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THE LOCAL KRONECKER-WEBER THEOREM

BY

JONATHAN LUBIN1

Abstract. The extension of a local field generated by adjoining the torsion points

on a suitable formal group is essentially the maximal abelian extension of the field.

This fact is proven by appealing to the functorial properties of the Herbrand

transition function of higher ramification theory.

The theorem of the title refers to the fact that the maximal abelian extension of a

local field may be generated by roots of unity (for the unramified part) and roots of

endomorphisms of a certain formal group, which depends on the field, as described

in [2].

This proof of the local Kronecker-Weber theorem depends not on any cohomo-

logical methods but on the functorial and geometric properties of the Herbrand

transition function and on the deep but noncohomological Hasse-Arf theorem.

These are fully treated in [3], in Chapters 4 and 5, and I will assume that the reader

is familiar with them.

1. Review of the Newton polygon and copolygon. Let AT be a field which is

complete with respect to a rank-one valuation (additive), v: K* —>Q+. There is a

unique extension of v to any algebraic closure K of K, and this will likewise be

denoted v. If f(z) = 2 a,z' G K[z], the Newton polygon off, 9l(/), is constructed

by erecting vertical halflines on all the points of the form (/, v(a¡)) in the Cartesian

plane, and then taking the convex hull of the union of these lines. The basic

property of the Newton polygon is the following: if 9l(/) has a segment of width w

and slope ft, then in K there are, counting multiplicity, w roots p of f with

v(p) = -ft-

Another geometric object, which contains the same information as 9l(/) but

organizes it differently, is the Newton copolygon of f, <3t*(/), defined to be the

intersection in the Cartesian plane of all halfplanes defined by the inequalities

y < ix + v(a¡).

The following facts are easily verified:

1. Every vertex of 9l(/), and every segment of 9l*(/), comes from a monomial

of/; a monomial of/ contributes a vertex to 9l(/) if and only if it contributes a

segment to 91 *(/).
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2. The vertices of 9l(/) are in one-to-one correspondence with the segments of

9l*(/); if (P, S*) is a corresponding pair, the x-coordinate of P is the slope of 5*

and the >>-coordinate of P is the_y-intercept of 5*.

3. The nonvertical segments of 9l(/) are in one-to-one correspondence with the

vertices of 9l*(/); if (5, P*) is a corresponding pair, the x-coordinate of P* is the

negative of the slope of 5 and the_y-coordinate of P* is the ^-intercept of 5.

4. If yrf is the function whose graph is the boundary of 9l*(/), then the

inequality v(f(a)) > ^Á[v(a)) is satisfied for all a G K, and equality holds if v(a) is

not equal to the x-coordinate of any vertex of 91 *(/). In particular, the valuations

of roots of / are the x-coordinates of the vertices of 91 *(/). If /, g E K[z] and g

has no constant term, then ^P,     = ^f ° ^„.

5. The change in slope at a vertex of 9t*(/) is the same (but for sign) as the

width of the corresponding segment of 9l(/). Thus

^f(x) = 4^(0) + I    (number of roots p of/with v(p) > t) dt.

In particular, if f(z) is a monic polynomial with u-integral coefficients, so that

Sf^O) = 0, the first term on the right-hand side drops out.

It will not often be necessary to mention the dependence of the Newton polygon

and copolygon on the choice of v.

2. Transition function. The reader who is familiar with Serre's description of the

Herbrand transition function in Chapter 4 of [3] should be warned that the

relationships arising in this paper force on us a slight modification of this function.

Whereas Serre's function s<b is a polygonal mapping of the halfline R>_1 into

itself, we will be using the corresponding mapping L<¡> of R>0 into itself: L<K*) —

1 + s<Kx - 1).

To review the definition of the transition function, let L/ K be a totally ramified

separable extension of complete discretely valued fields, with Galois set GL/K of all

A'-morphisms of L into K. Let t be a prime element of L, and use the normalized

valuation ordT = u(t)"' • v. For / > 0, set G, = {h E GL/K: ordT(/i(r) — t) > t],

and y, = card(G,). Then the transition function is

^«{x) = Zrnc]f0Xy>dL

Notice that in case L is Galois over K, the G„ for integral / > 1, are just the

familiar ramification subgroups of GL/K = Gx, except for a shift of 1 in the indices.

These are normal subgroups of GL/K with the property that Gx/G2 is embeddable

in the multiplicative group Ac* of the residue field k of K, and each G¡/G¡+x for

/' > 2 is embeddable in the additive group of k.

We will make extensive use of the functoriality of <¡>:  if F c K c L, then

$K/F ° $L/K = 4>L/F-

The following is a restatement of a lemma of Täte, which I learned of from B.

Gross [1].
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Lemma 1. Let KQ c K c L be extensions of complete discretely valued fields with

L/K separable and totally ramified. Let it be a prime element of K0 and t a prime

element of L, and use v = ord„. for drawing Newton polygons. Let g(z) = Irr(r, ATz]),

andf(z) = g(z + t). Then <bL/K(x) = eK/K^j(x/eL/K).

The proof is immediate. What Lemma 1 says is that ^f and <j>L/K are the same

except for scale; in fact, (a, b) is a vertex of ^y if and only if (eL/Ka, eK/Kb) is a

vertex of <bL/K.

Let us use Lemma 1 to determine the transition function in a particular case. Let

K0 be a local field, with prime element 77 and residue field k s=s ¥(q). Then we have

a canonical tower of totally ramified extensions of K0, K0 c Kx c K2 c . . . ,

Kt = K0 (roots of [77']), [77](z) = 77z + zq, [77'] = [77'"'] ° [77].

These fields are all abelian over K0, as is shown in [2], and [K¡ : K0] =

(q - l)q'~l. We define T = IJ, K¡, when the statement of the local Kronecker-

Weber theorem is just that the maximal abelian extension of K^ is UT, where U is

the maximal unramified extension of K0.

The nonzero roots of [77] satisfy the A^-polynomial [7r](z)/z = 77 + zq~x = g(z),

and if X, is one of them, f(z) = g(z + Xx) has form uxXf2z + u2Xf3z2

+ • • • +uq_2Xxzq~2 + zq~\ where ord,/w,) = 0. Thus 9l(/) has vertices only

at (1, (q - 2)/(q - 1)) and (q - 1, 0), so that 9L*(/) has the single vertex

(\/(q — 1), 1), and by Lemma 1, <rV,/x„ nas tne single vertex (1, 1). Notice that in

all cases, the slope of the rightmost (unbounded) segment of the graph of <bL/K is

\/[L : K]\ in the case of Kx/K0, this slope is \/(q — 1).

To compute §K./K. { we let a, be a root of [77'] that is not a root of [77'""'], and set

\-f™ MC^)* which we know to be a prime element of K¡_,. Then

g(z)   =  -\_x   +[t7](z)  =  -A,._,   +   77Z  +   Zq

= Irr(A,,A',.„1[z]).

Now form

f(z) = g(z + \) = (Z + A,)« + 77(Z + \) - \_,:

the constant term is zero, and all intermediate binomial coefficients of (z + X,)9 are

divisible by p, so that the Newton polygon of f(z) has its only vertices at (1, 1) and

(q, 0). Thus 9L*(/) is formed from the two lines y = qx and y = x + 1, with its

only vertex at (\/(q - 1), q/(q - 1)), and by Lemma 1, <¡>K¡/n_ has its unique

vertex at (q'~\ <?'"') and the rightmost segment has slope l/q. The composition

' 4>k,/k0 ° «rVr,/*, °   * * •   ° **/*_, = *«;/*„

thus has the vertices (qJ~x,j) for 1 </</'— 1.

For the field T = (J, K¡, the transition function <§>T/k0 = um< ̂ /x-0 (pointwise

limit), and the graph of this function has vertices at all the points (/, q'~x), i > \,

and nowhere else.
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Now if L is any totally ramified Galois extension of K, finite or infinite, we can

say the following about <bL ,K :

1. Since quotients of successive ramification subgroups are injected into either k*

or k+, the ratio of the left-hand slope at a vertex of 4>L,K to the right-hand slope is:

a divisor of q — 1 if the vertex is (1, 1), and a divisor of q otherwise.

2. If L is also abelian over K, the Hasse-Arf theorem implies that all vertices of

§l/k are at lattice points.

3. Functoriality of <b implies that if K c L c L', totally ramified, then §L/K >

4>v/k-
The transition-function <¡>T/K described above is clearly minimal among all

polygonal functions satisfying conditions 1 and 2. What remains to be shown is

that any proper extension T of T which is totally ramified and Galois over K0 has

the property that for x large enough, <t>r/Ko(x) < <bT/Ka(x). Such a 7" cannot be

abelian over K0, so that T is then a maximal abelian totally ramified extension of

K0, from which fact it follows that UT is the maximal abelian extension of K0.

We will assume from now on, therefore, that T and the À/s are the extensions

gotten from the polynomials [77'], and that T is an extension of T with

[ T : T] = p, and T' abelian over K0. The proof below will use merely the fact that

T is normal over T. Let 7" = T(w). Then there is /'„ such that [K¡ (w) : A,J = p.

For /' > z'0, put L¡ = K¡(w). We wish to compare

«iV/*,, -  1Ím   *i,/*0 =  "f1   **/*. °  *V*

with <bT/K = lim, <¡>k¡/k0- We will soon see that for /' 2> 0, <r>z,/jç = $, unchanging

from j to i+l, so that <t>TyK(x) < <bT,K(x) for x » 0, which is the desired

contradiction.

Many of the extensions we will be considering, such as Ki + X/K¡ and LJK¡ have

a transition function with only one vertex, at (a, a). In this case there is an easy

arithmetic consequence d(t/%) = a([t : %] — 1). Here, d is the differential expo-

nent of £/3C; the formula is immediate in the normal case from the formula

d = 2°^! (\G¡\ — 1), and directly provable in any case.

Define ga to be the polygonal function on R>0 defined by the rule

&(*) =  1

x if x < a,

a + p~l(x — a)    if x > a.

(In applications, a > 1 always.)

These functions commute as follows:

(0 ga + c ° & = ga° ga+pe     (e > 0);

(2) ga + e ° gl= g{° ga+qe     (q - p*).

Here, g* means the/-fold composition of g with itself.

In general, suppose

y = gal ° ga2 ° • • • ° &£:; ° «£,     «< e z^-
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If ax < a2 < ■ ■ ■ <am, say y is in standard form, and if ax > a2 > • • • > am, in

antistandard form. In the standard case, y has vertices (ax, ax), (a2, *),..., (am, *),

while in the antistandard case, y has vertices (*, ax), ...,(*, am_x), (am, am). It is

clear from (1), or from geometric intuition, that every composition of g+'s can be

written uniquely in standard form and uniquely in antistandard form. In any case,

ga ° ô has a vertex at (*, a) and 6 ° ga has a vertex at (a, *) so long as 5 is convex.

Now consider the ladder-diagram describing the lattice of the fields Kt and L, for

i > 'o-
We examine one cell of the ladder,

where we know

and we want to show that for i » i0, bj+x = ¿>,. Write h = <f>^   /^, so that we have

the relation

ft,, °h = (gq'Y ° «w

We divide the situation into three cases:

Case 1.6,. < <?'. Then q' < ¿>, + 1 is impossible, since then gb~l ° (g?// ° gfc would

be standard and nonconvex. Thus bi+x < q', and (g9./ ° gb is antistandard, so

has only the vertices (bi+x, b,+ l) and (*, ö'), while it also has a vertex (*, b¡). Thus

bi+x = b¡, so that we hope that Case 1 will obtain for i » j'0.

Case 2. b¡ = q'. This involves some arithmetic, since we use the following:

Lemma 2. d(Li+x/Ki+x) < qd(Lj/Q - q(p - 1).

Proof. Let t be a prime element of L,; then t/X?(px is a unit in L(+1 whose

minimal polynomial is computed from that of t, giving qd(L¡/K¡) — q(p — 1) for

the exponent of the different ideal of the ring &l.[t/\^] as an extension of 0jc+1-

As a consequence of Lemma 2, d(Li+x/Ki+X) < qd(L¡/K¡), so that (/? — 1)¿/+,

< q(p - \)b¡, and thus bi+x < q,+ l if b¡ = q\

Case 3. b¡ > q'. Then q' > bi+x is impossible, since then h = g6~' ° (g?,y ° g6

would be antistandard and nonconvex. Thus bi+x > q', and (g ¡Y ° gb    is stan-

dard, equal to gQ ° (gqiY, which is antistandard, where Q = q' + ((bi+x — q')/q),

and this function has vertices only at (*, Q) and (q', q'), while we know that gb ° h

has a vertex at (*, b), so that bi = Q, or, solving for bi+x,

¿>,+i = q°, - q\q - 0-
It only remains to observe that Case 3 eventually gives way to Case 1 or Case 2:

if Case 3 obtains for /', / + 1,...,/' + k, then

bI + k = q%-kqi + k-\q-\)

= qk[b, - k(q' - q'~1)].
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Here i is fixed and k —> oo, so what is in brackets must become negative, i.e. Case 3

must stop, and give way to Case 1.
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