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GENERALIZED SKEW POLYNOMIAL RINGS1

BY

JOHN DAUNS

Abstract. For a totally ordered cancellative semigroup T, a skew field K, let

A"[r;<¡>] be a skew semigroup ring. If x E T, k e K, then kx = xk", where k — A■ ' is

an endomorphism of K depending on x. Ideals of A"[T;(|>] are investigated for

various semigroups or groups V.

Suppose that Y is a totally ordered cancellative semigroup Y < e — 1 whose

principal right ideals form a chain. For a skew field Tí, let 4>: Y -> End 7Í be a

semigroup homomorphism, where for each x G Y, x<p: K -* K, k -» 7c(x^)) — kx G K

is a monic ring endomorphism of Tí. Let 7Í [Y;<p] be the skew semigroup ring where

kx — xkx.

Various descriptions of biprincipal ( = both principal left and principal right)

ideals as well as ideals of K[Y;<p] are obtained.

Theorem. Under three additional assumptions on Y, any biprincipal ideal J < Tí[r;<¡>]

is uniquely of the form J = sK[Y;<p] = K[Y;<j>]s, where s G Y with sY = Ys and

s<p G Aut Tí.

Theorem. Let A be any totally ordered group and 6: A -» Aut Tí C End K a group

homomorphism. Define r={gGA|g^e=l}, R = K[Y;6]G S = K[A;6]. If I

< S is biprincipal, then I = yS = Sy uniquely for some y G R with y(e) = 1 and

yR = Ry.

Corollary. If in addition for any e ¥= y G Y, y6 G Aut Tí is NOT inner, then

K[A;6] is a simple ring.

Introduction. If 7Í is a skew field and \p is an endomorphism of Tí, then the ring

K[x;\p] of polynomials with right side coefficients in Tí is called the skew polynomial

ring, where kx = x(k\p) for k G K. This ring is the very special case of a skew

semigroup ring over the totally ordered infinite cyclic semigroup Y = {■ ■ ■ < x2 < x

< 1}. In view of the general interest and many applications of skew polynomial

rings—only a few of which may be found in [1, 2 and 16],—it seems surprising that

only a few attempts have been made to generalize this familiar class of rings by
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576 JOHN DAUNS

replacing the infinite cyclic semigroup by more general totally ordered cancellative

semigroups T. The appropriate generalization and object of study of this paper is a

skew semigroup ring /f [T;<i>] where each semigroup element x acts as an endomor-

phism x<p: K -> K,k -» k(x<p) of K, and where kx = x(k(x(p)), k G K.

The type of ring 7í[r;<í>] studied here is of possible interest from two other points

of view. First of all, skew group rings have only begun to be seriously studied

recently [18], and any kind of a complete theory like [19] for them is still lacking. A

skew semigroup ring is a very obvious generalization of this latter class of rings.

Secondly, ordinary semigroup or group rings K[Y] arise naturally in the study of

partially ordered rings as subrings of generalized power series rings [22, 5 and 4]. For

example, with some additional assumptions, every lattice ordered field F is a subfield

of a power series field over the reals, where the usual integer exponents are replaced

by elements of a lattice ordered abelian group. In this embedding F contains the

group subring of the power series field [4], Moreover, ordinary semigroup and group

rings over partially ordered groups and semigroups are not only studied for their

own sake [5, 20, 7 and 9], but are also used as examples and counterexamples [14, 6].

In addition, they are useful for constructing division rings [12, p. 197; 17, p. 1499; 8;

and 11].

An element y of a ring R is called invariant if yR = Ry. Here two sided ideals of

the latter kind are studied in skew semigroup rings (Propositions 2.4, 3.1 and

Theorem I). This leads to the construction of some simple rings (Theorem II and

3.6). As an immediate corollary, a complete description of the ideal structure of skew

polynomial rings K[x;6] C K[x, x~];6] is given (4.2). The present description here

in 4.2 differs from [15, p. 38] in that here it is shown that ideals of the above rings

arise from central elements of K[x;6], while in [15, p. 38] central elements are not

mentioned.

1. Basics.

1.1. Notation. For a skew field 7Í, the set of all nonzero ring endomorphisms of 7Í

form a multiplicative semigroup which here will be denoted by End 7Í. Every

element of End K is monic and identity preserving. Elements of End 7Í will act on

the right side of Tí, and End 7Í is right cancellative ( op = tp =» a = t).

Let Q be a cancellative multiplicative semigroup with identity e = 1 G S2. Let <p:

Í2 -> End 7Í be a semigroup homomorphism. It is a consequence of the right

cancellativity of S2 that <p preserves the identity, ef=lE End Tí. For any x, y Gil,

the maps x<p, y<¡>, (xy)<¡>, (x<p)(y<¡>): K^K are monic identity preserving ring

homomorphisms, where l(x<p) = 1, and (xy)<p = x(¡>(y<¡>). For any k, c G Tí, kx and

k~x are defined below, and the following hold:

kx = k(x<f>) = k**,       k((xy)<p) = (kx)y,       ke = ke* = k;

kx = l/kx,       k~x = (l/k)x = (k~xy = (kx)'\

(k - c)x = kx - cx,       (kc)x = kxcx.

The automorphisms of Tí form a group Aut Tí. If for some z G £2, z<¡> G Aut Tí is an

automorphism, and (z<p)~x G Aut 7Í is its inverse, then define kx/z to be kx/z =

k(z<pyx. In general, \/z G fi and (z<t>)~x G fl<í>; also kx/z ¥= k~z.
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The support of any function a: fi -» K is the set supp a = {x G iï\a(x) ¥=0}.

The set of all such functions a, ß: fi -* K with finite supports, | supp a \ < oo and

|suppß|< oo, under pointwise addition form an abelian group. It becomes an

associative ring called the skew semigroup ring 7i[fi;<J>] with the product aß: fi -» K

whose value at z G fi is

(aß)(z) = 2 {a(x)yß(y) \ (x, y) G fi X fi, xy = z} G K;

a(x),a(x)v,ß(y)GK.

Alternatively and more frequently, elements a and ß of 7í[fi;<í>] are viewed as finite

right 7i-linear combinations of elements of fi, in which case for any z G fi and

kGK,kz = zkz, and hence a = 2 jca(x), ß = 2 yß(y), aß = 2 xya(x)vß(y). With

this interpretation it becomes clear that fi C 7i[fi;<f>] is a multiplicative subsemi-

group, and that 1 = e G fi is the identity element of this ring. The product ax:

fi -» 7Í of the two ring elements a and x should not be confused with the x-coeffi-

cient a(x) G K of a. It will always be clear from the context which of these two is

used.

If every element x G fi acts as the identity x<¡> = 1 on Tí then <f> = 1 and

K[Q;<t>] — 7i[fi; 1] = 7i[fi] is the ordinary semigroup ring. When every semigroup

element acts as an automorphism of K then the image of <p is in Aut Tí. In this case <¡>

will be replaced with 6, where 6: fi -» Aut K. The same two symbols <j> and 6 will be

used with the above meanings while the semigroup fi will be replaced with various

more specialized semigroups or groups.

In any ring R, the notation J < R means that J is an ideal. An ideal J < R is

called biprincipal ifJ is of the form/ = aR = Rß for some a, ß G R.

Three subsemigroups of fi are defined below in 1.2 and 1.3 which will be useful in

skew semigroup rings.

1.2. Subsemigroups. The center of any semigroup fi will be denoted by 2(fi) =

center fi, and abbreviated as 2 = 2(fi) if ß is fixed or understood.

If <i>: fi -> End Tí is as above, then all the elements of any subsemigroup of fi or of

all of fi which induce inner automorphism of 7Í form a subsemigroup fiINN. Thus an

element z G fi belongs to z G fi,NN if and only if there exists a 0 ¥^ d G K* = 7Í \{0}

such that kz = d~xkd, or kzd'x = zd~xk for all k G K.

1.3. Invariant elements. For any cancellative semigroup such as fi, define the

subsemigroup fiIV Ç fi of the so-called invariant elements by fiIV = {s G fi | sfi =

us). For any ring R define R* = F {0} and 5IV = {y G R \ y is not a zero divisor,

and y5 = Ry). If R is a domain, then R* will be viewed as a multiplicative

semigroup and thus 5IV = 5*v.

1.4. Totally ordered semigroups. A linearly or totally ordered set Y which is also a

semigroup is a totally ordered semigroup if for any x < y, z G Y, also zx < zy and

xz < yz. Throughout Y will automatically denote a totally ordered cancellative

multiplicative semigroup with identity e = 1 G Y (a < b, c G Y => ca < cb, and

ac < be). A totally ordered group is a totally ordered semigroup which algebraically is

a group. Throughout the symbol A will denote a totally ordered group. For any

subsets A, B Ç Y the notation ,4 *£ 5 will mean that a < b for every a G A and
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b G B. If T is right Ore, then its right Ore quotient group IT"1 = {abx = a/b \ a, b

G Y) is a totally ordered group, where a/b < c/d if as < ct for any s, t G Y such

that bs = dt (see [3, p. 52, Theorem 2-1], also [13, p. 168, Corollary 5], and [12,

p. 161, Corollary 5]). Left Ore and r_lE are defined similarly. When Y is both left

and right Ore, then IT"' = i"T both algebraically and as totally ordered groups.

For a skew field Tí and a right Ore semigroup f, and for 6: Y -» Aut 7Í as in 1.1,

there is a unique extension of 6 to a group homomorphism 6: IT"' -» Aut Tí which

is also denoted by 6.

Thus the symbol "Ti[i;<#>]" from now on means that i is a totally ordered

cancellative semigroup with 1 = e G Y, that Tí is a skew field, and that <p: Y -» End 7Í.

If, in addition, Y is right Ore and <¡> = 6, then K[Y;6] G K[YY'X;6]. It is a

consequence of the total order on Y that all three of these rings are domains.

1.5. Subfields. For (p: fi -> End 7Í or <p: Y -> End 7Í, define K^ G K to be the skew

subfield of K which is left elementwise fixed by fi, K^ = {k G K\ kz = k for all

z G fi}. Let Cj, Ç center Tí be the subfield C<t, = K^ n center Tí of the center of 7Í

which is left pointwise fixed by every element of fi<i> Ç End 7Í.

1.6. Suppose that the totally ordered cancellative semigroup Y also satisfies (a)

Y ̂ e= l.Then

(i) the principal right ideals of Y form a chain if and only if, for any x < y G Y, it

follows that x GyY.

Now, in addition to (a) assume that (b) both the principal right and principal left

ideals of Y are chains. For any subset of IT"1 such as Y, define r_l = {l/x \ x G Y)

G YY'X. Set 2 = center T. Then T"', 2"', ifNN, and 2|"¿N are subsemigroups of

IT"1 and

(ii) it-' = r u r-\ rnr' = {<?},
(iii) center Tr"1 = 2 U 2"',

(iv) riNN satisfies hypotheses (a) and (b), and (rr_1)INN = riNNrfjJN = YXNN U

YX~^N; in particular

(v)(rr-')INN n center rr-' = 2INN U 2r¿N.

(vi) An arbitrary totally ordered group A is of the form A = rr-1 where the

subsemigroup T={;tGA|;csSe=l} satisfies (a) and (b) above.

(vii) For any x G Y, xY = Yx = {y G Y \y < x}; every one sided ideal of Y is two

sided and also a convex interval.

For a proof of the previous as well as the remarks below see [11, 2.5-2.7].

1.7. Remarks. 1. In the presence of (a), the hypothesis (b) above is equivalent to

the following apparently weaker hypothesis (b'):

(b') the principal left ideals of Y form a chain and Y is right Ore. (See [11, 2.5(h)].)

2. Conclusions (ii) and (iv) above can be equivalently reformulated as follows. For

any totally ordered cancellative semigroup with an identity the following are

equivalent:

(i) T satisfies 1.6(a) and (b).

(ii) There exists a totally ordered group A such that Y = {g G A\vg^ e = 1}.

In the next definition Y need not be commutative. It may be a group. For some

applications of the next definition, see [8, 1.1, p. 288].
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1.8. Definition. For any domain R, and for any totally ordered cancellative

semigroup F, a valuation is a homomorphism of multiplicative semigroups v:

R* = R\{0} -* Y satisfying the following for all a, ß G R*:

(i) v(aß) = va(vß), and

(ii) v(a 4 ß) < maximum(t>a, vß) = max(ua, vß).

Properties (i) and (ii) imply (iii):

(iii) vß < va = v(a 4 ß) = va.

1.9. For R = K[Y;<¡>] as in 1.1, define a valuation v and another semigroup

homomorphism deg by v, deg: R* — Y, v(a) = va = maximum supp a =

max supp a, and deg a = minimum supp a = min supp a for a G R*. In the same

way v and deg are defined for 7v[rr"';0] if Y is right Ore.

The next simple observation will later be frequently used automatically without

explicit mention.

1.10. IfTi[r;(f>]isasin 1.4 and 0 i- a G K[Y;<¡>], then

(i) a G K* «■ deg a — va — e.

(ii) If T *£ e = 1, then a G K* « deg a = e.

(iii) If e *£ T, then a G K* « va = e.

1.11. Remarks. 1. For a symbol Oí T, form Y U {0} and define 0 = Ox = xO < x

for all x G Y. Then Y U {0} is a totally ordered semigroup, and v extends to a

homomorphism v: R -» Y U {0} of multiplicative semigroups by £>0 = 0.

2. Suppose that Tí is a totally ordered division ring, and that for every x G Y, x<p is

an order preserving endomorphism of K, i.e. if Ti+ = {/c | 0 < k G Tí}, then K+ (x<p)

G K+. Then the ring R — K[Y;<p] becomes a totally ordered ring (0 «s a, 0 < ß G

R => 0 < a 4 ß and 0 < aß G R ), where an element a G R* is defined to be positive

0 < a if and only if 0 < a(va). In this case both v and v are order preserving

homomorphisms of totally ordered semigroups v: R+ = {r\0 *£ r G R) -^TU {0}

and v: R+ * - T.

3. The degree map deg satisfies 1.8(i)-(iii) with all inequalities reversed and with

"max." replaced by "min.".

4. Although historically the degree map would be called a valuation, it seems more

natural to define a valuation as in 1.8 for the following two reasons, (i) If Tí is totally

ordered, then in 2 above deg: R+ * -» Y is an order reversing semigroup map. (ii) Let

r U {oo} be the semigroup defined by x < oox = xoo = oo for all x G Y. Set

degO = oo. Then not only is deg: 5+->ru{oo} order reversing, but moreover

r U {oo} f¿ R = K[Y;<p]. However, for v, Y U {0} C K[Y;<p].

2. Invariant elements. Since invariant elements of a ring generate principal ideals,

the first step in the study of the ideal structure of a skew semigroup ring will be to

look at invariant elements of the ring and the semigroup.

2.1. Lemma. For <f>: fi -» End Tí as above, and for any domain R, let fiINN, fiIV and

7?IV be the multiplicative semigroups defined previously. Let x, y G fi and s, y G R* =

5\{0}.

(i) If any two ofs, y,sy belong to Rxv, then so does the third.

(ii) 7/awy- two of x, y, xy belong to fiINN (or fiIV) then so also does the third.
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Proof, (i) If s, sy G Rxv, then cancellation of s in syR = Rsy = sRy gives

yR = Ry. Similarly when y, sy G Rxv, then Rsy = syR = sRy, and again Rs = sR

after the y is cancelled. The rest is clear.

2.2. For R = 7i[fi;<|>] as in 1.1 with fi a cancellative semigroup and riv, 5IV as in

1.3 the following hold for any s G fi.

(i) sR = Rs => sQ = fii and s<p G Aut K.

(ii) If s<¡> G Aut Tí, then sR = Rs « jfi = fij.

(iii) Hence 5IV n fi = fiIV n {x G fi | x<p G Aut Tí}.

Proof. In general, for any y G R, supp jy = s(supp y), supp ys = (supp y)s, and

hence | supp sy \ — | supp ys\ = \ supp y | . Also, sR n Y — sY and Rs O Y = Ys. (i)

For any c G K, se = ks G Rs for some k G R. It follows from {i} = supp ks =

(supp k)s that supp k — {e} and k G K. Thus c = &(s<|>), and s<p is onto. The rest is

clear.

In the next lemma below it is not assumed that r < e = 1. Among other things it

shows that in a skew semigroup ring K[Y;ip]lv and riNN are not completely

independent of one another.

2.3. Lemma. For K[Y;<p] as in 1.4, assume that yK[Y;<p] = K[Y;$]y for some

0 =£ y = 2zy(z) G K[Y;<p] withy, e G supp y. Then for any element k G K*

(i)k> = y(y)y(eyxky(e)y(y)-x.

(ii) Ify(e) G centerK, then ky = yk.

Proof, (i) By hypothesis, ky = yc for some 0 ¥= c G K[Y;<p]. Since vk = deg k =

e, it follows that deg(ky) = deg y = deg y(deg c), and hence that deg c = e; simi-

larly v(ky) — vy = vy(vc), and vc = e. Thus also c G Tí*. It now follows from

ky = yc that for any z G supp y

kzy(z) = y(z)c,

c = y(y)~ kyy(y) = ■■■ = y{z)~ kzy{z) = ■ ■ ■ = y(e)']ky(e),

ky = y(y)y(e)~ ky(e)y(y)~ .

(ii) Evaluation of ky — yc at e proves (ii).

2.4. Proposition. For R = K[Y;<p] as in 1.4 with Y < e = 1, suppose that 0 ¥= J o

R is a biprincipal (I A) ideal. Then there is an a G R* such that

(i)J = aR = Ra.

(ii) For any z G supp a, z<p G Aut 7Í.

(iii) If s = va and m = deg a, then s, m G Yxv and s, m G 5IV.

(iv) If J = äR for some ä G R, then a = ak for some k G K.

Proof, (i) If J = aR = Rß < R for a, ß G R, then a = aß G Rß and ß - ab G

aR for some a, b G K*. Thus a = aab. Since deg a = deg a(deg a) deg b it follows

from r < e that deg a — deg b = e. Thus a, b G K*. Consequently J = Rß = Raß

= Ra. So J = aR = Ra.

(ii) It will be shown that for any c G Tí*, there is a k G K* such that k(z<p) = c.

Set d = a(z)']ca(z). Then ad = ka  for some k G R.  Since deg(K*) = {e},  it
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follows that deg a = (deg k)(deg a), degk = e, and hence that also k G K. Thus

za(z)d = kza(z) = zkza(z), or

kz = a(z) da(z)    = c.

(iii) For any y GY,ay — 8a for some 8 G R. Then

v(ay) = sy = (v8)s G Ys,       deg(a^) = my = (deg8)m G Ym.

Hence s Y G Ys and mY G Ym. By symmetry of hypotheses, sY — Ys and mY = Tm.

Now 2.2(iii) together with 2.4(i) show that also s, m G T?IV.

(iv) If üR = aR is any principal right ideal, then a = äc, ä = ak, and ä — Eck for

some c, k G R*. Thus deg ä = deg a(deg c)deg k G Y < e implies that deg c =

degk = 1, andA: G Tí*.

2.5. Corollary 1. With R = K[Y;<p] as in 1.4 assume in addition that

(a) T =£ e = 1, and that (b) Y is commutative.

Suppose that ßR = Rß for some ß G R with 0 ¥= ß(e) G K. Set y = ßß(e)~x =

2zy(z) and let z G supp y be arbitrary. Then

(i) yR = Ry, y G center R.

(ii) For any k G K, kz = y(z)ky(z)~], y(z) G Kr

Proof, (i) Since ßß(e)~xR = ßR and since Rßß(e)~x = ßRß(e)-] = ßR, also

yR = Ry. For any x G Y, xy = y8 for some 8 G R. It follows from the commutativ-

ity of T and from xdeg y = deg y(deg 8) and x — v(xy) = vy(v8) — v8 that deg 8

= v8 — x, and hence that 8 = xc for some c G K. Evaluation of xy = yxc at e gives

x — xy(e) = y(e)xc = xc, or c = 1. Next, for any k G Tí*, ky = yp with p G 5*.

But then deg y = (deg y) deg p and hypothesis (a) imply that p G K*. Thus k —

ky(e) = y(e)p = p. Hence y G center R.

(ii) It follows as a very special case of [11, 2.2] that any central element satisfies

these conditions.

2.6. Corollary 2. If in the last proposition J = aR = Rß <¡ R = K[Y;<¡>] for any

a, ß G R* whatever, thenJ = aR = Ra,J = Rß = ßR, and ß = ak for some k G K*.

2.7. Remark. If in the last proposition y ¥= z G supp a, than it follows from the

proof of 2.3 and 2.4(h) that (z<p)~x(y<p) is an inner automorphism of K. Thus in the

quotient group of Aut 7Í modulo the inner automorphisms, the set supp a is

contained in a single coset.

3. Ideals. The end objective of this section is to determine completely an arbitrary

biprincipal ideal in a class of skew semigroup and group rings as well as to construct

some simple rings. In order to avoid assuming restrictive assumptions on Y which

are actually never used in the proofs, and whose only purpose is to guarantee that

the skew semigroup ring is both a prid and a plid, most of the results in this section

are formulated for biprincipal ideals.

It follows from the symmetry of the conclusions that the next proposition holds

verbatum if instead of (b) it is assumed that the principal left ideals of Y form a

chain.
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3.1. Proposition. For the skew semigroup ring R = K[Y;<p] as in 1.4 with the

additional assumptions that (a) Y < e = 1, and that (b) the principal right ideals of Y

are linearly ordered, suppose that J < R is a nonzero biprincipal ideal, i.e. 0 ¥= J = aR

= Rß for some a, ß G R*. Then J is of the form

(i)J = syR = Rsy; s G Y,y G R; for any z G supp y, s<p, z<p G Aut K; y(e) = 1.

(ii) sY = Ys, sR = Rs, yR = Ry.

(iii) (deg y)l = T(degy), (degy)R = (deg y)R.

(iv) If J — syR with s GY, y G R, and y(e) = 1, then s = s and 8 = y. (The

analogue also holds on the right side if J — Rsy.)

Proof, (i) By 2.4(i), J = aR = Ra. Set s = va. For x G supp a < s by (b) and

1.6(i), x = sz with z G r. Thus a — sy where y = 2 zy(z) G R, y(z) = a(sz) G Tí,

with ü(y) = e, and 0 =£ y(e) = a(s) G Tí*. Thus syR = Rsy. Since syy(e)~xR =

syR, and since Rsyy(e)~x = syRy(e)~x = syR, it follows that J = syy(e)~xR =

Rsyy(e)~x. Hence without loss of generality—by replacing y with yy(e)"'—it may

be assumed that y(e) = 1.

(ii) By 2.4(iii), j = më 5IV n FIV. Since sy G Rxv and s G R1V, 2.1(i) shows

that also y G 5IV. (iii) But then also deg y G T\IV fl riv by 2.4(iii). (iv) Lastly

sy = syk for some k G K* by 2.4(iv). Then s = v(sy) = v(syk) = s, y = yk, and

k = 1 because 1 = y(e) = y(e)k = k.

By using a different method of proof the next theorem is able to slightly extend

[11, 3.5].

3.2. Theorem I. For a totally ordered cancellative semigroup Y with (a) Y < e = 1

whose (b) principal right ideals form a chain, as before let <p: Y -> End K for a skew

field K, and let K[Y;<p] be the resulting skew semigroup ring. As previously C^ G K is

the subfield of the center of K which is left elementwise fixed by Y. Suppose that

J < Tí [Y; <p] is a biprincipal ideal, i.e. a principal right and also a principal left ideal. If

Y has the property (N.I.)

(N.I.) for any e ¥= y G Y, yep is NOT inner, then

(i)J = 57í[T;<í>] = K[Y;<p]s for some unique s G Y; furthermore sY = Ys, and s<p is

an automorphism of K.

(ii) centerK[Y;<p] = Cr

Proof, (i) Set R = K[Y;<p}. By 3.1, J = syR = Rsy where y G R, s G Y, with

y5 = 5y, and sY = Ys. Let y = min supp y < e. By Lemma 2.3, for all k G Tí*,

ky = y(y)y(e)~xky(e)y(y)~x. By hypothesis (N.I.), y — e, minsuppy = uy, and

y = y(e) G K*. But then J = sR = Rs. The rest of (i) follows from 3.1.

(ii) If 0 ¥= a G centerTv, set y = deg a G Y. For any k G K, it follows from

ka = ak that

kya(y) = ykya(y) =ya(y)k     and    ky = a(y)ka(y)   .

The property (N.I.) requires that/ = e and hence that a G Tí. But Tí^ Pi centerR =

C,. Thus center R = CA.
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3.3. Theorem II. Suppose that Y is a totally ordered cancellative semigroup and 6:

Y -» Aut K is a semigroup homomorphism. As before, Ce G K is the subfield of the

center of K left elementwise fixed by Y. Assume that

(a)T<e= 1.

(b) The principal right and principal left ideals of Y form chains.

Form the skew semigroup rings R = K[Y;6] G S = K[YY~X;6] as in 1.4. Then any

biprincipal ideal 0 ¥= I < S is of the form

(i) i = ys = Sy, y G R, yR = Ry, y(e) = 1.

(ii) If I — yS for y G R with y(e) = 1, then y = y. (The same holds for I = Sy.)

(iii) 7/r is commutative then y G center R G center S in (i).

Finally, if in addition to the hypotheses (a) and (b), also

(N.I.) for any e =£ y G Y,y6 is not inner, then

(iv) S is a simple ring, and

(v) centers = centerR — Q.

Proof, (i) Let I = £S = St¡ for some |, r¡ G S*. It is known [11, 3.3(i)] that any

elements such as £, tj G S* can be written uniquely in the form £ = aax, r\ = ybß,

where a, ß G R* with «(e) = ß(e) = 1, a, b G K*; and x, y G YYX = Y U T"1.

Hence I = aS = Sß. Set / = 7 D 5 < 5. Since a(e) = 1, aS n R = «5. Thus

J = aR = Rß. By 3.1(i) (with s = e), J is of the form J = yR = Ry, where y G R*,

yR = Ry, and y(e) — 1. (The argument used in the proof of 3.1 actually showed

that y = a.) It is a consequence of 7 = aS = a7?S that I = JS = SJ, and hence that

7 = yS = Sy.
(ii) If yS = yS is any right ideal of 5 where y, y G R with y(e) = y(e) = 1, then

y5 = yS D 5 = yR. By 3.1(iv), y = y.

(iii) Although the proof of (i) that J = yS = Sy required the hypothesis (b) once

given an element y G R as in (i), merely hypothesis (a) and the commutativity of Y

are sufficient to guarantee conclusion (iii) by 2.5(i).

(iv) Any 0 ¥= I < 5 is of the form 7 = yS = Sy with y G R and y(e) - 1 by 3.3(i).

Use of the hypothesis (N.I.) and 2.3 shows that supp y = {e}. Hence y = y(e) = 1.

(v) By [11, 3.7(h)] hypotheses (a) and (b) alone are already sufficient to prove that

center 5 = center 5 = Ce.

It will be shown in 3.4 and 3.5 below how the simple ring S given by the previous

theorem can be embedded in a division ring.

3.4. Construction. Suppose that 7Í is a skew field, A a totally ordered group, and 6:

A -» Aut Tí a group homomorphism. Let 7i((A;0)) denote the abelian group of all

functions a, ß: A -* K whose supports satisfy the ascending chain condition (A.C.C.).

The product aß of a and ß is defined exactly as in 1.1. Then it is known and is not

difficult to show that K((A;6)) is a division ring. (See [6, p. 366, Lemma 1.5; 7, p.

27, 1.2(a) and (b), or 9, p. 974, 2.16].)

Conclusion (ii) below is proved in [11, 3.7(h)].

3.5. Corollary 1 to Theorem II. With the notation and under the hypotheses (a)

and (b) of the previous theorem, the rings R G S can be embedded in the division

K((YY-X;6)):
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(i) R G S G K((YY-X;6)).
If (a), (b), and(N.Y) hold, then

(ii) center R = centerS = center K((YY~X; 6)) = Ce.

Although in view of 1.6(vi) the next corollary is of course logically equivalent to

the next theorem, nevertheless it is useful because in practice one rarely starts with Y

satisfying the lengthy hypotheses of the last theorem, while skew group rings occur

naturally. That is, a ring of the below form Ti[A;0] can be concisely defined and

thus seems to be more familiar.

3.6. Corollary 2 to Theorem II. Starting from any totally ordered group A, a

skew field K, and any group homomorphism 6: A -» Aut K, now define Y as the

semigroup Y = {g G A | g < e = 1} and then form the rings R = K[Y;6] G S =

K[A;6]. Then Y satisfies the hypotheses 3.3(a) and (b), and hence R G S satisfy all the

conclusions of Theorem II. In particular, if y6 is NOT an inner automorphism of K for

any e ¥= y G Y, then K[A;6] is a simple ring.

4. Applications and examples. Below is a reformulation of a result which appears

in [15, p. 38]. One difference is that unlike the situation in [15], below y and a are

central elements; thus the connection between ideals and central elements is brought

out. Also uniqueness is added. For a detailed concrete description of the central

elements y and a below see [11, 3.1-3.2]. This corollary illustrates how all the

technical hypotheses of the last two theorems simply disappear because they are

automatically satisfied.

4.1. For an automorphism 6: K -» 7Í of a skew field K, let Ce G K be the subfield

Q = {c G center Tí | c6 = c}, and let Y — {1 > x > x2 > • • •} be the infinite cyclic

semigroup. Any element x" G Y induces an automorphism of K -> Tí by k -» k6".

Although strictly speaking 6 should map Y -» Aut Tí, it is a convention of long

standing to denote the skew semigroup rings for Y G YY'X in this case by K[x;6] C

K[x, x~x;6] respectively. For any polynomials y or a of K[x;6], y(0) and a(0) G K

denote their constant terms.

4.2. Corollary to Theorems I and II. For the skew polynomial rings R =

K[x;6] C K[x, x-x;6] = SifO¥=J<iRandO^I<iS are any ideals, then

(i)J = xkyR = Rxky; k = 0,1,2,...; y G center R.

(ii) If J — x"'yR where y G R with y(0) = 1, and if y(0) = 1, then m = k and

y = y. (The same holds on the right.)

(iii) I = aS — Sa, a G center R G center S.

(iv) If I = äS, where a G S with ä(0) = 1, and if a(0) = 1, then a = a. (The same

holds ifä is on the right.)

(N.I.) If for any 1 < n,6" is not inner, then

(v)J = xkR = Rxk for some unique k — 0,1,2.

(vi) S is simple.

(vii) center R = center S = Q.

The next example shows that there exist semigroups satisfying the hypotheses of

3.1 but not those of 3.3.
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4.3. Example. Let Q denote the rationals with the usual natural order. Then

Q X Q becomes a totally ordered group under the following operations:

(n, i)(m, j) = (n 4 m,2im +/)>       n, i, m, j G Q;

(n, i) < (m, j)   if either n > m, or n = m and i >j.

Let Z = 0, ±1, ±2,..., Z+ = 0,1,2,..., and Y G Q X Q be the nonconvex sub-

semigroup T = {(«, ¿) | 1 < n G Z+ , i G Z} U {0} X Z+ . If (n, i) < (m, j) G Y,

then (n, i) = (m, j)(n — m, i — 2j(n — m)) G (m, j)Y. Thus r < e — (0,0) and

the principal right ideals of Y form a chain. Since T(1,0) n T(l, 1) = 0, the

principal left ideals of Y are not linearly ordered.

The next counterexample shows that y G 7í[r;<í>], x G Y, and yx = ôy with

2 < | supp 8 | is possible.

4.4. Counterexample. Let Y be as in the previous example, x = (l,0), and

t = (0,1). Then in the ordinary semigroup ring 7i[T] over any field 7Í, (/ — l)x =

(xt 4 x)(t - 1).

The method of constructing a simple ring in the next example can be generalized.

4.5. Example. Let Q G Q(o, t) = K be a transcendental extension field of the

rationals Q of transcendence degree two obtained by adjoining two transcendental

independent indeterminates o and t. For Z+ = {0,1,2,...} C Z = {0, ±1, ±2,...}

as before, let Z X Z be the commutative totally ordered group (/', j)(m, n) = (i 4

m, j + n), (i, j) < (m, n) if either i > m, or i — m butj > n. Let Y be the convex

subsemigroup r = {g G Z X Z | g < e = (0,0)} = Z+ X Z+ . In order to define a

group homomorphism 6: Z X Z -* Aut Tí, it suffices to define 6 on the generators

(1,0) and (0,1) of the free abelian group Z X Z:

a[(l,O)0] =a4 1, t[(1,O)0] =t,

a[(0,1)0] =a, t[(O,1)0] =t4 1.

The right Ore quotient group rr-1 of Y is rr-1 — Z X Z.lf R G S are the resulting

rings R = K[Z+ X Z+ ;6] G S = 7Í[Z X Z;0], then S is simple by Theorem II,

while every biprincipal ideal of R is uniquely of the form (i, j)R — R(i, j) for some

(/', j)GZ+ XZ+ by Theorem I.

Set x = (1,0) and y = (0, 1). The subring T= K[Z+ X{O};0] C R has the

structure of a skew polynomial ring T= K[x;x6]. Since (x6)y6 = y6(x6) com-

mute, the automorphism y6: K -» K extends to a ring automorphism y6: T -» T by

defining (x"k)y6 = x"ky. Thus R may be regarded as a skew polynomial ring

R — T[y;y6] in the indeterminate y with coefficients in T. This was possible only

because Y6 was abelian. Although this easy example could have been handled by the

already familiar skew polynomial rings, nevertheless the more general skew semi-

group ring description developed here seems less cumbersome.
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