proved. If p = 2 then

0 = 2b + 2fb. Remembering that we have assumed s > 2 if p = 2 we can write

0 = (1 + 2S-1)2¿>. Since s > 2, 1 + 2J_1 is a unit in T, so 26 = 0.

Now, every element in T has a unique representative in R of the form a =

2f ",' a,g'. Using this, and the relation gZ> = (1 + ps)b, one is led to a recursion

relation among the a¡ which must hold if the image of a in T is to he in T(^). These

relations show that if such elements exist at all they are completely determined by

ax. Since by the first part of the proof we must have pax = 0 it follows that
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| T(^)| < p. On the other hand it is clear that the image of e in T is in T(^) and is

not trivial. Thus T(^) has order/» and is generated by the image of e as asserted.

Remark. It is amusing to note that the image of e in T is -ps"Ep~¡ g' which is

the same as the constant element/?1 mod N.

We recall that to complete the proof we need to show [Ks+X : K] < (ps+x)"+2.

Using Lemma 7 we find [Ks+X : K] = [M : L] and by Lemma 8 [M : L] =

\L* / L*p'*\^f)\. Let U denote the units of L, and 77 a uniformizing parameter of L.

We have an exact sequence

(1) -* U/Up'*' *» L*/L*p'*' -# Z/ps+xZ -» (0),

the third arrow being induced by taking the order of elements with respect to 77.

Using Lemma 9 we find

|L*/L*''+'(*)| <p'\U/Up'*\*)\.

Now, U/ Up'*' m Um/ Ump'+' where £/(1) is the group of principal units of L. The

theorem will be proven if we can show

i (/(') /t/<l)?*+'(^)| = (/»I+1)" + 1.

That this is indeed the case follows from the following result of Borevich.

Lemma 11. (i) If L/Kis unramified then U(X) as ny+1 X Zp[@]n.

(ii) If L/ K is ramified then

<7(,)«u,+, x zr©]"-1 x z x z.r@i//vz.r®i.

These statements are equivalent to Theorems 3 and 4 of [1]. The proof uses the

fact that Um = NU in the unramified case and | U®/NU\ = /> in the ramified case.

These statements may seem to involve class field theory but they can be demon-

strated using elementary properties of the Herbrand quotient. See, for example,

Lemma 4 on p. 188 of Lang's book [4].

We can now complete the proof. If L/K is unramified then by Lemma 11,

t/(1)/i/(1)''+'«IV+' x Rn-

By  Lemma  9 we  find  that  the  ^-component has  order ps+x X (ps+x)n =
(ps+x)n+x.

If L/K is ramified then by Lemma 11,

t/(,)/ (t/(1)y*+' « /y*. X Rn~x X Z/ps + xZ X T.

By Lemmas 9, 10, and 11 it follows that the ^-component has order

ps+x x (pS+ly-iXps Xp = (p*ny+\

4. We complete the proof by dealing with the only remaining case; K a 2-adic

field and V^T $ K.

We know G(ti/K) « < ± 1> X Z2+x and, as before, this shows G(A/K) as py

X Z2 + x where 1 < s < 00. We must show that j = 1.

If s > 1, G(K2/K) as (Z/4Z)n+2 and it follows that every quadratic extension

of K is contained in a cyclic extension of degree 4. According to the following

lemma this situation cannot occur.
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Lemma 12. Let K be a 2-adic field and suppose V^T £ K. Then, not every

quadratic extension of K is contained in a cyclic extension of degree 4.

Proof. Let a E K, a not a square. Let L0 = K(Va ) and suppose L0 c L with

L/K cyclic of degree 4. We denote by a a generator of the Galois group.

L = L0(a) where a2 = A + BVa E L0, A and B E K. Then

(aa)2 = A — B\fa . Since both a and a" generate L over L0 we must have, by

Kummer theory, a" = a(C + DVa ) with C and D E K. Applying a to both sides

of this equality shows a"2 = a(C2 — aD2). Since a2 fixes L0 we find «"" = -a and

so -1 = C2 - aD2. Since V^T E K, D ¥-0. Thus a = (1/Z))2 + (C/D)2.

If the lemma were false it would follow that every element of K is a norm from

K(V^Ï ). However, the norm index is 2 (see the remark following Lemma 11). This

completes the proof.

Appendix. We sketch a proof of Krasner's result, Lemma 6.

By the normal basis theorem £ as K[G] as left K[G] modules. It follows easily

that E contains a Zp lattice L, invariant under G, such that L œ Zp[G]n as right

Zp[G] modules. By multiplying by a sufficiently high power of p we may assume L

is in the domain of the exponential map. exp L is disjoint from the torsion

subgroup of Um. Thus, Um mod torsion contains a free Zp[G] submodule of finite

index. Since /»||G| it follows that Zp[G] is a maximal order in the semisimple

algebra Qp[G]. A standard theorem says that such an order is a principal ideal ring.

From this it follows that Um mod torsion is itself a free Zp[G] module of rank n

and Krasner's result is an immediate consequence.

We remark that when G is abelian of exponent dividing/» - 1, as it is in our

application, the proof is even easier since Zp[G] splits into a direct sum of ideals

each of rank one over Z .
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