SMOOTHNESS OF THE BOUNDARY VALUES OF FUNCTIONS BOUNDED AND HOLOMORPHIC IN THE DISK

BY

SHINJI YAMASHITA

Abstract

The non-Euclidean counterparts of Hardy-Littlewood's theorems on Lipschitz and mean Lipschitz functions are considered. Let $1 \leqslant p<\infty$ and $0<\alpha \leqslant$ 1. For f holomorphic and bounded, $|f|<1$, in $|z|<1$, the condition that $$
f^{*}(z) \equiv\left|f^{\prime}(z)\right| /\left(1-|f(z)|^{2}\right)=o\left((1-|z|)^{\alpha-1}\right)
$$ is necessary and sufficient for f to be continuous on $|z| \leqslant 1$ with the boundary function $f\left(e^{i t}\right) \in \sigma \Lambda_{\alpha}$, the hyperbolic Lipschitz class. Furthermore, the condition that the p th mean of f^{*} on the circle $|z|=r<1$ is $O\left((1-r)^{\alpha-1}\right)$ is necessary and sufficient for f to be of the hyperbolic Hardy class H_{σ}^{p} and for the radial limits to be of the hyperbolic mean Lipschitz class $\sigma \Lambda_{\alpha}^{p}$.

1. Introduction. We shall prove the non-Euclidean counterparts of the following Theorems A and B due to G. H. Hardy and J. E. Littlewood [2, Theorem 4, p. 627 and Theorem 3, p. 625] (see [1, Theorem 5.1, p. 74 and Theorem 5.4, p. 78]).

Let Φ be the family of complex-valued functions φ defined on the real axis such that φ is periodic with period 2π. We say that $\varphi \in \Phi$ is of Lipschitz class Λ_{α} $(0<\alpha \leqslant 1)$ if

$$
\sup _{|t-s| \leqslant \tau}|\varphi(t)-\varphi(s)|=O\left(\tau^{\alpha}\right) \quad \text { as } \tau \rightarrow+0 .
$$

Let $D=\{|z|<1\}$ and let $D^{\#}=\{|z| \leqslant 1\}$ in the plane.
Theorem A. Let f be a function holomorphic in D and let $0<\alpha \leqslant 1$. Then f is continuous on $D^{\#}$ and the function $f\left(e^{i t}\right)$ is of class Λ_{α} if and only if

$$
\begin{equation*}
f^{\prime}(z)=O\left((1-|z|)^{\alpha-1}\right) \quad \text { as }|z| \rightarrow 1-0 \tag{1.1}
\end{equation*}
$$

We say that $\varphi \in \Phi$ is of mean Lipschitz class $\Lambda_{\alpha}^{p}(1 \leqslant p<\infty, 0<\alpha \leqslant 1)$ if the restriction of φ to $[0,2 \pi]$ is of $L^{p}[0,2 \pi]$ and if

$$
\sup _{0<h \leqslant \tau}\left[\int_{0}^{2 \pi}|\varphi(t+h)-\varphi(t)|^{p} d t\right]^{1 / p}=O\left(\tau^{\alpha}\right)
$$

as $\tau \rightarrow 0$. For $0 \leqslant r<1,0<p<\infty$, and for v nonnegative and subharmonic in D, we set

$$
\mu_{p}(r, v)=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(r e^{i t}\right)^{p} d t\right]^{1 / p}
$$

[^0]this is an increasing function of r. The Hardy class $H^{p}(0<p<\infty)$ consists of f holomorphic in D such that $\mu_{p}(r,|f|)=O(1)$ as $r \rightarrow 1$, or equivalently, the subharmonic function $|f|^{p}$ has a harmonic majorant in D. By the boundary value of a complex-valued function g in D at the point $e^{i t}$ of the unit circle we mean the radial $\operatorname{limit} g\left(e^{i t}\right)=\lim _{r \rightarrow 1} g\left(r e^{i t}\right)$. Each function $f \in H^{p}(0<p<\infty)$ admits the boundary value $f\left(e^{i t}\right)$ at a.e. point $e^{i t}$, and $f\left(e^{i t}\right) \in L^{p}[0,2 \pi]$.

Theorem B. Let f be a function holomorphic in D, and let $1 \leqslant p<\infty, 0<\alpha \leqslant 1$. Then $f \in H^{p}$ and the function $f\left(e^{i t}\right)$ is of class Λ_{α}^{p} if and only if

$$
\begin{equation*}
\mu_{p}\left(r,\left|f^{\prime}\right|\right)=O\left((1-r)^{\alpha-1}\right) \quad \text { as } r \rightarrow 1 \tag{1.2}
\end{equation*}
$$

In the case $\alpha=1$, (1.2) says that $f^{\prime} \in H^{p}$.
The non-Euclidean hyperbolic distance between z and w in D is defined by

$$
\sigma(z, w)=\frac{1}{2} \log \frac{|1-\bar{z} w|+|z-w|}{|1-\bar{z} w|-|z-w|}
$$

We set $\sigma(z) \equiv \sigma(z, 0)$, the hyperbolic counterpart of $|z|, z \in D$. We say that $\varphi \in \Phi$ is of class $\sigma \Lambda_{\alpha}(0<\alpha \leqslant 1)$ if φ is bounded, $|\varphi|<1$, and if

$$
\sup _{|t-s| \leqslant \tau} \sigma(\varphi(t), \varphi(s))=O\left(\tau^{\alpha}\right) \quad \text { as } \tau \rightarrow+0
$$

Let B be the family of functions f holomorphic and bounded, $|f|<1$, in D. Then, apparently, $f\left(e^{i t}\right)$ exists a.e. For $f \in B$, the Schwarz-Pick lemma reads

$$
f^{*}(z) \equiv\left|f^{\prime}(z)\right| /\left(1-|f(z)|^{2}\right) \leqslant\left(1-|z|^{2}\right)^{-1}, \quad z \in D
$$

We note that $\log f^{*}$ is subharmonic in D, so that $f^{* p}=\exp \left(p \log f^{*}\right)(0<p<\infty)$ is subharmonic in D. The hyperbolic analogue of Theorem A is

Theorem 1. Let $f \in B$, and let $0<\alpha \leqslant 1$. Then f is continuous on $D^{\#}$ and the function $f\left(e^{i t}\right)$ is of class $\sigma \Lambda_{\alpha}$ if and only if

$$
\begin{equation*}
f^{*}(z)=O\left((1-|z|)^{\alpha-1}\right) \quad \text { as }|z| \rightarrow 1-0 \tag{1.3}
\end{equation*}
$$

We say that $\varphi \in \Phi$ is of class $\sigma \Lambda_{\alpha}^{p}(1 \leqslant p<\infty, 0<\alpha \leqslant 1)$ if $|\varphi(t)|<1$ a.e., if the restriction of $\sigma(\varphi)(t) \equiv \sigma(\varphi(t))$ to $[0,2 \pi]$ is of $L^{p}[0,2 \pi]$, and if

$$
\sup _{0<h \leqslant \tau}\left[\int_{0}^{2 \pi} \sigma(\varphi(t+h), \varphi(t))^{p} d t\right]^{1 / p}=O\left(\tau^{\alpha}\right)
$$

as $\tau \rightarrow 0$. For $f \in B$ set $\sigma(f)(z) \equiv \sigma(f(z))$, the hyperbolic counterpart of $|f(z)|$ $(z \in D)$. Then $\log \sigma(f)$ is subharmonic in D because $X(x) \equiv \log \sigma\left(e^{x}\right)$ is a convex and increasing function of $x \in(-\infty, 0)$, with $-\infty=X(-\infty) \equiv \lim _{x \rightarrow-\infty} X(x)$, and $\log \sigma(f)=X(\log |f|)$. For each $a \in D$, the identity $\sigma(g)=\sigma(f, a)$ holds, where $g=(f-a) /(1-\bar{a} f) \in B$ for $f \in B$. Therefore $\log \sigma(f, a)$ and $\sigma(f, a)^{p}=$ $\exp [p \log \sigma(f, a)](0<p<\infty)$ are subharmonic in D. Let H_{σ}^{p} be the set of all $f \in B$ such that $\mu_{p}(r, \sigma(f))=O(1)$ as $r \rightarrow 1$, or equivalently, the subharmonic function $\sigma(f)^{p}$ admits a harmonic majorant in D. The hyperbolic Hardy class $H_{\sigma}^{p}(0<p<\infty)$ is the counterpart of H^{p}. We are now ready to propose a hyperbolic analogue of Theorem B.

Theorem 2. Let $f \in B$, and let $1 \leqslant p<\infty, 0<\alpha \leqslant 1$. Then $f \in H_{\sigma}^{p}$ and the function $f\left(e^{i t}\right)$ is of class $\sigma \Lambda_{\alpha}^{p}$ if and only if

$$
\begin{equation*}
\mu_{p}\left(r, f^{*}\right)=O\left((1-r)^{\alpha-1}\right) \quad \text { as } r \rightarrow 1 \tag{1.4}
\end{equation*}
$$

In the case $\alpha=1$ in (1.4), the subharmonic function $f^{* p}$ admits a harmonic majorant.

The proof of Theorem 1 is not difficult and depends on Theorem A; we need comparisons of the non-Euclidean distance and the Euclidean distance. The proof of the "if" part of Theorem 2 is, in a sense, routine. Not easy is the proof of the "only if" part of Theorem 2. There is no relation between $\sigma(f)$ and f^{*} like that between $|f|$ and $\left|f^{\prime}\right|$, namely, one cannot assert that $\sigma\left(f^{\prime}\right)=f^{*}$ even if $\left|f^{\prime}\right|<1$.
2. Proof of Theorem 1. Consider the two inequalities

$$
\begin{gather*}
|z-w| \leqslant \sigma(z, w), \quad z, w \in D \tag{2.1}\\
\sigma(z, w) \leqslant 2|z-w| /|1-\bar{z} w| \tag{2.2}
\end{gather*}
$$

for $z, w \in D$ with $|z-w| /|1-\bar{z} w| \leqslant 1 / \sqrt{2}$. The inclusion formula $\sigma \Lambda_{\alpha} \subset \Lambda_{\alpha}$ follows from (2.1). If $\varphi \in \Lambda_{\alpha}$ and if $|\varphi(t)|<1$ for all $t \in(-\infty, \infty)$, then $\varphi \in \sigma \Lambda_{\alpha}$. To observe this we set $\max |\varphi(t)|=M<1$ because φ is continuous. Then there exist two positive constants K and δ such that

$$
K \delta^{\alpha} \leqslant\left(1-M^{2}\right) / \sqrt{2} \quad \text { and } \quad|\varphi(t)-\varphi(s)| \leqslant K \tau^{\alpha}
$$

for all $\tau, 0<\tau<\delta$, and for all t, s with $|t-s| \leqslant \tau$. Since

$$
|\varphi(t)-\varphi(s)| \leqslant\left(1-M^{2}\right) / \sqrt{2}
$$

it follows that

$$
|\varphi(t)-\varphi(s)| /|1-\overline{\varphi(t)} \varphi(s)| \leqslant 1 / \sqrt{2}
$$

whence, by (2.2),

$$
\sigma(\varphi(t), \varphi(s)) \leqslant\left[2 /\left(1-M^{2}\right)\right]|\varphi(t)-\varphi(s)| \leqslant K_{1} \tau^{\alpha}
$$

for all t, s with $|t-s| \leqslant \tau<\delta\left(K_{1}=2 K /\left(1-M^{2}\right)\right)$. Therefore $\varphi \in \sigma \Lambda_{\alpha}$.
To prove the "only if" part of Theorem 1, we notice first that $f\left(e^{i t}\right) \in \Lambda_{\alpha}$. Since $\left|f\left(e^{i t}\right)\right|<1$ for all t, it follows from the maximum modulus principle that $A=$ $\max \left\{|f(z)| ; z \in D^{\#}\right\}<1$. Since $f^{*} \leqslant\left|f^{\prime}\right| /\left(1-A^{2}\right)$, the conclusion (1.3) follows from (1.1).

To prove the "if" part of Theorem 1 we first note that (1.1) holds by $\left|f^{\prime}\right| \leqslant f^{*}$. By Theorem A, f is continuous on $D^{\#}$ and $f\left(e^{i t}\right) \in \Lambda_{\alpha}$. Now, if $\left|f\left(e^{i t}\right)\right|=1$ for a certain t, then

$$
\infty=\lim _{r \rightarrow 1} \sigma\left(f\left(r e^{i t}\right), f(0)\right) \leqslant \lim _{r \rightarrow 1} \int_{0}^{r} f^{*}\left(\rho e^{i t}\right) d \rho<\infty
$$

by (1.3); this is a contradiction. Therefore $\max \left|f\left(e^{i t}\right)\right|<1$, which, together with $f\left(e^{i t}\right) \in \Lambda_{\alpha}$, shows that $f\left(e^{i t}\right) \in \sigma \Lambda_{\alpha}$.
3. Proof of Theorem 2. For the proof of the "if" part we assume that

$$
\begin{equation*}
\mu_{p}\left(r, f^{*}\right) \leqslant K(1-r)^{\alpha-1} \quad \text { for } 0<r<1 \tag{3.1}
\end{equation*}
$$

where $K>0$ is a constant. To prove that $f \in H_{\sigma}^{p}$ we apply the continuous form of the Minkowski inequality (see [3, (7), p. 20]) to

$$
\sigma\left(f\left(r e^{i t}\right), f(0)\right) \leqslant \int_{0}^{r} f^{*}\left(\rho e^{i t}\right) d \rho
$$

for $0 \leqslant t \leqslant 2 \pi(0<r<1)$. Then

$$
\mu_{p}(r, \sigma(f, f(0))) \leqslant \int_{0}^{r} \mu_{p}\left(\rho, f^{*}\right) d \rho \leqslant K / \alpha<\infty
$$

by (3.1). Since $\sigma(f) \leqslant \sigma(f, f(0))+\sigma(f(0), 0)$, the Minkowski inequality in the usual form yields that $\mu_{p}(r, \sigma(f))=O(1)$, or $f \in H_{\sigma}^{p}$. Since $\mu_{p}(r, \sigma(f))$ is bounded for $0<r<1$, the Fatou lemma shows that $\left|f\left(e^{i t}\right)\right|<1$ a.e. and $\sigma(f)\left(e^{i t}\right) \in L^{p}[0,2 \pi]$.

Now, let $0<h \leqslant \tau<1 / 2$, and set $s=t+h$ for $t \in(-\infty, \infty)$. Let $(h<) 1-h<$ $r<1$, and set $\rho=r-h$. Then

$$
\begin{aligned}
\sigma\left(f\left(r e^{i s}\right), f\left(r e^{i t}\right)\right) \leqslant & \int_{\rho}^{r} f^{*}\left(\lambda e^{i t}\right) d \lambda+\int_{\rho}^{r} f^{*}\left(\lambda e^{i s}\right) d \lambda \\
& +\int_{t}^{s} f^{*}\left(\rho e^{i x}\right) \rho d x
\end{aligned}
$$

The third term in the right-hand side is not greater than $K h(1-\rho)^{\alpha-1}$ by (3.1). Applying the Minkowski inequality first in the usual and then in the continuous form we obtain

$$
\begin{align*}
& {\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \sigma\left(f\left(r e^{i(t+h)}\right), f\left(r e^{i t}\right)\right)^{p} d t\right]^{1 / p}} \tag{3.2}\\
& \quad \leqslant 2 \int_{\rho}^{r} \mu_{p}\left(\lambda, f^{*}\right) d \lambda+K h(1-\rho)^{\alpha-1}
\end{align*}
$$

The first term in the right-hand side is not greater than $(2 K / \alpha) h^{\alpha}$ by (3.1), together with $(1-\rho)^{\alpha} \leqslant(1-r)^{\alpha}+h^{\alpha}$, while the second term is not greater than $K(1-\rho)^{\alpha}$ $\leqslant 2^{\alpha} K h^{\alpha}$. Therefore the left-hand side of (3.2) is not greater than $K_{1} \tau^{\alpha}$, where $K_{1}>0$ is a constant. Letting $r \rightarrow 1$ and considering the Fatou lemma one finds that

$$
\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \sigma\left(f\left(e^{i(t+h)}\right), f\left(e^{i t}\right)\right)^{p} d t\right]^{1 / p} \leqslant K_{1} \tau^{\alpha}
$$

which completes the proof of $f\left(e^{i t}\right) \in \Lambda_{\alpha}^{p}$.
For the proof of the "only if" part in the case $0<\alpha<1$ we remember [1, p. 74] that

$$
\begin{equation*}
\int_{-\pi}^{\pi} \frac{|t|^{\alpha} d t}{1-2 r \cos t+r^{2}}=O\left((1-r)^{\alpha-1}\right) \tag{3.3}
\end{equation*}
$$

Fix $z=r e^{\theta} \neq 0$ in D for a moment, and set

$$
\begin{equation*}
g(w)=(f(w)-f(z)) /(1-\overline{f(z)} f(w)), \quad w \in D \tag{3.4}
\end{equation*}
$$

Since $g \in B$, the Cauchy integral formula of $g-g\left(e^{i \theta}\right)$ yields

$$
g^{\prime}(z)=\frac{1}{2 \pi i} \int_{|\zeta|=1} \frac{g(\zeta)-g\left(e^{i \theta}\right)}{(\zeta-z)^{2}} d \zeta
$$

whence

$$
\begin{equation*}
f^{*}(z)=\left|g^{\prime}(z)\right| \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left|g\left(e^{i(t+\theta)}\right)-g\left(e^{i \theta}\right)\right|}{1-2 r \cos t+r^{2}} d t \tag{3.5}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left|g\left(e^{i(t+\theta)}\right)-g\left(e^{i \theta}\right)\right| & \leqslant \sigma\left(g\left(e^{i(t+\theta)}\right), g\left(e^{i \theta}\right)\right) \\
& =\sigma\left(f\left(e^{i(t+\theta)}\right), f\left(e^{i \theta}\right)\right)
\end{aligned}
$$

it follows from (3.5) that

$$
\begin{equation*}
f^{*}\left(r e^{i \theta}\right) \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\sigma\left(f\left(e^{i(t+\theta)}\right), f\left(e^{i \theta}\right)\right)}{1-2 r \cos t+r^{2}} d t \tag{3.6}
\end{equation*}
$$

Now, it is an easy exercise to observe that

$$
\int_{0}^{2 \pi} \sigma\left(f\left(e^{i(t+\theta)}\right), f\left(e^{i \theta}\right)\right)^{p} d \theta \leqslant K_{2}|t|^{p \alpha}
$$

for all $t,|t|<\pi$, where $K_{2}>0$ is a constant. The Minkowski inequality, together with (3.3), asserts from (3.6) that, for $0<r<1$,

$$
\mu_{p}\left(r, f^{*}\right)=O\left((1-r)^{\alpha-1}\right)
$$

To prove that $\mu_{p}\left(r, f^{*}\right)=O(1)$ if $f \in H_{\sigma}^{p}$ and if $f\left(e^{i t}\right) \in \sigma \Lambda_{1}^{p}$ we need some properties of $F \in H_{\sigma}^{p}$ with $F\left(e^{i t}\right) \in \sigma \Lambda_{1}^{p}$. Since $\sigma \Lambda_{1}^{p} \subset \sigma \Lambda_{1}^{1} \subset \Lambda_{1}^{1}, F\left(e^{i t}\right)$ is equal a.e. to a function of bounded variation on $[0,2 \pi]$ (see [1, Lemma 1, p. 72]). Since $F \in B \subset H^{1}, F\left(e^{i t}\right)$ can be considered as an absolutely continuous function on [$0,2 \pi$] by [1 , Theorem 3.10, p. 42]. Furthermore, by [1, Theorem 3.11, p. 42],

$$
F_{*}^{\prime}\left(e^{i t}\right) \equiv \frac{d}{d t} F\left(e^{i t}\right)=i e^{i t} \lim _{r \rightarrow 1} F^{\prime}\left(r e^{i t}\right)=e^{i t} F^{\prime}\left(e^{i t}\right)
$$

exists a.e. on $[0,2 \pi]$; this derivative $F_{*}^{\prime}\left(e^{i t}\right)$ is of class $L^{1}[0,2 \pi]$. The principal point we need is the fact that

$$
F^{*}\left(e^{i t}\right) \equiv\left|F_{*}^{\prime}\left(e^{i t}\right)\right| /\left(1-\left|F\left(e^{i t}\right)\right|^{2}\right)
$$

for $t \in[0,2 \pi]$ is of class $L^{p}[0,2 \pi]$. In effect, since $F\left(e^{i t}\right) \in \sigma \Lambda_{1}^{p}$, there exist constants $K_{3}>0$ and $\delta>0$ such that

$$
\int_{0}^{2 \pi}\left[\frac{\sigma\left(F\left(e^{i(t+h)}\right), F\left(e^{i t}\right)\right)}{|h|}\right]^{p} d t \leqslant K_{3}
$$

for all h with $0<|h|<\delta$. Letting $h \rightarrow 0$ and considering the Fatou lemma, one obtains that

$$
\int_{0}^{2 \pi} F^{*}\left(e^{i t}\right)^{p} d t \leqslant K_{3}
$$

Now, consider g of (3.4). Since $f \in H_{\sigma}^{p}$ and $f\left(e^{i t}\right) \in \sigma \Lambda_{1}^{p}$, if follows that $g \in H_{\sigma}^{p}$ and $g\left(e^{i t}\right) \in \sigma \Lambda_{1}^{p}$. Therefore g is absolutely continuous and $g_{*}^{\prime}\left(e^{i t}\right)$ is of $L^{1}[0,2 \pi]$. Differentiating the Poisson integral

$$
g(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(R, s-t) g\left(e^{i t}\right) d t
$$

with respect to s, where $w=R e^{i s} \neq 0$, and $P(R, s-t)=\left(1-R^{2}\right) /\left|e^{i t}-R e^{i s}\right|^{2}$, one observes that

$$
\begin{align*}
i w g^{\prime}(w) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial}{\partial s} P(R, s-t) g\left(e^{i t}\right) d t \\
& =-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\frac{\partial}{\partial t} P(R, s-t)\right] g\left(e^{i t}\right) d t \tag{3.7}\\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} P(R, s-t) g_{*}^{\prime}\left(e^{i t}\right) d t
\end{align*}
$$

On the other hand,

$$
\left|g_{*}^{\prime}\left(e^{i t}\right)\right|=\frac{\left|f_{*}^{\prime}\left(e^{i t}\right)\right|\left(1-|f(z)|^{2}\right)}{\left|1-\overline{f(z)} f\left(e^{i t}\right)\right|^{2}} \leqslant f^{*}\left(e^{i t}\right)
$$

It then follows from (3.7), together with $f^{*}\left(e^{i t}\right) \in L^{p}[0,2 \pi]$ that

$$
|w|^{p}\left|g^{\prime}(w)\right|^{p} \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} P(R, s-t) f^{*}\left(e^{i t}\right)^{p} d t
$$

On setting $w=z=r e^{i \theta}$, one obtains that

$$
|z|^{p} f^{*}(z)^{p} \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} P(r, \theta-t) f^{*}\left(e^{i t}\right)^{p} d t
$$

so that $\mu_{p}\left(r, f^{*}\right)=O(1)$.

References

1. Peter L. Duren, Theory of H^{p} spaces, Pure and Appl. Math., vol. 38, Academic Press, New York and London, 1970.
2. Godefrey H. Hardy and John E. Littlewood, A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634.
3. John E. Littlewood, Lectures on the theory of functions, Oxford Univ. Press, London, 1944.

Department of Mathematics, Tokyo Metropolitan University, Fukazawa, Setagaya, Tokyo 158, Japan

[^0]: Received by the editors February 11, 1981.
 1980 Mathematics Subject Classification. Primary 30D55.
 Key words and phrases. Lipschitz functions, mean Lipschitz functions, Hardy class, non-Euclidean hyperbolic distance.

