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ABSTRACT. We study the problem 
k 

(*) Tmxm= ~AnVmnXm' O*xmEHm,m=I, ... ,k, 
n=1 

where Tm and Vmn are selfadjoint linear operators on separable Hilbert spaces Hm, 
with Tm positive, r;; I compact and Vmn bounded. We assume "left definiteness" 
which involves positivity of certain linear combinations of cofactors in the determi-
nant with (m, n)th entry (xm, Vmnxm). . 

We establish a spectral theory for (.) that is in some way simpler and more 
complete than those hitherto available for this case. In particular, we make use of 
operators Bn = A;;-IAO' where the An are determinantal operators on ®!=I Hm. This 
complements an established approach to the alternative "right definite" problem 
(where Ao is positive) via the operators fn = AOIAn. 

1. Introduction. In this section we shall discuss how the left and right definiteness 
conditions arose, and what methods and results are currently available for the left 
definite case. Then in 1.3 we shall summarise our approach here. Throughout, we 
shall be considering the system (*) of the abstract. 

1.1 Definiteness conditions. Early work on (*) was motivated by separation of 
variables in certain classical boundary value problems. The resulting ordinary 
differential equations in most cases do satisfy the conditions we impose on the 
operators Tm and Vmn , the Hm being L2 spaces. The bulk of the literature (which also 
covers finite dimensional equations, including difference approximations) involves 
sign definiteness of the determinant 80(x) whose (m, n)th entry is (xm' Vmnxm ). 

Atkinson [1] has treated such problems systematically, and his work, together with 
various recent extensions, now provides an analogue of much of the basic spectral 
theory for a single equation 

Tx = AVX, x =1= 0, 
with (x, Vx) sign definite. Such problems are nowadays called "right definite". 

Actually, various right definiteness conditions have been used, and two which are 
relevant to our discussion are the strong 80 condition 

(1.1) 80{x) ;;;''Ylix1 1i 2 ···lixk I1 2 

for some 'Y > 0, and the condition that 6. 0 be "strongly positive" (6. 0 » 0) i.e. 
(1.2) 6. 0 - pI;;;. 0 on H 
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for some fJ > O. Here H is the Hilbert tensor product ®!=I Hm, I is the correspond-
ing identity operator, and a o is formally defined by ® det{Vmn]-we shall construct 
such operators explicitly in §2. If 

(1.3) x® = XI ® ... ®Xk 

then (x®, aox®) = 8o(x), so (1.2) implies (1.1) with y = fJ. There is a partial 
converse-(1.2) with fJ > 0 implies (1.1) for some y > 0 [2]. 

Some cases of separation of variables (e.g. of the wave equation into elliptic 
coordinates) yield systems (*) for which certain linear combinations of cofactors of 
8o( x), rather than 8o( x) itself, are sign definite. Motivated by such examples, 
Kallstrom and Sleeman [10] introduced a "left definiteness" condition for systems of 
differential equations, equivalent to the following: 

k 
(1.4) ~ an8omn{x)IIXn II 2 ;;;;. 28I1xI I1 2 .. '1IxkI12, m = I, ... ,k, 

n=1 

where 8 > 0, the an are real and 80mn(x) is the (m, n) cofactor of 8o(x). Kallstrom 
and Sleeman subsequently developed an approach to the abstract formulation (*), 
the definiteness condition involving (operator) cofactors aOmn of ao-cf. (1.2). 
Again [2] shows that this is equivalent to (1.4), which is the definiteness condition we 
shall employ below. The use of the word "left" will become clear in 1.2. 

Several other definiteness conditions have been proposed, and we shall briefly 
comment on some of them. Browne [7] uses (1.2) but with fJ = 0 and some 
additional conditions-the relation between this and (1.1) with y = 0 is not known 
at present. Atkinson [1, p. 107] uses a condition involving an operator a formally 
given by 

ao a l ak 

(1.5) 
-TI VII Vlk a= ® 

-Tk Vkl Vkk 

-we shall call this "a-definiteness". Atkinson's treatment of the finite dimensional 
case [1, Chapters 6, 7] has been partially extended to bounded Tm by Kallstrom and 
Sleeman [12] and to unbounded Tm by Sleeman [14]. a-definiteness includes both left 
and right definiteness (a l , ... ,ak being the same as in (1.4)) and in the bounded case 
can be reduced to a real determinant condition [2]. Whether this fact remains true 
for Sleeman's problem is not known. More general conditions, guaranteeing rather 
less spectral theory, have been studied by various authors-cf. Turyn [15]. 

1.2 Tensor product methods. The approach of Kallstrom and Sleeman [10] to the 
left definite problem is via separation of variables in reverse: they eliminate all but 
one of the parameters An' deriving a p.d.e. from the o.d.e. system (*). Abstractly, this 
involves operators on the tensor product H, and this is the setting that we shall 
adopt. 

Let us label the cofactor (operator) of an in (1.5) by tl n , n = 0, ... ,k. Then it turns 
out that the elimination of all except An from (*) yields 

(1.6) 
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in the notation (1.3), under certain conditions. Such conditions have been investi-
gated in their own right, and for example it is enough if ~o » 0 (1.2). Indeed, in the 
right definite case with bounded Tm, Browne [5] replaces ( *) by the system 

(1.7) f ® -, ® f - A -IA 
nX - I\nX, n - Uo Un' n = I, ... ,k. 

In the left definite case (1.3), it turns out that our conditions on the Tm force 
k 

~ = ~ {Xn~n 
n=1 

to be strongly positive (1.2) i.e. ~ » o. Then (1.6) may be replaced by 

(1.8) ~x® = (nt (XnAn) ~ox® , 
at least if ~ is bounded. The motivation for the terms right and left definite can now 
be seen from (1.6) and (1.8). 

It can be shown that the fn (1.7) commute in the bounded right definite case, and 
are selfadjoint in a renormed (but homeomorphic) version of H. In this way, Browne 
[5] gives a spectral theory on the basis of Prugovecki's theory of commuting 
selfadjoint operators [13, §IV.2]. The system 

(1.9) n = 1, .. . ,k, 

similarly forms the basis of the analysis of [12] for the bounded ~-definite case. The 
results are similar to Browne's, although the renorming now involves the Tm , making 
completion necessary even in the left definite case if the Tm are unbounded [10]. 

Right definite systems of o.d.e. have been analysed via different limiting devices 
by Faierman [9] and Browne [4]. Kallstrom and Sleeman [10] analyse a left definite 
system of o.d.e. via the p.d.e. (1.8) and an auxiliary right definite system of k - 1 
o.d.e. These authors all use ingenious, but sometimes rather lengthy, arguments to 
derive real discrete spectra with no finite accumulation, and complete orthonormal 
eigenvectors in H. Attempts have been made to extend the abstract theories for right 
and ~-definiteness to unbounded (including differential) operators by Browne [6] 
and Sleeman [14], respectively. At present, however, these appear to involve techni-
cal difficulties (I thank Professors Browne and Sleeman for personal communica-
tions about their articles). 

1.3 Summary. Our aim is to present an analysis of (*) that is in some ways more 
direct and more general than currently available, but is within the basic framework 
described in 1.2. We shall derive a spectral theory, including completeness of the 
eigenvectors. Most of the analysis will be in H (not renormed) and we shall not need 
to reconsider the individual equations of (*) (as in [6 and 14]) in order to obtain 
discreteness of the spectrum. 

The basic construction of the determinantal operators we need is carried out in §2. 
In §3 we introduce a transformation enabling (*) to be written as 

n = 1, ... ,k, 

where each ~n »O-in (1.8) only one such equation was deduced. We also show 
how to construct compact operators Bn = ~;;-I~O. In §4 we carry out a limiting 
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procedure to extend a result of [11) to unbounded d n, and we deduce that the Bn 
commute. 

The Bn are not selfadjoint (unless we renorm H for each n) but they are similar to 
compact selfadjoint (noncommuting) operators B~. In §5 we use this fact to show 
that the Bn have identical finite dimensional eigenspaces generating a set S of 
common eigenvectors which is fundamental in certain subspaces KI of H (KI = H if 
do is 1-1). In §6 we show that S corresponds to the eigenvectors of (*), and we 
deduce the existence of a real discrete spectrum for (*) with no finite accumulation 
points. Introduction of the k inner products [ , )1 given by 

[x,yL= [x,dIY), 1= 1, ... ,k, 

permits us to construct complete orthonormal bases for the k corresponding orthog-
onal complements of Ker do out of the eigenvectors for (*). 

2. Operators on tensor products. Let 'Tml ..;; 'Tm2 ..;; ... be the eigenvalues of Tm, 
repeated according to multiplicity, and let tml , tm2 , ... be corresponding eigenvectors 
forming a complete orthonormal basis of Hm' m = 1, ... ,k. We consider H as the 
Hilbert tensor product ®~=I Hn' so 

form a complete orthonormal basis of H as j ranges over positive integer k-vectors. 
In particular, we shall employ the notation 

(2.1) x = ~j~jtj 
for an arbitrary element x E H. 

We "induce" Vmn into H by first defining, in the notation (l.3), 

V,,!nx® = XI ® ... ®xm- I ® Vmnxm ® xm+ 1 ® ... ®Xk' XI E HI' 
and then extending V";n to H by linearity and continuity. Similarly, we define 

T,,;tj = 'Tmj}j 

with extension by linearity over a suitable domain. Specifically, in the notation (2.1), 

"D( T,,;) = {x: ~j'T~jJ ~j 12 < 00 }, 

T,,;x = ~j'TmjJij' X E "D(T";). 

An equivalent construction is given by Prugovecki [13, pp. 303-304), and it is readily 
verified that V";n and T,,; are selfadjoint, the T,,; being strongly positive (1.2) and 
hence boundedly invertible. 

Next we consider the determinant d(",) with (m, n)th entry given by 

d On("') = "'n' d mo("') = -T,,;, d mn(",) = V";n' 0..;; m, n";; k, 
where", = (wo, ... ,wk) E Rk+I. In the notation (1.5), d = d(ao, ... ,ak). Observe 
that operators from different rows of d( "') commute, so d( "') is defined unambigu-
ously, on 

k 
"D = n "D( T,,;) 

m=I 
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which is easily shown to be dense in H. The cofactors of wn = flOn( "') in fl( "') then 
define operators fln on "D: explicitly 

k k 
flew) = ~ anfln, fln = ~ T,,;fl omn , n = I, ... ,k, 

n=O m=! 
where flOmn is the cofactor of V";n in the expansion of flo = det[V";n]' Note that the 
commutativity mentioned above forces each fln to be symmetric. 

Actually flo can and will be defined on all of H, as a bounded selfadjoint 
operator. Similarly we define bounded selfadjoint operators flOmn on H by means of 
the above cofactors, I ..;; m, n ..;; k. Observe that 

k k k 
(2.2) ~ = ~ anfln = ~ T,,; ~ anflOmn ' 

n=! m=! n=! 

Our left definiteness assumption (104) guarantees 

( x® , n~! anflomnx® ) ;;;. 2~ II x® 11 2 , m = l, ... ,k, 

-see (l.3)-and a result of the author [2] extends this to all of H. Thus the 
following lemma and the (strong) positivity of the Tm allow us to conclude that ~ is 
strongly positive on "D. 

LEMMA 2.l. If AI are selfadjoint on HI' 1 = 1,2, with A2 bounded, (y, A 2y) ;;;. 
a 2 11 yll2\fy E H2 and (x, Atx) ;;;. a11lx112\fx E "D(Af), then (x, AtA~x) ;;;. a1a2 11x 112 
\fx E 6j)(Af). 

PROOF. Apply [2] to the determinantal operator 

® I~ ~21=A~ 
to give (x, A~x) ;;;. a211x 112. Then 

(x,AtA~x) = ((Af/2X,At(A~)1/2X) 
;;;. a l ll(A1)I/2xIl2;;;. a1a2 1ix1l 2 • Q.E.D. 

3. Transfonnation of the eigenvalues. Continuity considerations show that (104) 
holds for perturbations of a E Rk and ~ > O. More precisely, there exist linearly 
independent vectors am = (ar, ... ,ak), m = 1, ... ,k, such that 

k 
(3.1) ~ a;:'~oln(x)lIxII12;;;. ~IIXII12 .• ·lIxk Il 2, 1".;; I, m";; k. 

n=! 

We now introduce the eigenvalue transformation given by 

k 

A:" = ~ a;:'An 
n=l 
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and we define Onl and 0 by 

k 

An = ~ OnIA~, 0= det[ 0nl] 
/=\ 

- we order the A:" so that 0 > O. Evidently (* ) becomes 

k k 
Tmxm = ~ A~ ~ 0nFmnxm, O=l=xmEHm,m= I, ... ,k, 

1=\ n=\ 

so the transformed cofactors, constructed as in §2, obey 

k 

~Olm = 0 ~ a:~Oln' 
n=\ 

k 

~o = O~o, ~~ = ~ T";~omn' I~l,m,n~k. 
m=\ 

It follows from (3.1) and [2] that each ~Olm» 0 on H and so from Lemma 2.1 that 
each ~~ »0 on 6]), n = 1, ... ,k. From now on, we shall drop the primes, and we 
summarise our conclusions so far. 

THEOREM 3.1. After a possible nonsingular linear transformation of the eigenvalues, 
we may assume that 

(3.2) ~omn;;;'8IonH, I~m,n~k, 

and that each ~ n is strongly positive on 6]), n = 1, ... , k. 

So far, we have defined the ~n only on 6]), n = 1, ... ,k, but we shall now choose a 
strongly positive selfadjoint extension ~n. That this is possible follows from Theo-
rem 3.1 and [8, Theorem XII.S.2]. In fact Theorem 5.1 and [16, Theorem (4.6)] show 
that ~n is unique, so ~n = ~~. 

LEMMA 3.2. ~i6])) and ~1!2(6])) are dense in H. 

PROOF. If, for all x E 6]),0 = (y, ~nx) then y E 6])(~~) and ~~y = 0 since 6]) is 
dense in H. From the above remark, ~ny = 0 and ~n is strongly positive, so ~;;-l is 
bounded, whence y = O. 

It follows that ~n(6])) is dense in H and therefore ~1!26]) is dense in €R,(~1!2). But 
~;;-1/2 is bounded, so €R,(~;;-1/2) = H. Q.E.D. 

Since ~n is strongly positive, ~;;-l is bounded, and in fact more is true. 

THEOREM 3.3. ~;;-l is compact. 

PROOF. Consider the operator 

k 

E= ~ T,,;, 6])(E) = 6]). 
m=l 
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It is easily verified that E is selfadjoint with eigenvectors tj and corresponding 
eigenvalues 

(3.3) 
k 

7'j = ~ 7'mjm' 
m=! 

In particular, E has compact inverse and so E- I / 2 is compact. 
From (3.2) and Lemma 2.1, 

k 

An - 8E = ~ T,,!( AOmn - 81) ;;;. 0 
m=1 

on 6j). Now let x E 6j) andy = 'J.I,(2X. Then 

IIEI/2'J.;;-1/2y II 2 

lIyll2 

It follows that EI/2'J.;;-1/2 is bounded on 'J.I,(2(6j), and hence has a bounded 
extension B to all of H by Lemma 3.2. 

Thus 

is compact, and hence so is 'J.;;-I. Q.E.D. 
We are now in a position to construct the compact operators we shall use for our 

subsequent analysis. 

COROLLARY 3.4. Bn = 'J.;;-IAO is compact, and B~ = 'J.;;-1/2Ao'J.;;-1/2 is compact and 
selfadjoint, on H for n = I, ... ,k. 

4. Limiting procedures. We shall find it convenient at various points to employ a 
limiting procedure which is related to, but different from, that used by Browne [6] 
and Sleeman [14]. We define bounded selfadjoint operators T: and A~ on H by 

T:tj = Tm/ j if I ";;;'jm .,;;;, N, 

T:tj = 7'mNtj ifjm;;;' N, 

and 
k 

A~ = ~ T':A omn • 
m=1 

Note that symmetry of A~ follows as for that of An' It is evident that T':;;;' 7'mII, so 
if we set 7'1 = ~~=I Tml-cf. (3.3)-and use Lemma 2.1 and (3.2) then we have 

n = I, ... ,k. 

It follows that T': and A~ are invertible with 

(4.1) II(T:r l ll .,;;;, 7',;;-/, II(A~rlll .,;;;, (87'1)-1 

and we set 

(4.2) N_ (AN)-IA Bn - I.l n I.lo· 
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LEMMA 4.1. (T':)-I -+ (T,,!)-I and B:,' -+ Bn as N -+ 00 strongly on H. 

PROOF. Let x E 6j)(T,,D, so T':x -+ T"tx. Thus if y = T"tx, then 

II(T,:r 1y - (T"tr1yll = II(T,:r l(T"t - T':)xll -+ 0, 

by (4.1). The first claim then follows because T"t is onto. 
Likewise, if u E 6j) and v = dnu then 

lI(d~rlv - d;lvll = lI(d~rl(dn - Ll~)ull -+ O. 

It follows from Lemma 3.2 that such v are dense in H. Since (d~)-I is uniformly 
bounded in N (4.1), (d~)-I -+ a;I, strongly on H. The required result is now 
immediate. Q.E.D. 

We are now ready for the first application of these ideas to (*). 

THEOREM 4.2. The operators Bn are pairwise commutative. 

PROOF. We first consider the system of equations 

(4.3) 
k 

T':zo = I Vmnzn, 
n=1 

m = 1, ... ,k. 

It follows from [11, Theorem 2) and the fact that (d1f)-1 is bounded that (4.3) is 
soluble for zo,'" ,Zt-I' z/+ I"" ,zk in terms of zt.Further [11, equation (3.2») gives 

(4.4) d"",zt = d1fzm, 0,.;;;; I, m ,.;;;; k, 

where we have written d"6 = do for convenience. 
In particular, then, 

Zo = (~rldOZt = (d"",r1doZm = (d"",r 1do(d1fr 1d"",Zt· 

Setting Zt = B::z, we then find 

BrB:: = B::Br, 1 ,.;;;; I, m";;;; k. 
Now (4.1) shows that the B:,' are uniformly bounded in N, so Lemma 4.1 yields 

BtBm = BmBt' 
as required. Q.E.D. 

5. Analysis of eigenvectors. We shall now analyse the compact operators Bm and 
B;" introduced in Corollary 3.4. Let Pmj, j = 1,2, ... , be the distinct nonzero 
eigenvalues of B;" with corresponding eigenspaces F:"j. Now if f' E F:"j and 1= 
a- I/ 2/, then m , 

(5.1) 

Conversely, if (5.1) holds then! E 6j)(am) so I' = a1t/! E F:"j. It follows that Bm has 
the same nonzero eigenValues Pmj with corresponding finite dimensional eigenspaces 
Fmj = a;.I/2F:"p isomorphic to F:"j" 

It will be convenient for us to have the notation K for Ker do and to write 

(5.2) Km = a;.I(K-L) 

so x E Km iff x E 6j)(am ) and doY = 0 ~ (y, amx) = o. 
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LEMMA 5.1. The Fm},j = 1,2, ... , lorm alundamental set in Km. 

PROOF. First, if (5.1) holds then I E GD(!m) and 

doY = 0 "*(y, !m/} = P;j(y, do!) = P;j(doY,!) = O. 

Thus IE Km so indeed Fm} C Km· 
Now let z E Km and x = !ll,2z. Suppose e E Ker B;", so 

!;;;1/2e E K. 

483 

But x E !;;;1/2(K.1.) so (x, e) = 0 and x E (Ker B;").1.. Thus x belongs to the 
closure of the span of the F;"), j = 1,2, ... , i.e. the F;"} are fundamental in 
!;;;1/2(K.1.). The result follows directly. Q.E.D. 

We are now ready to generalise some work of Atkinson [1, §3.6] to our infinite 
dimensional situation as follows. 

THEOREM 5.2. Let los;;; los;;; k. Then the Bn, n = 1, ... ,k,possess alundamental set 01 
common eigenvectors in K/. 

PROOF. From Theorem 4.2 we have 
(5.3) Ios;;;m, n os;;;k. 

If dim FIj = 1 for eachj then we choose nonzero II} E FI} and conclude that the II} 
form a common set of eigenvectors for the Bn by (5.3). Fundamentality then follows 
from Lemma 5.1. 

If BI has multiple eigenvalues, then we proceed as follows. Let B2} be the 
restriction of B2 to its invariant (5.3) subspace FI }, j = 1,2, .... Observe that if 
B2}1= 0 then IE FIj n K so BI/= O. Thus 1= 0 and so B2} is nonsingular. By 
virtue of the correspondence between eigenvectors of B2 and B2, we see that FI} is 
spanned by eigenvectors of B2 with nonzero corresponding eigenvalues. Conse-
quently we may construct subspaces 

of eigenvectors common to B I and B2 for each positive integer 2-vector j. From 
Lemma 5.1, the Fj(2) are fundamental in KI and K2. 

Note that (5.3) shows that Fj(2) is invariant for each Bn' n = 1, ... ,k. Thus we can 
repeat the process, restricting B3 to Fj(2) and generating invariant subspaces 

Fj(3) = FIJI n F2h n F313 , j = (jl' j2' j3)' 

of eigenvectors common to B I , B2 and B3, and so on. At the final stage the Fj(k) 

consist of common eigenvectors for the Bn, n = 1, ... ,k, for each positive integer 
k-vector j. The set of all such Fj(k) is fundamental in Kn, n = 1, ... ,k. If dim Fj(k) = 1 
for each j, then we simply pick any nonzero h E Fj(k) to complete the construction. 
If dim Fj(k) > 1 for any integer k-vector j then we may choose any basis for Fj(k). 

Q.E.D. 
This result may be given more structure at the cost of a more complicated 

construction. We define GD/ as GD(!1/2) under the inner product [ , ]/ given by 

[x,y1t=[!1/2X ,!Y2y], 1= I, ... ,k. 
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It can be shown [3, §2.4.2] that Gj)/ is a Hilbert space, and in fact is the completion of 
Gj) under [ , ]/. (This follows because 

(5.4) [x, y It = (x, ~/y) if x E Gj)/,y E Gj)(~/). 

Thus if x is Gj)rorthogonal to Gj) ~ Gj)( ~/), x must be H-orthogonal to ~/(Gj) = .:l/( Gj). 
Since .:l/(Gj) is dense in H by Lemma 3.2, x must vanish.) 

LEMMA 5.3. K n Gj)/ is closed in Gj)/, where K = Ker .:lo. 

PROOF. Suppose x} E K n Gj)(~1/2) with x/ ---> x in Gj)/. Then x} ---> x In H, so 
o = .:lox} ---> .:lox. Q.E.D. 

This enables us to define 

(5.5) 
Gj)rorthogonality being understood. It is easily verified, using (5.4), that %/ and K/ 
(5.2) are connected by the relation 

K/ = %/ n Gj)(~/). 
We can now recast our earlier work as follows. 

COROLLARY 5.4. A set of common eigenvectors for the Bn , n = 1, ... ,k, may be 
chosen to form a complete orthogonal basis of all the %m' m = 1, ... ,k, and by 
normalisation it may also be chosen orthonormal in any individual %/. 

PROOF. Let fi E F/ k ) and ~ E Fj(k) be eigenvectors constructed as in Theorem 5.2. 
Then 

(5.6) m = I, ... ,k, 

say. Thus 

m = I, ... ,k. 

Now if i =1= j then ami =1= amj for some m, so h and ~ are Gj)m -orthogonal. 
Linear independence of eigenvectors within the Fj(k) was guaranteed by construc-

tion, so we simply make Gj) rorthonormal eigenvectors by the Gram-Schmidt process. 
Suppose, then, that i = j butfi =1= ~ so [ii' ~]/ = O. From (5.6), 

.:lo~ = amj.:lm~ = a/j.:l/~ 

so 

[fi' ~t = (h, .:lm~) by (5.4) 

= a/ja;;'jl(h, .:l/~) = [fi' ~L = O. 

Thus the ~ are indeed Gj)m-orthogonal for each m. Q.E.D. 

6. A spectral theory for (*). We shall now relate the above work to the original 
problem. First, (*) is equivalent to 

k 

(6.1 ) T,,;x = ~ AnV";nx, O=l=xEGj),m= I, ... ,k, 
n=1 
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in the sense that [6, Lemma 5] 

21 Ker( Tm - n~/\nVmn) = m01 Ker( T,,: - n~/·nV":n). 
Thus if (*) generates} linearly independent tensors x® (1.3) for some (AI"" ,Ak ) 

then so does (6.1). Conversely, if} linearly independent elements x satisfy (6.1), then 
so do} linearly independent elements of the form x® where the corresponding xm 
satisfy (*). 

We shall next establish another equivalent formulation. 

THEOREM 6.1. (*) is equivalent to 

(6.2) O=FxEH,n= I, ... ,k. 

PROOF. We return to the associated system (4.3) which we shall solve for 
zo, z2"" ,zk given ZI = II~=2 Bi'z where z E H. By virtue of Theorem 4.2, we have 

k 

Zo = IT Bi'z, 
/=1 

k 

zn = IT Bi'z, 
/=1 
/¥=n 

from (4.4). Thus (4.3) yields 
k k k 

(6.3) IT Bi' = (T:r l ~ V":n IT Bi', 
/=1 n=1 /=1 

/*n 

since z was an arbitrary element of H. 

n = I, ... ,k, 

m = I, ... ,k, 

Making use of (4.1) and Lemma 4.1 we may pass to the limit in (6.3)-applied to 
AI ... AkX with x E H-to obtain 

k k k 

II A/B/x = (T,,: r I ~ V":nAn IT A,B,x, 
/=1 n=1 /=1 

/*n 

Now if we suppose that x satisfies (6.2), then we have 
k 

m = I, ... ,k. 

- ( t)-I ~ t x - Tm ~ AnVmnX, m = I, ... ,k, 
n=1 

which obviously implies (6.1), and hence (*). 
Conversely, if (*) holds then so does (6.1) and therefore 

k k 

tl,x = ~ tlom' ~ AnV":nX 
m=1 n=1 

k 

= ~ A/J'ntlOx = A,tlox, 1= I, ... ,k, 
n=1 

by a standard identity, e.g. [11, equation (2.2)]. Thus (6.2) holds as required. 
Q.E.D. 

Now we are in a position to draw our main conclusions. Notice that (6.2) is a 
simultaneous eigenvector problem for the Bn, where the corresponding eigenvalues 
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A;;l are nonzero. This is precisely the problem to which §5 applies, and accordingly 
we have the following result, in terms of the subspaces K{ C H (5.2) and :Xl C GD{ 
(5.5). 

THEOREM 6.2. The eigenvalues An of (*) are the nonzero eigenvalues of Bn' and are 
thus real with finite multiplicity and with no finite accumulation points. The eigenvec-
tors of (*) generate tensors x® (1.3) forming a set S of common eigenvectors of the Bn 
and S is fundamental in K{, 1= 1, ... ,k. Finally, complete orthonormal bases for the 
:Xl' 1= 1, ... ,k, may be chosen from S. 
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