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MEASURES WITH BOUNDED POWERS

ON LOCALLY COMPACT ABELIAN GROUPS
BY

G. V. WOOD

Abstract. If fi is a measure on a locally compact abelian group with its positive

and negative convolution powers bounded in norm by K <j(4 cos(w/9) + 1) —

1.58626, then p. has the form p. = \(cos 9SX + i sin 9SXU) where |\| = 1 and u2 = e.

Applications to isomorphism theorems are given. In particular, if G, and G2 are

l.c.a. groups and T is an isomorphism of L'(G,) onto Ll(G£ with ||r||

< 1(4 cos(w/9) + 1), then either G, and G2 are isomorphic, or they both have

subgroups of order 2 with isomorphic quotients.

1. Introduction. In this paper, we characterize all measures on a locally compact

abelian group that have the norms of their (positive and negative) convolution

powers bounded by a number K < 1(4cos(w/9) + 1)~ 1.58626. In fact, such

measures are supported on a coset of a subgroup of order 2 and have the form

(1) ft = X(cos 98x + i sin 06\J

where u2 = e and |X| = 1. These measures actually have the norms of their

convolution powers bounded by \/2. The result is the best possible in the sense

that there is a measure supported on a group of order 3 which has its powers

bounded in norm by |(4 cos(7r/9) + 1). For example

fx = I(l+2cosf)s,+I(l+2cos^)ou + I(l+2cosi^)^

where u3 = e.

This paper may be thought of as a continuation-and improvement-of [3].

Characterizing measures with powers bounded in norm by A" is equivalent to the

problem of characterizing homomorphisms between group algebras with norm less

than K. If /: /,(G,) -* /.(Gj) is a homomorphism with || T\\ < K, then for x G G„

Tx G l^G^ is a measure with powers norm-bounded by A". Conversely, if ft is a

measure on G with powers norm-bounded by K, then there is a homomorphism of

/,(Z) into /,(G) with norm less than K defined by

(QO \ OO

-oo / n = -oo
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Thus in [3], it is implicit that measures with powers norm-bounded by K < y/2

have the form (1) with 0 = 2tr/n for an odd number n. The methods used there did

not give a result even for A = \/2.

Here, we show that when K = \/2, then measures have the form (1) without

restriction on 0. We also show that no measures exist where the precise bound is

between ^2 and |(4 cos(w/9) + 1).

In [3], it was shown that there is an algebra isomorphism of /,(Z2 X Z^ onto

/,(Z4) with norm \/2. This occurs because the two groups concerned each have a

subgroup of order 2 and their quotients are isomorphic. In §3, we show that if / is

an algebra isomorphism of /,(G,) onto ^(Gj) with norm less than

\ (4 cos(V9) + 1),

then either G, and G2 are isomorphic, or they each have a subgroup of order 2 and

their quotients are isomorphic. In particular, if the groups have no elements of

order 2, then G, and G2 must be isomorphic. This last result is best possible, since

there is an isomorphism of /,(Z3 X Z3) onto /,(Z9) with norm precisely

i (4 cos(tt/9) + 1).

(See Example in §3.)

The general method is similar to that contained in [3], but the estimates here

have to be made much more carefully. Sometimes the estimates are incredibly

close-a pocket calculator is essential! It is perhaps surprising that the characteriza-

tion of measures with bounded powers in [5] and homomorphisms in [4] seem to be

no help in proving these quantitative results.

The first lemma gives the estimates which arise from an /,-sequence with norm K

and /2-norm equal to 1. No properties of groups are used, and these are the

estimates that provide the improvement to [3].

Lemma 1. // (a,) G /, with 2|a,| = K and S|a,|2 = 1, then if |a,| > |a2| > \a3\

(a)

(b)

(c)

|«2| > i(A - |a,|) + V{^(1 - l«,|2) - \(K ~ k|)2}

whenever the expression under the square root is positive i.e. when



measures with BOUNDED POWERS 189

(d)

1 1   // 3 - K2 \
W<3*-3V{—5-")-

In particular, if K <|(4 cos(w/9) + 1),

(e) |a,| > 0.69269,

(f) \a3\ < 0.36481.

Proof. The first part of (a) is simply the inequality

(max|a,|)l 2 |«,|) > 2 \<*if m 1

while (b) is

(max|«,.|)(i|«,.|)> 1|«,.|2.

For (c), we have

oo /   oo \22Na<(2N
i=3 \i-3 /

which is the same as

1 - |a,|2 - |«2|2 < (AT - |«,| - |«2|)2.

Rearranging this as a condition on |a2| gives (c). The second part of (a) is obtained

by putting |a2| < |a,| in inequality (c), and solving for |a,|.

For (d), consider the following two cases.

(l)If

1 _     2   // 3 - A"2 \

then by (c) we have

|«,| + |«2| > \(K + |«,|) + V(Kl - l«il2) - \(« ~ l«.D2}

which decreases as |a,| increases, since the derivative with respect to |a,| is

\ - i(3|«,| - K){\{\ - |«,|2) - \(K - kl)2}-172

which is negative since

. ^ 1 „     1   // 3 - A"2 \

by (a). Thus
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Now

\a3\ < A" - |a,l " N < j A - 1^/(1^ j.

(2) If

i«,i>j-!V(^).
then we have

.Vi{,-i^-|W(^)-|(^)}
-Vi{M^W(^)}-^-iV(^)-

Thus (d) is proved, and (e) and (f) follows from (a) and (d) by substitution. This

completes the lemma.

Note that |a,| + |a2| > min{l, 2/K). For, by Lemma 1(b) |a,| + |a2| > |a,| +

((1 — k|2)/(A — |a,|)) which is a convex function of |a,|. Hence, since 1/A" <

|a,| < 1, |a,| + |a2| > min{l, 2/K).

2. Measures with bounded powers. Let G be an abelian group. For most of this

section we will not be concerned with any topological property of the group. In

/,(G), the convolution of ft and v will be denoted by ft * v, and the adjoint of ft by

ft* i.e. if ft = 2xGG a(x)x, ft* = 2xGG a(x)x_1. The first lemma is essentially

Proposition 2.2 of [3].

Lemma 2. If p e /|(G) has norm-bounded convolution powers, then p* = ft-1. In

particular \\ p\\2 = 1.

We consider first the case where the identity e of the group has the largest

coefficient for all powers of ft. (Here we use the phrase 'the largest coefficient' to

mean a coefficient whose modulus is greater than or equal to the modulus of all

other coefficients. Thus uniqueness is not implied and we avoid repetitive use of

'modulus'.)

We obtain a result which is slightly better than is required for this paper, but

which is not best possible-see remark after Theorem 1.

Theorem 1. If p G /,(G) has its powers norm-bounded by 5/3, and if e has the

largest coefficient in ft2" for all n, then p = Xe with \X\ = 1.

Proof. Let ft2" = a„e + R„un + /„ where \a„\ > \R„\ > all coefficients in/„. Let

M = supj Rn\, and fix e > 0. Choose N such that \RN\ > M/(l + e). To simplify

notation, we will write a for a^, (3 for f3N, u for uN,f for fN. Then

ft2"" = ft2" ♦ ft2" = (ae + fiu+f)* (ae + pu + f)

= a2e + 2aRu + R2u2 + 2a/ + 2Ru * f + f * f.



MEASURES WITH BOUNDED POWERS 191

Now if / = 2 y(x)x, the coefficient of u in f *f is ~2X y(xu)y(x_1) and this has

modulus < 2|y(x!/)y(x_1)| < 2|y(x)|2 = ||/||| by the Cauchy-Schwarz inequality.

Hence the coefficient of u in ft2"*' has modulus > 2\aR\ — ||/||| = 2\aR\ —

(1 - |a|2 - \R\2) = (|a| + \R\)2 - 1, using the fact that || ft2"||2 = 1. By definition

of M, we have

(|a| + | R |)2- KM< |0|(1 + e),    i.e.    |«| < V(l/*l + e\R\ + 1) - \R\.

But, by Lemma 1(b), \R\ > ((1 - |a|2)/(A" - |a|)) which decreases as |a| increases

over the interval [1/A", A"]. (|a| > l/Kby Lemma 1(a).) Hence

l-[V(|/?| + e|/?l + l)-|/3|]2

m' A-[V(|/3| + e|/3| + l)-|yS|]

i.e.

K\R\-\R\^(\R\ + e\R\+ l) + \R\2

> 1 -[|0| + e\R\ + 1 + |/3|2 - 2\RW(\B\ + e\R\ + 1)]

or

2|y6|2 + (AT + 1 + e)\R\ - 3\RW(\R\ + e\R\ + 1) > 0.

Therefore | R\ = 0 or 2| R\ + (K + 1 + e) - 3^(\R\ + | R\e + 1) > 0. If e = 0,
this last condition becomes

(2|/}| + A+1)2>9(|/3| + 1)

or

|«.>V($-¥HM)
8        24 3

> 0.50974.

Thus, by continuity, there exists e > 0 for which the corresponding R must satisfy

either | B\ = 0 or | B\ > {-. In fact, since |a| < VCl/^l + £\ P\ + 0 ~ l/^l, we may

assume that if | R\ # 0, we have |a| < \/f — \ < 0.725. By Lemma 1(c)

m + i/5i > ̂ ^ + V[ io - i«i2) - \(« - i«d2'

which, as in the proof of Lemma 1, decreases as |a| increases. Therefore

\a\ + \p\> ^^ + V[io - (-725)2) - VK~ -725>2 •

This is a concave function of AT, since the second derivative is negative, and so has

its minimum value in 1 < K < f at A" = 1 or A" =|. But at K = 1, the value is

> 1.329 and at K = f, it is bigger than 1.32. Thus

\a\ + \P\> 1-32.

But this makes M > (\a\ + \R\)2 - 1 > 0.74 which is a contradiction (since |a„|2

+ \R„\2 < 1, and |a„| > \R„\ must mean \R„\ < \/y/2). This means that \R\ = 0,

and hence M = 0. The result is proved.
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This is clearly not the best possible result. The proof given here can be used for a

number slightly bigger than f. However, it is conceivable that the result is true

without any restriction on K.

Conjecture. If p E l^G) has norm-bounded powers and e has the largest coeffi-

cient for all powers of p, then p = Xe with \X\ = 1.

We now look at the case when e does not always have the largest coefficient. We

show first that the only other elements of the group that appear with the largest

coefficient in ft2", for some n, must have order 2. We need two lemmas.

Lemma 3. Let p* = p~l and p = ae + Ru + f with u2 =£ e and \a\ > \R\ > all

coefficients inf. Then

\a\ + \B\ <\(\\p\\ + l).

Proof. Now p* = ae + flu'x + f*. By Lemma 2,

k2+l0|2+||/||2=l.

Also |a| + | R\ + ll/H = || p\\ = K say. The coefficient of u in ft * ft* is zero. We

consider two cases.

(l)If w3 = e, let/= y""1 + g-

Then the coefficient of u in p * p* gives

\aR + ay+fa\ < ||g||2.

Hence \aR\ < (\a\ + \R\)\y\ + (||/||2 - |y|2)» which is an increasing function of |y|

forO < |y| < ||/||2. Hence \aR\ < (|a| + |/3|)||/||2.

(2) If m3 ¥= e let/ = y""1 + 8u2 + g.

Then the coefficient of u is ft * ft* gives

\afi + «y +P8\ < (ll/H2 - |Y|2)'/2(ll/l|2 - k2)'72.

Hence |ay6| < \a\ \y\ + \fi\ \8\ + (||/||2 - |y|2)1/2(II/I|2 ~ l5|2)'/2 which. for fixed

| Y|, is an increasing function of |8| for 0 < |5| < \y\. Hence, by symmetry

\aR\ < (|«| + | R\)0 + (Il/H2 - 02),   where 9 = nu«(|y|, |«|).

Now, as in (1), since 0 < ||/||2, |ceyS| < (|a| + |0|)||/||2. Thus, in either case, we

have|a/8| < (|a| + |f3|)||/||2. Now

\aR\ =i[(|«| + |f3|)2 - |«|2 - \R\2} -I[(|a| + \R\)2 - 1 + ||/||2].

Therefore

(|«| + |0|)2-l + ||/||2<2(|a| + |0|)||/||2

i.e.

(k + |/3|-||/||2)2< 1

or

l«l + l/3|< 1 + Il/H2< 1 + 11/11. < \+(K-\a\-\B\)
and the result follows.
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Lemma 4. If p* = p~\ \\ p\\ = A", ju = ae + Ru + f where \a\ > \R\> coefficients

off. Then \a\ + \R\ < (A" + l)/2 implies that

\a\ >\{K+ 1 + V(A"+ 1)(5-3A")}.

Proof. By Lemma 1(c), either

I   l ^ K  ■  2J(1~ K2\H>T + 3Vi-2—)

or

|/8|>KA--|«|) + v{i(l-|«l2)-i(^-|«l)2}.

In the latter case,

.      \a\ + \R\> I(JT+ |a|) + V{i(l - l«|2) -\(K ~ \a\)2}.

Since |a| + | R\ < \([K + 1), we have

i(l-|«|)> V{K1-I«|2)-K^-I«l)2}-

Simplifying, we obtain

i(* - |a|)2 > i(l " l«|2) "i(1 - l«l)2 -40 + 2|«| - 3|a|2)

or

i*2>i + 2-(A+l)k-|a|2

which becomes |a| > \{K + 1 + V(^ + 0(5 - 3 A")}. Thus, the result is proved if

we can show that

\k + f V(^-T^) >\{K+l + V(K+ 1)(5 - 3A-)}.

But this is equivalent to

= !+i2"*"li4~*2 + 24~(3~ *)V(* + 1)(5 " 3K)

i.e.

(7 -2K- K2) > (3 - A:)V(A~ + 1)(5 - 3A~)

or

(7 - 2AT - A"2)2 > (3 - A")2(A" + 1)(5 - 3A").

But this is equivalent to (A" - l)4 > 0 which is certainly true.

From now on we assume that A" < y(4 cos(7r/9) + 1).

Theorem 2. Let p = ae + Ru + f, p* = ft"1, where \a\ is the largest coefficient in

p and u has the largest coefficient in p2. If \\ p\\ < A" and || ft2|| < K, then \R\ is the

second largest coefficient in p and u2 = e.
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Proof. Suppose that | R | is not the second largest coefficient, and that p = ae +

Ru + yv + g where |y| is the second largest coefficient. We obtain a contradiction

by considering two cases:

Case l.\a\ < 0.83. By Lemma 1(c)

l«| + |y| > \{K + \a\) + V{l(l - l«|2) - i(* - k)2}

which, as in Lemma 1, decreases as \a\ increases. Therefore |a| + |y| > 1.32. But

the coefficient of v in ft2 has modulus

> 2|«y| - (1 - \a\2 - |y|2) = (|a| + |y|)2 - 1 > 0.74.

But this contradicts the fact that u has the largest coefficient in ft2.

Case 2. \a\ > 0.83. Now the coefficient of e in ft2 has modulus > |a|2 —

(1 — |a|2) = 2|a|2 — 1 > 0.37. By Lemma 1(f), this cannot be the third largest

coefficient in ft2, so it must be the second. Thus the coefficient of v in ft2 cannot be

the second largest, and so by Lemma 1(f) again has modulus < 0.36481 i.e.

2|«yI - (1 - k2 - |y|2) < 0.36481 or |a| + |y| < V1-365 < 1.169. Now Lemma

1(b) implies that

1 - k2

and so

1 + K\a\ -2\a\2 < 1.169(A~ - |a|)

which implies |a| > 0.9 and |y| < 0.269. Since \R\ < \y\, \ R\ < 0.269 and |a| -

|0| > 0.63. But the coefficient of u in ft2 has modulus less than 2|a0| + (1 — \a\2

- | R\2) = 1 - (|a| - 10|)2 < 0.61. This again contradicts the fact that u has the

largest coefficient in ft2. Thus we have proved that \R\ is the second largest

coefficient in ft.

Now suppose that u2 ¥= e. Then, by Lemma 3, |a| + |0| <|(AT + 1). Also by

Lemma 4,

k >\{K+ 1 + V(A"+ 1)(5-3A-)}

which decreases with K, and so |a| > 0.844. Hence the coefficient of e in ft2 has

modulus greater than 2|a|2 — 1 > 0.424. By Lemma 1(f), this must be the second

largest coefficient in ft2. Thus we can apply Lemma 4 to ft2 to obtain that the

coefficient of u in ft2 has modulus greater than

(i) ±(*+l)+iV(*+i)(5-3tf).

This modulus is less than 2\aR\ + ||/||2. But

2|«0| + ||/||^ = (|a| + |/3|)2 + 2||/||22-l

<(k + |0|)2 + 2(A--|a|-|0|)2-l

which is a concave function of |a| + | R\. Since 1 < |a| + | R\ < \(K + 1) (see note

after Lemma 1), we have

2|«0| + H/ll2 < max{(^-)2 + 2(^2Ll)2 - 1, 2(A" - l)2}.
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But

since |A"- \\2 <§*. Hence

(2) 2|«0| + ||/||2<|A'2-iA--i

From(l) and (2)

\(K+l)+^(K+l)(5-3K)<lK2-2-K-\

i.e.

1L(A-+l)(5-3A-)<(|A2-|A--i)2

or

5 + 2A" - 3A"2 < 9 A"4 - 18A"3 - 3A"2 + 12A" + 4.

This is equivalent to

9K4 - 18AT3 + 10A" - 1 > 0

or

(A" - 1)(9A"3 - 9 A"2 - 9A" + 1) > 0.

But this is a contradiction, since A" < j(4 cos(7r/9) + 1) which is a solution of

93 — 92 - 9 + ^ = 0. This contradiction proves Theorem 2.

Remark. This proof is an improvement on Lemma 2.4 of [3]. In fact part of the

proof there of the fact that u2 = e is incorrect, but can easily be rectified. In

estimating the coefficient of u~\ it should be

|ayS| <(|a| + I0DH/H + ||/||2

which implies that 10| < 0.1947. But this still contradicts 10| > 0.37.

It remains to show that it is always the same element of order 2 that appears. We

use the idea of Lemma 2.5 in [3], but the estimates have to be made very carefully.

In fact, in the general case, that method only shows that at most a finite number of

elements of order 2 appear. This turns out to be sufficient if we can characterize all

measures with bounded powers supported on the Klein 4-group. We shall do this

first.

Let G = {e, u,v, uv] with u2 = v2 = (uv)2 = e. Then the measures on G with

powers norm-bounded have the form

M = \)Xo + AlXl  + A2X2 + A3X3>

where Xo> Xi, X2 anc* X3 are the characters on G and |AJ = |A,| = |A2| = |A3| = 1. i.e.

M =l(K + XX + X2 + X3)e + \(Xo ~Xl + X2- X3)u

+ 5v\) + A, - X2 - X3)v + i(An - A, - X2 + X3)uv.

Now if A" = sup„|| ft"||, we have an explicit formula for K:

K = sup [\\XZ + A," + A2" + A3"| + \\XS - \," + A2" - X-|
n

+ i\XS + A," - A2" - A3"| + i|A0" - A," - A2" + A3"|}.
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However this is not a very useful formula. We will show that if

K < |(4 cos(tt/9) + 1).

then ft is supported on a subgroup of order 2. It is easy to check that p is supported

on a subgroup of order 2 if the \'s are either equal in pairs or add up to zero in

pairs. It seems likely that the best result here is that if ft is not supported on a

subgroup of order 2, then K > \ + sin(2w/5) + sin(277-/5)sin(7r/5) — 1.76, and this

value is attained when Xq = 1, A, = exp(27r//5), A2 = expi4m/5), X3 = exp(6iri/5),

but the weaker result is enough here.

It is clear that if two of the A,'s are equal then ft has two coefficients adding up to

zero. We show now that this only occurs ifA>l + 2-y'3~ 1.86. This value is

attained when, for example, Xq = A, = 1, A2 = exp(2m'/3), A3 = exp(4m'/3). The

significance of this example is that only one element of order 2 appears as the

largest coefficient in the powers of ft, but it is not supported on a group of order 2.

Lemma 5. If p = ae + Ru + yv — yuv, y ^ 0 and K= sup„|| p"\\, then

K > 1 + j-V3.

Proof. We have |a|2 + |0|2 + 2|y|2 = 1 by Lemma 2, and \a + 0| = 1 by

applying the identity character to ft. Also if ft2 = a,e + 0,« + yxv — ytuv, we

have Y, = 2y(a - 0). Now \a - R\2 = 2|«|2 + 2|0|2 - |« + 0|2 = 2(1 - 2|y|2) -

1 = 1- 4|yp. Suppose A" < 1 + 2-V3- Then 2|y| < K - \a\ - \R\ < K - 1 i.e.

4|y|2 < (A" - l)2 and so \a - R\2 > 1 - (AT - l)2. Therefore |y,| = 2\y(a - 0)| >

|Y|{2V(1 - (A" - l)2)}. If 2V(1 - (A" - l)2) = M, M > 1 since K < 1 + \y/3.

Hence if ft" + l = ane + Rnu + ynv — ynuv we have |y„| > A^"|yI which is a con-

tradiction. Hence y = 0. This completes the proof.

We need the following lemmas:

Lemma 6. If p = ae + fiu + yv + 8uv and ft"1 = ft*, then, if \a\ > 10| > |y| >

1*1.
(i)|«5| > |0y|;
(ii)|a0 + Y$|< V(l«/5|2 - |YS|2) < \aR\;
(iii)//k + |0| < A, then

H>w{![(f-<)2+'r-H

(v)

^ + ^|<V{2-(k + |0|)2}-

Further, if p2 = a,e + 0,w + Yi*> + <5,Ht;, then

(vi) |y,|2 + |o,|2 > 4(|y|2 + |8|2)(1 - 2|y|2 - 2|8|2).
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Proof. Without loss of generahty, we may assume that a is real. Then the

condition ft* = ft"1 gives

(1) a(R + 0) + y8+y8 = 0,

(2) a(y + y) + 88 + f!8 = 0,

(3) a(8 + 8) + 0y +0Y = 0.

If 5 = 0, then 0 + 0 = Y + Y = r3Y + /?Y==o> which imphes y = 0. Thus (i) and

(ii) hold trivially.

Put0= \p\e'*,y = |y|e*andfi- |6>"*.Then

|«0| cos $ + \y8\ cos(9 - <j>) = 0.

Hence

(|a0| - |y8|)cos \p + |y5|(cos t// + cos(0 - <j>)) = 0

or

(|a0| - |yfi|) cos «fV + 2|yfi| cos {-& - 9 + <f>)cos {-(4< + 9 - <f) = 0.

Similarly

(|a0| + |y8|)cos i// + 2|YS|sin |(uV - 9 + <>)sin {-(4, + 9 - <f>) = 0.

Combining these, we get, either cos u/ = 0 or

|ff| ! |%j = ̂ n fc* - * + *)tan J<* + # - </>)•
If cos ^ = 0, cos(0 — </>) = 0 and so u^ = ± 7r/2, 9 — </> = ± ir/2. Substituting in

(2) and (3) we get

klcos 9 ± I 08|sin <J> = 0   and   |aS|cos <f> ± | 0Y|sin 9 = 0.

Since cos 0 = ± sin <>, this gives

(|«y| ± 105|)sin $ = 0   and   (|«5| ± 10Y|)sin 9 = 0.

Therefore either |ory| = | 081 or \a8\ = \By\. But since \a\ > |0| > \y\ > \8\, both

these imply |a5| = | 0y|-

From (2) we obtain that either cos 9 = 0 or

ffil-l^l -tan K* - * + W™ 1(8 + <> - *)•
If cos 9 = 0, a similar argument to above shows that |a8| = |0y|.  From (3),

cos <j> = 0 or

K!jff| =tan K* - + * *>tan ^+* - *)•

Again if cos <?> = 0, we obtain \a8\ = | 0y|. In the other case, by multiplication,

(\a8\ + \y8\)(\ay\ + \88\)(\a8\ + \By\)

(\a8\-\y8\)(\ay\-\B8\)(\a8\-\By\)

= tan2-(uV - 9 + <p)t&n2^(9 - 1// 4- </>)tan2-(0 - <f> 4 ^) > 0.
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In particular | a81 > |0y|.

(ii)

|a0 + y8\2 = |a0|2 + a8y8+afjy8 + \y8\2 = |a0|2

+ |y8|2 4- 2|a0Y8|cos(^ - 9 - <$>).

But

1 - tan2 \U-0- <j>)
cos(>/< - 9 - <j>) =-——--

1 + tan2 {-(xjs - 9 - <t>)

and

tan2 iU _ a _ A) = (\«y\ + \B8\)(\a8\ + \Ry\)(\aB\-\y8\)

2 W 9>      (\ay\ - \R8\)(\a8\ - |0y|)(|«0| + \y8\) '

(If any of cos 9, cos xp or cos <f> is zero, |aS| = |0y|, and this quantity is oo.)

Therefore

eo^^ _ g _ ^ _ laWI(i/l«l» + i/l^l» - i/lrla - i/|a|») < a
|«|2+|0|2-|Y|2-|of

In order to show that |a0 4- y8\ < |a0|, we need that

But this is equivalent to

(Ivl2 4- I8I2)
|a|2 + |0|2 - |y|2 - k2 < -2|0|2 - 2|a|2 + 2|a202p|Y|       [ l)

i.e.

2|«|2 4- 2|0|2 - 1 < -2|0|2 - 2|a|2 4- 2|«202|MJ_M

or

4|«|2 + 4|0|2-l<^^(|y|2 + |8|2).
\ys\

But |y|2 + \8\2 > 2\y8\. Therefore

|y|24- |6f 4 _ 4
|Y8|2      > |y|2 + |5|2 ~ 1 -|a|2-|0|2'

Hence

1   P |yS|2 l-|«p-|/!p

Thus it suffices to show that

8|«0|2>(l-k2-|0|2)(4k2 + 4|0|2-l)

i.e.

4(|«|2 + |0|2)2 + 8|«0|2 - 5(|«|2 + |0|2) + 1 > 0
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i.e.

(4|a|2 -I- |0|2 - l)(|a|2 + 4|0|2 - 1) > |«0|2.

But since |a| and | 0| are the largest coefficients

4|a|2 + |0|2- 1 > |«|2    and    |«|2 + 4|0|2 - 1 > |0|2.

This completes the proof,

(iii) We have

(4) |«|24- |0|2 + |y|2+ |8|2= 1,

(5) |«5|>|0y|,

(6) \a\ 4- |0| 4- |y| 4- \8\ < K.

Eliminating |8| from (4) and (5) gives an upper bound for |y|2, namely

|q|2(l-k2-|0|2)

k2+|0|2

Eliminating \8\ from (4) and (6) gives a lower bound for |y|, namely

K-(\a\ + \P\) + ^j \-\a\2-\P\2 _ /A--(|«| + |0|)\2|

Combining these, we obtain the inequahty

(7) d«p+im[i+{R^OT-i)a]>*-

Putting \a\ 4- 10| = A and solving for |a|, we get

Since this is a decreasing function of A, the result follows,

(iv) is simply the inequality (7) above rewritten in terms of |a| 4- |0| and using

k2 + |0J2= l -|y|2- k2.
(v) |a0/|a| + S0/|0||2 =_|«|2 4- |0|2 + (l/|a0|)(a202 + a202). But |a0 4- a0|

< 2|y<5| by (1). Therefore |a0 4- a0|2 = 2|«0|2 + a202 4- a202 < 4\y8\2. Thus

- 2

j!\+ff\     <k2 + l/5|2 + ^|(4|Y«|2-2|«0|2)

= (k + l/3|)2 + T^(|YS|2-|«0|2)

= (l«l + l/5|)2 + J^jM ~ l«/3|) + 4(|Y«I -1«/3|)

<(k + |/3|)2-4(|«0|-|Y8|).

Now2|y8| < |y|2 + |S|2 = 1 - |a|2 - |012. Therefore

2|y8|-2|«0|< 1-(|«| + |0|)2
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i.e.

_ _      2

k" + IP!       <  (H  + l0l)2 + 2^   " (|a'  + '^  = 2 " ('a| + l)8|)2

as required.

(vi) y, = 2«y + 205 and 8, = 2aS 4- 20y. Therefore

|Yl|2 + I5J2 = 4|ay 4- 08|2 + 4|a8 -I- 0y|2

= 4{|ay|2 + |08|2 4- |«8|2 + |0y|2 4- ayPS' + ayPS + aSPy +a8py]

= 4{(|a|2 + |0|2)(|y|2 + |8|2) 4- («0 +S0)(y8"+y8)}

>4{(|«|2 + |0|2)(|y|2 + |S|2)-4|y8|2}    by(l).

But 2|y8| < |y|2 4- |S|2, and so

lY.I2 + kl2 > 4{(|y|2 4- |8|2)(|a|2 + | 0|2 - |y|2 - |8|2)}

= 4(|y|2+|8|2)(1-2|y|2-2|S|2)

as required.

Lemma 7. If p = ae 4- 0m + yv + 8uv, p* = p~\ \\ p\\ < K and u has the largest

coefficient in p2. Then if \a\ 4- | 0| < 1.355, |a| > 0.855.

Proof. Suppose that |a| + |0| < 1.355 and that a < 0.855. Then |«|2 + |0|2 <

(0.855)2 4- (0.5)2 < 0.98101. Hence |y|2 4- |S|2 > 0.0189. By Lemma 6(vi), if ft2 =

atu 4- Pte 4- Yif 4- S,mu,

|Y,|2 + |S,|2 > 4{(|y|2 4- |8|2)(1 - 2|Y|2 - 2\8\2)} > 0.0727.

By Lemma 6(iv) |a,| + |0,| < 1.240. By Lemma 6(iii) |a,| > 0.9. But a, is the

coefficient of u, i.e. a, = 2a0 4- 2y<5. By Lemma 6(h), |a,| = 2|a0 4- y8| < 2|a0|.

Now since \a\ + |0| < 1.355, by Lemma 6(iii) \a\ > 0.84 and so 2|a0| < 0.866.

This makes |a,| < 0.866 which is a contradiction.

Lemma 8. Let p = ae + 0« + yv + 8uv and p2 = a,u 4- 0,e + ytv + 8tuv,

where \a\ and |a,| are the largest coefficients in p and p2 respectively. If p* = p~ and

|| fi|| < K, \\p2\\ < A", then either \a\ + |0| > 1.355 or |a,| + |0,| > 1.355.

Proof. Suppose that |«| + | 0| < 1.355. By Lemma 7, |a| > 0.855 and 10| < 0.5.

Therefore

|a,| = 2|«0 4- y«| < 2|a0| < 0.855.

It follows from Lemma 7, that |a,| 4- 10,| > 1.355 provided we can show that u

has the largest coefficient in ft4. Suppose that, on the contrary, |a,| + | 0,| < 1.355

and that u does not have the largest coefficient in ft4. Now | 0,| > 2\a\2 — 1 > 0.46

and so is the second largest coefficient in ft2. Hence, by Lemma 1(c)

|«1|4-|01|>i(A-+|01|) + v{Kl-|/51|2)-K^-|i8.l)2} > 1-300.

Therefore if ft4 = a2e 4- 02w + y2v + 82uv, 02 = 2(a, 0, 4- y,6,) and so

|02| > 2|«,0,| - 2|Ykl > 2|«, 0,| - (|y,|2 4- |6-,|2)

= (kl + |/3.l)2-l>0.69.
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However, as in the proof of Lemma 7, applied to ft2 in place of ft, since

l«il + l£il < 1355 and |a,| < 0.855 we have |a2| + |02| < 1.24 and |a2| > 0.9.
Hence 102| < 0.34 which is a contradiction.

Theorem 3. If p G /,(Z2 X Z2) has powers norm bounded by

K <\(4cos(ir/9) 4- 1),

then p is supported on a subgroup of order 2.

Proof. We show first that only one element of order 2 can appear the largest

coefficient in ft±2". Suppose u and v both appear. By Lemma 10, there exist powers

of ft such that

ft" = a,e + 0,w + Yi« + 8xuv    and   ftm = a2e 4- 02t> + y2u + 82uv

where |a,| + |0,| > 1.355 and |«2| 4- |02| > 1.355. (Here, we only assume that a,

and 0, are the two largest coefficients.) As in [3, Lemma 2.5], we estimate || ftm+n||.

II Mm+1 = k«2 + /5,Y2 + &Yi + *i«2| + k& + «2Y, + PA + Y2*il

4-|«201 4- alY2 + Yl82 + Ml + \P1P2 + «i*2 + «2*i + Y1Y2I

> |«,«2|(, + Rehll±Ml±lA) + ^ + Re«2Y,+^2 + YA\
I "l«2 / \ «1/S2 /

,,       o ,/,    ,    x,     «lY2 + Yl*2 + feM+ a20,   1 + Re-^-
I <hP\ /

i.  I ft   ft l/l   j. n-al*2+ "251 + W2\

> (l«,l + l/3,l)(kl + l&l) + Re{Y,(^/32 + ̂ |U)}

+M^^l^+ilfi«1)} - ̂  - iww - 1**1 - i™i

>a«ii + iADa«j + iAD-iTii^+T^
la2l |/-»2l

|Y2' i«,i +JpJ -lSi]l^ + JpJ -^laT + JpJ

- (|Y.|  +  |*,|)(|Y2l  +  1*21)

which, by Lemma 6(v) is greater than

(kl + l&IXkl + \PS - (IyiI + l*il)v{2 - (l«2l + l&l)2}

- (IY2I + kl)V{2 - (|«,| + \Pr\f) ~ (foil + k|)(|Y2| + |82|)

> (1.355)2 - 2V{2 - (L355)2} • (A" - 1.355) - (AT - 1.355)2 > 1.59,
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which contradicts || ftm+"|| < K. Thus, without loss of generality, we may assume

that only u appears with the largest coefficient.

Let ft be the measure on Z2 obtained by taking the quotient by [e, u). i.e.

p = (a 4- P)e + (y 4- 8)v.

Since ft has bounded powers we must have ft = A(cos 9e + i sin 9v) for some 9 and

|A| = 1.
By Lemma 5, y + 8 ^ 0 and so 9 ^= 0 or it. Thus some power of ft has

coefficient of v with modulus > 0.866. Let ft" be the power and put

p" = ae + Pu + yv + 8uv.

Then, we have |y 4- <5| > 0.866 and so |or| + 10| < 0.72026. But one of these is the

largest coefficient in ft". By Lemma 1(c) the second largest > 0.6. This is neces-

sarily one of y or 8, but this would make v or uv have the largest coefficient in ft2".

This is a contradiction.

We now return to the general case. Similar estimates to those in Lemma 6 can be

obtained, but they are not good enough to give the result directly. We can manage

with much cruder estimates to obtain that only a finite number of elements of

order 2 occur with largest coefficients in the powers of ft. Let S = {u G G: u has

the largest coefficient in p±2" for some n). Then by our assumption on ft, e G S.

We will show that each nontrivial element in S has order 2. For u G S, let N be the

first positive integer such that u has the largest coefficient in ft2 . (If n occurs in a

negative power of ft, a similar argument works.) By induction, we can assume that

the largest coefficient in ft2 is that of e or some v G S with v2 = e. In the case

where e has the largest coefficient, we can apply Theorem 2 to ft and obtain

u2 = e. In the case where v has the largest coefficient, we can apply Theorem 2 to

try2" . Since u has the largest coefficient of ft2 = t>~2fi2 = (tr1^2" )2, we obtain

that u2 = e. In order to prove that S is finite we need the following lemma.

Lemma 9. If p = ae + pu + f and p2 = a,w + 0,e 4- g where \a\ and |a,| are the

largest coefficients in p and p2 respectively, and ft-1 = ft*, || ft|| < K, \\ p2\\ < K either

|a| + |0| >\(K + \)or |a,| + |0,| >j(A4- 1).

Proof. Suppose that |a| 4- |0| <^(A"+ 1). By Theorem 2, |0| is the second

largest coefficient and u2 = e. By Lemma 4,

k > \{K 4- 1 + V(* + 0(5 - 3A")}.

Hence 10| < {-(K 4- 1) - \a\ < \{K 4- 1 - V(* + 1)(5 - 3AT)}. Therefore

|a,| < 2|a0| + 1 - |a|2 - |0|2 = 1 - (|a| - |0|)2

< 1 -±(5-3K)(K + 1).

Now if |a,| + 10,| < (K + l)/2, we can apply Lemma 4 to ft2 once we know that

| 0,| is the second largest coefficient. But

|0,| > |a|2- (1 - \a\2) = 2\a\2 - 1

> l(K + 1)(6 - 2A) 4- \(K + 1)V(A" + 1)(5 -3K) - I

= \(K + 1) V(A" 4- 1)(5 - 3AT) - \(K - l)2 > 0.424,
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since K < }(4 cos(7r/9) + 1). By Lemma 1(f) 10,| is the second largest coefficient.

Thus, by Lemma 4

k| >\(K+l + V(A" + 1)(5 - 3A")).

From (1) and (2):

\(K + 1 4- V(A + 1)(5 - 3A)) < 1 - \(5 - 3K)(K 4- 1)

i.e.

V(A" + 1)(5 - 3A") < 4 - A" - 1 - (5 - 3A")(A" + 1)

= 3A"2 - 3A - 2.

Therefore (A" + 1)(5 - 3A") < (3A"2 - 3A" - 2)2 which reduces to

(A" - 1)(9A"3 - 9 A"2 - 9A" 4- 1) > 0.

But this is a contradiction since K < j(4 cos(w/9) + 1) which is a root of 903 -

992 - 99 4- 1 = 0. Thus either |a| + |0| > ^(A" 4- l)or|a,| + |0,| >\(K + 1).

Now, by continuity, and the fact that

(A" - 1)(9A"3 - 9A"2 - 9A" 4- 1) < 0

we have

Corollary   10.   There  exists e > 0 (depending only  on  K) such  that either

k + \P\ >\(K + l) + eor |a,| + |0,| >{-(K + 1) + e.

Lemma 11. S is finite.

Proof. Choose e > 0 as in Corollary 10. For u,vES, choose powers of ft such

that

pm = axe 4- 0,w 4- /   with |a,| 4- | 0,| > \(K + 1) 4- e,

ft" = a2e + P2v + g    with |a2| + | 02| > {-(K + 1) + e.

(Here, it is not assumed that |a,| > | 0,|-simply that |a,| and | 0,| are the two largest

coefficients.) Let pm = axe + 0,m + ytv + 8^v +/, and ft" = a2e + p2v + y2u

+ 82uv + g,. Now

||/ * g\\ < (K - |a,| - 10,|)(A- - |«2| - | 02|) <[\(K- l)]2.

Also

pm+" ~ f * g = («,e + Pxu)(a2e + p2v) + (a,e + 0,«) * / 4- (a2e + p2v) * g

= («i«2 + P^i + &Yi)e + (ai/52 + a2Yi + PA)V

+ (a20, + a,Y2 + PA)u + (0,02 + a28, + a A)™ + h

where support of h is disjoint from {e, u, v, uv}. Therefore

\\pm + n\\ > |a,a2 + 0lY2 4- 02y,| + |a,02 4- «2y, + 0,82|

4-|a20, 4- a,Y2 + 028,| + |0,02 + a28, + a,82| - \\f * g\\

> (l«,l + l/5,l)(|«2| + \Pz\) ~ (|«,| + l/3,|)(|Y2l + l*2|)

-(l«2l+l/?2l)(lY.I+l«.l)-|l/*g||-



204 G. V. WOOD

Since || pm+"\\ < K, we have

K>[\(K+1) + ef ~\(K 4- 1)[|y,| 4- |y2| + |8,| + |82|] - [{-(K - l)f.

Therefore

foil + foal + l*il + l*al > [K* + 1) + «f -[i(* - Of - *
= e(A" + 1) + e2 > £(A" + 1).

This amount depends only on K. For each u G S, choose a power ft ̂  of ft as

above, and set Su = {v G S: either v or mu has coefficient in ft^- with modulus

>^e(K 4- 1)}. Clearly there is a bound for the cardinality of Su e.g. 4A"/e(A" + 1),

and the above has shown that if u, v G S, then either u G Sv or u G 5U. It follows

that 5 is finite.

Remark. Because of Lemma 9, it would appear that Lemma 11 is tight at

K = j(4 cos(7r/9) 4- 1), but this is not so. In the proof, we have used the inequality

(AT-k-|0|)2> 1 - |a|2-|0|2.

Now equality here means that ft is supported on only three elements, which is

impossible if one of the elements is of order 2 and |a| J= \P\ (cf. Lemma 6).

We can now prove the main theorem for discrete groups.

Theorem 4. If p G /,(G) and has its powers norm-bounded by

K<\(4cos(tt/9) + 1),

then p has the form

p = A(cos 9x + i sin 9xu)

where u2 = e and \X\ = 1.

Proof. We may assume that e has the largest coefficient in p. Let S = {u G G:

u has the largest coefficient in ft2" for some «}. Then S is finite and consists of

elements of order 2. Let H be the group generated by S. Then H is the direct

product of cyclic groups of order 2. Let <#>: G -> G/H be the canonical map and <J>

the induced map of /,(G) -» ^(G/H). Let ft = <j>fi. We will show that t? = <j>ehas

the largest coefficient in jit2" for all n. Suppose not. Then there exists n and a coset

Hzi=H such that

ft2" = ^ a(x)x   with     2    «(*) tne largest coefficient.

Therefore

2    «(x) >    2   a(x) .
x&Hz xeH

But the element u with largest coefficient of ft2" is in H. Let

ft2" = axu + 0,u 4- /   with |a,| > | 0,| > coefficients off.

Then

2 l«(*)l > hi - 2 l«WI
x e Hz x e H
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i.e.

hl<  2 l«(*)l+ 2 |«(x)|<iift2"ii-|«,|.
Jte/fz x G H

x^u

Therefore I a, I <3l|ft2"|| <JA"<0.8.

By Lemma 1(c), | 0,| > 0.55 and |a,| 4- 10,| > 1.35. But the coefficient of uv in

ju.2"+' has modulus > (|«,| + 10,|)2 - 1 > (1.35)2 - 1 > 0.82. Thus it is the largest,

and so uv G H. Hence v G H and we have 2ZxeHz\a(x)\ < K — 1.35 < 0.23, which

contradicts the fact that \2x(EHz a(x)| is the largest coefficient in p2". Now jit

certainly has powers norm-bounded by K and so by Theorem \ p = Xe with

|A| = 1. We now 'pull back' the elements of H in turn. Choose u G S, and let Hx be

a subgroup of H of index 2 with u G //,. We will consider the image ft, of ft under

the canonical projection G -> G/Hv (We will abuse notation slightly and use u,v,

etc., for their images in G/H1.) Let ft, = ae 4- pu + f Then, since taking the

quotient by the subgroup {e, u} reduces ft, to a multiple of the identity, we have

|a + 0| = 1 and/ = (e — u) * 2 YtV, where there is at most one>>, in each coset of

{e, u). Then ||/|| = 22fo,| < K - \a\ - \p\ < K - \ and ||/||| - 22|y,|2
< i(22|Y,l)2 <{-(% - l)2. Let p2 = a,e + 0,w 4- g. Then g = 2(ae + Pu) *f +

/ * / Hence

||g|| > 2\\(ae 4- pu) ./|| - H/ll2

= 2||(oe + Pu) * (e - u) * 2 Y^ll - ll/||2

= 2|a - 0| H/ll - Il/H2.

But

|« - 0|2 = 2|«|2 4- 2|0|2 - \a 4- p\2 = 2(1 - Il/H2) - 1

= 1 - 2||/||2 > 1 - (A" - l)2 = 2A" - A"2.

Therefore ||g|| > M||/|| where M = 2\a - 0| - ||/|| > 2V(2A" - A"2) - (A" - 1)

> 1 since K <|. Repeating this, we obtain || ft2"|| > M"\\f\\. Since the norms are

bounded, ||/|| = 0.

Thus ft, = ae + Pu and since ftj"1 = ft* we have ft, = A(cos 9e + i sin 9u) for

some 9 and some |A| = 1. We now repeat the process. Choose t; G S n Hv and let

H2 be a subgroup of Hx of index 2 with v G H2. The image of ft on G/H2 will have

the form

ft2 = ae + Pu + yv + 8uv + g

where \a + y\ = cos 9, \ 0 + 8| = sin 9 and g = \(e — v) * g. If we now quotient

out either the element u or the element uv, we will obtain a measure of the correct

form by the same proof as above. In particular we must have g = \(e — u) * g and

g ={(e — uv) * g. But this means

g = |(e — u) * (e — v) * (e — uv) * g = 0.

Thus ftj is supported on a Klein 4-group, and by Theorem 3, it must be supported

on a subgroup of order 2. Repeating the argument for each element of 5, we obtain

the result. In fact it shows that S has at most two elements.
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We now prove the main result for locally compact abelian groups. We will return

to the usual notation of 8X for the point measure at the point x G G.

Theorem 5. Let G be a locally compact abelian group and p G M(G) have its

powers norm-bounded by K < j-(4 cos(tr/9) 4- 1). Then p has the form

ft = A(cos 98x 4- /' sin 98xu)

where u2 = e and |A| = 1.

Proof. Let P be the projection of M(G) onto /,(G). Since ft is invertible, Pp ^ 0

and since (Pp") = (Pp)" and ||F|| = 1, Pp E /,(G) and has powers norm-bounded

by A". By Theorem 4,

Pp = A(cos 98x + i sin 98xu)

with u2 = e and |A| = 1. If 9 = 0, we have p = X8X + ft, and || ft,|| < K - 1. Also

p2 = X28x2 + v where v = 2X8X * ft, 4- ft, * ft,. Hence \\v\\ > 2|| ft,|| - || ju,||2 >

(3 - A")||ft,||. Now by iterating, since 3 - K > 1, ||ft,|| = 0. If 9 ¥= 0, we can

quotient out the subgroup {e, u) and use the above to obtain that

ft = Pp + ft,   where ft, = \(8e — 8U) * ft,

(i.e. ft, must disappear under the quotient map). Now, as in Theorem 4, if

ft2 = /ft2 + ft,

M2 = 2(/ft) * ft, + ft, * ft,

= 2A(cos 98x 4- i sin 98^) * \(8e - 8U) * ft, 4- ft, * ft,

= Xe-i9(8e - 8U) * ft, 4- ft, * ft,.

Therefore || /y > 2\\ ft,|| - || ft,||2 > (3 - K)\\ ft,||. As before || fi,|| = 0. This com-

pletes the theorem.

3. Isomorphism theorems. We can now prove the isomorphism theorems. These

follow easily from the previous results in much the same manner as they do in [3].

We will only give the case of an isomorphism between group algebras, but clearly

we can use the same ideas to characterize those homomorphisms that preserve the

identities of the groups.

Theorem 6. Let G, and G2 be abelian groups and T an algebra isomorphism of

/,(G,) onto /,(G2) with \\T\\ <\(4 cos(tr/9) + 1). Then, either G, and G2 are

isomorphic or each has a subgroup of order 2, Hx and H2 respectively, such that

Gl/Hi and G2/H2 are isomorphic. In fact we always have \\ T\\ < y2.

(N.B. The form of these isomorphisms can be described explicitly. For ||/|| <

y2, this was given in [3]. The case || Z|| = V2 will be given in the next theorem.)

Proof. For each x G G,, Tx E l^G^ and has its powers norm-bounded by K.

Thus by Theorem 4, its powers are norm-bounded by y/2 and it has the form

Tx = A[cos 9t(x) + i sin 9t(x)u]

where |A| = 1, and t(x), u E G2, u2 = e.
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Since this is true for all x, || Z|| < ^J2. Now suppose that for each x G G,, Tx

has only one element of G2 in its support. Then

Tx = A(x)r(x)   for all x G G,.

Clearly A G G, and t is an isomorphism of G, onto G2. On the other hand, suppose

that for some x G G,, Tx has two elements of G2 in its support. Then

Tx = A(x)[cos 9t(x) + i sin 9t(x)u]

where |A(x)| = 1, u, t(x) E G2, u2 = e, and cos 9 =£ 0, sin 9 ¥= 0. If

Ty = A(.y)[cos <pt(y) + i sin <t>t(y)v]

with t(y), v E G2, v2 = e, cos <J> ^ 0, sin <J> i= 0, then clearly u = c, or else Zxy

would not have the correct form-its support would contain four elements of G2.

Let H2 = {e, u] and /: /,(G,) -» I^GJH^ be defined by / = // where / is the

canonical projection /,(G2) -* lx(G2/H^. Then / has the form

Tx = X(x)s(x)

with A G G, and s a homomorphism of G, onto G2/H2. Now since / is an

isomorphism onto /,(G2), there exists u G G, such that u belongs to the support of

Tv, i.e. Tv = A[cos 9e2 4- i sin 9u] with sin 9 ¥= 0. Hence

Zt>2 = A2[cos 20e2 + i sin 29u]

and so Ze,, Tv and Zt>2 are linearly dependent. It follows that e„ v and t>2 are

linearly dependent and so v2 = e,. Thus Tv = ± u, and it follows that the kernel

of s is {e,, t>} = Hx say. Now, by the isomorphism theorem for groups, G,///, is

isomorphic to G2/ H2, and the proof is complete.

The converse of this is also true. If G, and G2 are abelian groups with subgroups

Hx and H2 each of order 2, such that G,///, and G2/H2 are isomorphic, then there

exists an algebra isomorphism from /,(G,) onto l^G^ with norm < \/2. For, let A"

be the common quotient, s: G, -» A", r: G2 -» A" be the projections, and //, =

{e,, v}, H2 = {e2, u}. Choose </> G G, with </>(i>) = -1, and»// G G2 with \p(u) = -1.

Define

Zx =4(1 + ^(x)^^))^ +i(l - <p(x)^(y))yu

where s(x) = t(y), and extend Z to a map from /,(G,) onto l^G^ by linearity. (Z is

well defined, since \p(u) = -1.) It is easily checked that Z is an algebra isomor-

phism and that || Z|| < yj2. For the norm to equal \/2, there must exist x G G,

such that <b(x)ip(y) is arbitrarily close to ± ;'.

We now describe the form of all isomorphisms with norm <|(4 cos(7r/9) + 1).

Theorem 7. Let T be an algebra isomorphism from /,(G,) and l^G^ with

||Z||<i(4cos(w/9)+ 1).

(1)//||Z|| <i(l 4- ^3), then ||Z|| = 1 and T has the form

Tx = \j/(x)s(x)       (x G G,)

where \p E G, and s is an isomorphism of G, onto G2.
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(2) If{(\ 4- V3) < ||Z|| < V2, then ||Z|| = ^2 cos(ir/4n) for some odd number

n, and T has the form

Tx = <fV(x)U0 + <Kx))s(x) + i(l - <?(x))s(x)u}        (x G G,)

vv/iere </>, ;/> G G,, <f> nos order n, u G G2 is o/ ort/er 2, a/u/ s is an isomorphism of G,

onto G2.

(3) If V2 < ||Z|| <j(4cos(w/9) + 1), then \\T\\ = V2 and G, an</ G2 We
subgroups //, = {e,, t>} and H2 = {e2, u} respectively such that Gr/Hi — G2/H2 =

K.Ifs: G, —* K, t: G2 —» A are fne natural projections, then T has the form

Tx = A(x){i(l + Hx)4,(y))y + |(1 - ^(x)^))^}

(x G G,, s(x) = /(v)), w/iere A, <p E G, ant/ i^ G G2.

Proof. (1) and (2) are Theorem 2.6 of [3].

(3) By Theorem 6, we have ||Z|| = \/2, and that G,/{e„ v) is isomorphic to

G2/{e2, u}. Also Zx = A(x)s(x), where A G G, and j is the natural projection

G, -» A" = G,/{e,, u}. If j(x) = {^^m}, we can write

Zx = A(x){i(l + y(x,y))y+{(\ - y(x,y))yu]

which defines a function y on the set A = {(x, v) G G, X G2: j(x) = r(.y)}. (Here /

is the natural projection G2 -» A".) y clearly satisfies y(*. "V) = -y(jc» y), (x, y) G

>4. Since Tv = X(v)u, y(xv,y) = ~y(x,j>), (x,y) E A. Now A is a subgroup of

G, X G2, and since Z is an isomorphism, it is routine to show that y is a character

on A. By [2, 24.12], y admits an extension to a character on G, X G2, which may be

written in the form y(x, y) = <f(x)x(/(y) where <f> E G, and \p E G2. This gives the

required form.

Corollary 8. // G, and G2 are abelian, without elements of order 2, and if T:

/,(G,) -> /,(G2) w an algebra isomorphism with ||Z|| < |(4 cos(w/9) + 1) then G,

ana" G2 are isomorphic.

This is the best possible result as the following example shows.

Example. Consider the algebra isomorphism from /,(Z9) —> /,(Z3 X Z3) defined

by

l/\      „       2m\        1/,      „       8tt\ If,      ,        14tt-\    ,
Zx = -I 1 +2 cos-q-  t> 4- -II 4- 2 cos— \vu 4- -11 4- 2cos——\vu2

where x is a generator of Zg, and u, v are the generators of Z3 X Z3. Then as we

remarked earlier Zx has its powers norm bounded by 5 (4 cos(w/9) 4- 1). Thus

||Z||=i(4cos(W/9)4-l).

The results for topological groups follow in much the same way as they did in

[2]. For the measure algebras, we simply restrict attention to the discrete measures

and use Theorem 6. The continuity properties follow from results of Greenleaf in

[1]. For the L'-algebras, we again use results of Greenleaf in [1] to extend the

isomorphism to one between the measure algebras.
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Theorem 9. Let G, and G2 be locally compact abelian groups and T: Li(Gi) -»

L\G2)(M(Gl) -* M(G2)) be an algebra isomorphism with \\T\\ <±(4 cos(tt/9) + 1).

Then, either G, and G2 are isomorphic, or each has a subgroup of order 2 and their

quotients are isomorphic.

(The form of these isomorphisms is clear from Theorem 7.)

Theorem 10. Let G, and G2 be compact abelian groups and T: C(GX) -» C(G^

[L°°(G,)-» L°°(G2)] be an algebra isomorphism with \\T\\ <\(4 cos(tt/9) + \).

Then, either G, and G2 are isomorphic, or each has a subgroup of order 2 and their

quotients are isomorphic.

(Again the forms of these isomorphisms may be described explicitly.)

I would like to thank the referee for his careful reading of the manuscript, and

for his helpful comments and suggestions.
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