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SINGULAR INTEGRALS AND MAXIMAL FUNCTIONS

ASSOCIATED WITH HIGHLY MONOTONE CURVES

BY

W. C. NESTLERODE

Abstract. Let y: [-1, 1] -»R" be an odd curve. Set

HJ(x) = PV j fix - y(r)) (dt/t)

and

MJ(x) = sup h-lJo"\f(x - y(t))\ dt.

We introduce a class of highly monotone curves in R", n > 2, for which we prove

that Hy and My are bounded operators on L2(R"). These results are known if y has

nonzero curvature at the origin, but there are highly monotone curves which have

no curvature at the origin.

Related to this problem, we prove a generalization of van der Corput's estimate

of trigonometric integrals.

Introduction. Let y: [-1, 1] -> R" be an odd continuous curve. For a test function

/on R" we define the "Hilbert transform along y" of/by

(Hrf)(x) = Pvflf(x-y(t)) ^
•'-l *

and the "maximal function along y" of/by

(Myf)(x) =   sup    -C\f(x-y(tj)\dt.
0<£<1      e J0

We seek conditions on y which guarantee either of the estimates

(1) for each/ E LP(R"), \\HJ\\p < Cy\\f\\p,or

(2) for each/ E Z/(R"), \\Myf\\p < Cy\\f\\p,

forsomep, 1 <p < oo.

The operators Hy arise when one applies the method of rotations to nonisotropic

Calderon-Zygmund operators. Thus estimates of Hy lead to estimates of a broad

class of singular integrals. See Nagel, Riviere and Wainger [1], for example.

My is the maximal operator naturally related to Hy. The estimate (2) implies the

following theorem on differentiation of integrals.

(3) If/ is locally in LP(R"), then

lim, t ('ft* - y('))dt = f(x) a-e-
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(1), (2) and (3) are false for arbitrary C°° curves. See Nagel and Wainger [4,

Theorem 4] and Stein and Wainger [8] for the counterexamples.

We call a C°° curve y: [-1, 1] -> R", y(0) = 0, well-curved if for some e > 0,

y([-e, e]) lies in the linear span of {yw(0): k = 1, 2, 3,. . . }. Stein and Wainger [8],

[9] have shown that (1) and (2) hold if y is well-curved and 1 <p < oo.

Let y(/) = (/, <j>(t)) be a plane curve which satisfies

(4) <p is odd, <p E C2([0, 1]), <K0) = <>'(0) = 0 and <j>" > 0 and </>" is increasing on

[0, 1].
Note that </>(/) = sgn(/)exp(-|r|_1) satisfies (4), but that y is not well-curved.

Nagel and Wainger [4] have shown that (1) holds for f <p < j and that (1) may

fail if p = 2 and <j>" is not monotone. Stein and Wainger [9, p. 1292] have shown

that (2) holds for 2 < p < oo.

In this paper we introduce a class of "highly monotone" curves in R" which

reduces to the curves in (4) when n = 2. The precise definition of this class can be

found in §2. In §§3 and 4 we prove the following theorems under the hypothesis

that y: [-1, 1] —>• R" is odd, y,(r) = t and y is highly monotone on [0, 1].

THEOREM 1.  \\Hyf\\2 < C„\\f\\2 (f E L2(R")).

THEOREM 2. \\MJ\\p < Cnj)\\f\\p (f E Lp(R"), 2 < p < 00).

Theorem 3. Iff is locally in LP(R"), 2 < p < oo, then

\im-C f(x-y(t))dt=f(x)    a.e.
e->0 e Jq

At this point we wish to say a few words about the proofs of Theorems 1 and 2.

Theorem 1 is equivalent to the boundedness of the Fourier multiplier

my(£) = ?N C e-2"**» —.
J-i t

In [7]  Stein and Wainger introduced the following estimate of trigonometric

integrals into the study of Hy.

Lemma (van der Corput). /// is a real-valued function on [a, b], if |/(n)(/)| > X

> Ofor a < t < b and iff is monotone when n = 1, then

f e'*'> dt < CnX-i/n-
Ja

This lemma has been basic in the study of Hy and My since then.

In § 1 we prove a generalization of van der Corput's lemma which is particularly

suited to highly monotone curves. The generalization comes in replacing /*n) by D"f

when n > 1, where D" is a suitable differential operator of order n. In §3 we use

this estimate to prove Theorem 1 for highly monotone curves.

To prove Theorem 2 we use the method of "g-functions" introduced by E. M.

Stein in [5] and [6]. This technique has been used to prove many maximal

theorems; for examples see Stein and Wainger [8], Nagel, Stein and Wainger [3]

and Wainger [10].
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The use of g-functions allows one to use the Fourier transform and reduce the

maximal theorem to estimating trigonometric integrals. In §4 we use a variant of

the g-function in Stein and Wainger [9, p. 1292] and our generalization of van der

Corput's lemma to prove Theorem 2 for highly monotone curves.

It should be noted that the first application of the Fourier transform to the study

of My was made by Nagel, Riviere and Wainger [2] in the special case y(/) = (/, t2).

I take this opportunity to thank my teacher and advisor, Professor Stephen

Wainger, for the suggestions and encouragement he has given me in the course of

this work. (I would also like to thank Professor Alexander Nagel and my fellow

graduate students, Jim Vance and Dave Weinberg for many useful discussions.)

1. An estimate for trigonometric integrals. In this section, we prove a lemma

which will be of use in §§3 and 4. Before stating the lemma we must introduce

some notation.

Given a smooth function a: [a, b] -» (0, oo) we define a differential operator Da

by

DM = (//«)'(<)•
If  a,, . . . , a„   are   n   such   functions,   then  we  inductively  define   operators
Dx D"

Dx = Z>  •    Dk + X = £>     Dk    fori <&</!.

Lemma 1. Let a„ . . . , oil, be positive nondecreasing functions defined on [a, b] and

let a, = 1. Let f be a real-valued function of class C on [a, b]. If Dxf = /' is

monotone and if \Dnf(t)\ > X > Ofor each t in [a, b], then

\fbexp[if(t)] dt < Cn(Xax(a) ■ ■ ■ a„(«))-'/n.
\J a

We note that if each ak = 1, then Lemma 1 reduces to van der Corput's lemma.

(See [11, Volume I, p. 197] or [9, p. 1258].)

Proof. Suppose that n = 1. To be specific, assume that /' is nonincreasing and

that/'(0 > X. Now

K K  dtx        ;  //'(/)

so integration by parts yields the estimate

\)a ^f'(b)     f'(a)+Ja  a\f'j     /'(A)      A'

Now assume that the lemma is true for a given n > 1. Assume that /' is

monotone and that Dn+Xf(t) > X for a < t < b.

Set h = D"f Then Dn+Xf= (h/an+x)'. Choose c in [a, b] so that h/an+x is

positive on (c, b) and h/an+x is negative on (a, c). Such a value of c exists, and is

unique, since h/an+x is increasing.
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Write /* em dt = fca + /* = P + Q and estimate P and Q separately. To esti-

mate P suppose that a < u < c. Then

\P\ <\femdt + c - u.
\^a

If a < t < u, then

-*-(,) < -*-(«) = -*_<e) - jl^M'to ds < -A(c - «).
an+l an+\ "n+1 •/«\a«+l/

Hence we have

DJ(t) = /,(/) < -Xan+X(t)(c -u)< -Xan+X(a)(c - u)

for a < t < u.By the induction hypothesis

\P\ < C„(Xax(a) ■ ■ • «n(a)«„+,(a)(c - u))-X/n + c-u

for a < u < c. This estimate actually holds for each u < c since \P\ < c — a.

Set c - u = (Aa,(a) - - • an+x(a)Yx/(n + x\ Then we get

|P|<(Cn+l)(\«,(a)...«n + ,(a)r1/(', + ,).

The estimate of Q is made in a similar manner.    Q.E.D.

2. Highly monotone curves. Let y: [0, Ar]-»R'1 be a curve of class C" with

y(0) = 0. We inductively define functions o,, . . . , an as follows.

a, = 1;    ak+x = Dkyk    for 1 < k < n.

Here Dx, . . . , D" are the differential operators associated witha„ . . . , a„ as in §1.

At each stage of this definition we must assume that ak is positive on (0, N) so that

the operator D * is well defined.

We now consider the matrix Wy = [Dkyj]x<kJ<n. It is easy to see that W  is

upper triangular:

/>'y,      Dxy2      •••       Dxyn

D2y2      •••       D\

Wy= ■       .

D\

This follows since row k + 1 of W is obtained by dividing row k by Dkyk and

differentiating.

We say that y is highly monotone if it has the following two properties.

(1) If 1 < k < / < n, then Dkyj is positive and nondecreasing on (0, N).

(2) If 1 < k <j < n, then D*y,(0 = o(Dkyk(t)) as r -* 0+.

Lemma 2. Ler y: [0, N] —>• R" be a highly monotone curve. If 1 < k < j < n and

0 < t < N, then

Dkyj(t) > yj(t)/tkax(t) ■ ■ ■ ak(t). (i)
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Proof. We note that if <p E Cx([0, N]), <p(0) = 0 and <p' is nondecreasing, then

we have

9(0 < V(')- (u)

Fix/. We prove (i) by induction on k.

Dxyj{t) = y;(/) > yj(t)/t = yj(t)/tax(t)

follows from (ii) with <p = y. and the fact that a, = 1.

Assume (i) for some A;, 1 < k <j. Then we have

( D%\ D%(t) y.(/)
J)k+ly(A   =   I   _—   I   (f)   > J >   _J      '_

7 l Z)*yJ <«*+.(')       tk+xax(t) ■ ■ ■ ak(t)ak+x(t) '

The first inequality follows from (ii) with <p = Dkyj/Dkyk and from the fact that

ak + x = Dkyk. The second inequality follows from the induction hypothesis.

Q.E.D.
We conclude this section with some examples of highly monotone curves.

Example 1. Let y(/) = (/"', . . ., t°") for / > 0. Suppose that ax > 1 and aJ+x >

Oj + 1. Then y is highly monotone and

axta'~x      a2ta*-x       ■ ■ ■        ant°"-x

cta2-a,-l .   .   . cta,-a2-\

W    = ■ .y

Cf.-a.-x-x

The various constants c are positive and depend only on ax, . . ., an.

Example 2. Let n = 2 and let y(t) = (t, <p(t)). Then y is highly monotone if, and

only if, <p(0) = 0, q>'(0) = 0 and <p" is positive and nondecreasing on (0, N).

1      <p' "
W  = T    .*     [0    <p"

Example 3. Let y(0 = (t, ta^-'~P\ . . . , rV"'") for t > 0. We assume that

aJ+x > Oj + 1 and Bn > Bn_x > ■ ■ ■ > B2 > 0. For N sufficiently small y is highly

monotone on [0, N].

3. The Hilbert transform. Let y: [-N, N]-*R" be a continuous curve with

y(0) = 0. For 0 < e < N we define the truncated Hilbert transform by

*WW-f       /(*-y(0)t-

In [9, p. 1284] it is shown that HeNf is a well-defined measurable function if / is

locally integrable on R".

Theorem 1. Let y: [0, N] -» R" be a highly monotone curve with yx(t) = /. For

0 < t < N define y(-t) = -y(t). There exists a constant Cn, which depends only on n,

so that ifO < e < N andf E L2(R"), then

HJWIia < CnU\\2- (0
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Furthermore, for each f E L2(R"), HNf = lime_^+//e Nf exists in the L2 norm and

\\HNf\\2 < C„||/||2. (ii)

The case n = 2 of Theorem 1 is due to Nagel and Wainger [4].

Let y be the curve in Example 3 of §2. Then y has "no curvature" at the origin,

i.e. y(A:)(0) = 0 for k = 2, 3,..., y([0, N]) lies in no proper subspace of R", but, by

Theorem 1, the Hilbert transform associated with y is bounded on L2(R"). This is

in contrast to the work of Stein and Wainger [9, p. 1261, Theorem 3(B)] and the

counterexample of Nagel and Wainger [4, Theorem 4.1].

Proof of Theorem 1. An easy computation shows that (HtNf)~ = meNf where *

denotes the Fourier transform and

»Vjv(0 = f exp[-2«i$ o y(t)] -1
Je<\t\<N I

= -2i(N sinO!°y(f)) —.
Je t

Conclusion (i) is equivalent to the estimate

K,jv(£)I < cn    for I S R" and 0 < e < A. (iii)

We prove (iii) by induction on n. The case n = 1 is well known.

Let n > 1 and assume that (iii) holds for n — 1. Let y: [-N, N] -» R" satisfy the

hypotheses of Theorem 1. Set y = (y,, . . . , y„_,) so that y = (y, y„). Take £ E R",

£ = (£, £„)• If !„ = 0. then |weAf(|)| < C„ follows from the induction hypothesis

applied to y. So assume that £„ ¥= 0. Define a to be the solution of |£„|y„(a) = 1,

0 < a < N, if it exists. Otherwise set a = N. (Recall y„(0) = 0 and y„ is increasing.

Thus a = N iff |Uy„(A) < 1.)

Yf"e_w(9 =fa{sin(2Trt ° y(/)) - sin(2?ri ° y(t))} -j

+ C sin(27r| o y(/))-/■+ (N sin(27r£ » y(t)) -j
Je t      j a t

= P + Q + R.

\Q\ < C„ follows from the induction hypothesis.

\P\ < 2tt\Q f yn(t) y < 2tt\U f y'n(t) dt
Jq t Jq

= 2wl^lY„(a) < 2tt.

If a = N, then R = 0. So assume that 0 < a < N. By the Second Mean Value

Theorem,

1  rb
R = — I    sin(27r| ° y(t)) dt    for some b,a <b < N.

aJa

Set fit) = | o y(t). Then \D"f(t)\ = \in\(Dnyn)(t) > \i\(Dnyn)(a) for a < t < N. So

Lemma 1 will imply

|R| < Cna-x(\Q(D»yn)(a)ax(a) ■ ■ ■ an(a)yl/"
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if we can divide [a, N] into a bounded (in a and £) number of subintervals on each

of which/' is monotone. Applying Lemma 2 we see that

Ua»(D»yn)(a)ax(a) • • • an(a) > \Zn\yn(a) = 1

so that |R | < C„. Thus it suffices to prove (iv) below,

(iv) V£ e R",/"(0 = £ ° y"(t) has at most n - 2 zeros in (0, N).

Note that/(f) = £xt + 2"_2£7y,(0 so that

/"(') = £  %yjV)    and   Dkf(t) = £  ijDkyj(t)
j=2 j=k

for 2 < k < «. /)"/(0 = inDnyn(t) has no zero in (0, N). Since DJ = (D"-xf/an)',

Rolle's theorem implies that D"~xf/a„ has at most one zero in (0, N). But aN > 0.

Thus D"~xf has at most one zero in (0, N). Repeating this argument n — 2 times

shows that/" = D2f has at most n — 2 zeros in (0, N). This proves (iv) and with it

(i).

(ii) follows from (i) and the fact that HNf = \ime_tQ+HeNf exists in L2 if

/ E CC'(R").    Q.E.D.

Let y(/) = sgn t(\t\"', . . . , l/l"") where ax > 1 and aJ+x > a, + 1 for 1 < / <n.

The proof of Theorem l(i) goes through for this y with a few minor changes. This is

essentially the proof given by Stein and Wainger in [7].

4. The maximal function. Let y: [0, N] -»R" be a continuous curve with y(0) = 0.

We define the maximal function by

Mf(x)=   sup   -f\f(x-y(tj)\dt.
0<e<7V e •'O

In [9, p. 1284] it is shown that Mf is a well-defined measurable function if / is

locally integrable on R".

Theorem 2. Let y: [0, N] -*R" be a highly monotone curve with y,(r) = /.

(i) There is a constant Cn, which depends only on n, such that for each f E L2(R"),

WWh < CJMr
(ii) If 2 < p < oo,  there is a constant  Cnj> such  that for each f E LP(R''),

\\W\\P < cnj,\\f\\p.

Theorem 3. Let y: [0, N] -» R" be a highly monotone curve with y,(/) = /. Iff is

locally in LP(R"), 2 < p < oo, then

\imj-ff(x-y(t))dt=f(x)   a.e.
e—»0  £ ^o

The case n = 2 of Theorem 2 is due to Stein and Wainger [9, p. 1292].

The curve in Example 3 of §2 has "no curvature" at the origin, lies in no proper

subspace of R", but the L2 differentiation theorem (Theorem 3) is true for this

curve. This is in contrast to the work of Stein and Wainger [8].

Proof of Theorem 2. We prove (i) by induction on n.

If n = 1, then Mf is the Hardy-Littlewood maximal function and (i) is well

known in this case.
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Let n > 1 be given and assume that (i) holds for any highly monotone curve y in

R"_1. Let y be a highly monotone curve in R". Set y = (y„ . . ., y„_,). Then y is

highly monotone and y = (y, y„).

We set

Mhf(x) = \f*hAx-y(t))dt

and

****>=-hrJj^r{h)^ -*<* * - *> * *•
n Jh   y„\n) Jo

We define

*(/)(*) = { jT'W*) - Nj(x)\2 f }1/2    for/ E L2.

The argument in Stein and Wainger [9, p. 1265] shows that if / > 0, then

Affix) < C(g(f)(x) +    sup     N,J(x)).

So it suffices to prove the following two estimates.

V/GL2(R"),    ||sup|Ay||   <C„||/||2 (ii)
" h>0 M2

V/eL2(R"),   ||g(/)||2<c„||/||2. (iii)

( sun\NJ(x)\2 dx = (   f     sup\N,J(x)\2 dx dxn
JR"    h ■/RI-/R"-'    h

< f   CJ     (sup - f\f{x, x„ - s)\ ds)  dx dxn

= C„f      f ( sup i- fe\f(x, x„ - s)\ ds)  dxn dx
■/R"-'",R,\e>0 e •'0 /

< C„ f      f \f(x, xn)\2 dx„ dx

= Cnf \f(x)\2dx.
jR»

The first inequality follows from the induction hypothesis; the second inequality

follows from the Hardy-Littlewood maximal theorem. Hence, only (iii) remains to

be proved.

Note that (Mhff= mj and (NJ)'= nj, where for each £ = (I, £„) in Rn,

mh(i) = \Che-2«*«<Ut
hJh

and

<$=t^ r rw e-2*™^ ds dt.
byn(h) Jh   Jo
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Using Fubini's theorem and the Plancherel theorem

f \g(f)(x)\2dx = fN/2f \MJ(x) - Nh(x)\2dx ̂
-/R" Jq JKn n

-r/2(\mn®-nh(Z)\2\J(i)\2dt%
Jq JRn n

So to prove (iii) it is sufficient to prove (iv).

V£ GR",    jT/2K(i) - nh(i)\2 f < Cn. (iv)

Define a to be the solution of y„(2a) = 1/|£„|. Write the integral in (iv) as

I   KG) - nM T < 4/a   T = 41og2

since |mA(£)| < 1 and |/iA(£)| < 1-

"Vn(") ■'A     J0

<^nU%^)-s)dsdt<2,\i,\yn(2H)
hyn(h) Jh   Jo

so that

JTk«) - «a(€)P ̂  < 4W2|£n|2/oayn(2/r)2 ^

< 4TT%\\(2a)f2a^ dt
Jq t

<4TT2\Q\(2a)Cay'n(t)dt
Jo

= 4^2|£J2yn(2a)2 = 4^2.

f "/2i     /t\ ft\\2 dh (N/2      , M2 dh rN/2 dh
j     K(£) - »k(i)\ jj<2J     \mh(0\ -jj + 2J     k(€)r -fj

and we estimate each of the last integrals separately.

Making use of Lemma 1 and the argument in the proof of Theorem 1 we see that

K(*)l < CMn\(D"yn)(h)ax(h) ■ ■ ■ an(h)YX/nh-x.

Squaring and integrating shows that

r/2K(S)|2 f < Cn(\tt{D"yn)(2a)ax(2a) ■ ■ ■ an(2a)y2/n T %
J2a n J2a     h*

= Cn(\Q(2ayD"yn(2a)ax(2a) • • • an(2a)y2/"

< C„(|£„|yn(2a))-2/" = C„.

The last inequality follows from Lemma 2.
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1*0)1 < -JitI/^ ***• * < TT^TTT

follows from van der Corput's lemma. Hence

fN/2\   <t\\2 dh ^    4    fN/2      dh

< _4_ rN/2 y'n(h) dh ^ 2 = ^

\i»?}*°     [yn(h)Y      [\Uyn(2a)]2

This completes the proof of (iv) and with it the proof of (i).

We have just proven (ii) in the case p = 2. The case p = oo is obvious with

Cnoo = 1. The remaining case 2 < p < oo follows from these results and the

Marcinkiewicz interpolation theorem.    Q.E.D.

Since Theorem 3 is obvious for continuous functions, the estimate in Theorem

2(i) and a standard argument imply Theorem 3.

It is known that if y is a plane curve parametrized by arc length and the

curvature of y is increasing, then M is bounded on L2(R2). It is an interesting

problem to determine similar geometric conditions on y in higher dimensions

which would guarantee that M is bounded on L2(R").
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