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FUNCI10NS BOUNDED AND HOLOMORPIllC IN THE DISK 

BY 
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ABSTRACT. The non-Euclidean counterparts of Hardy-Littlewood's theorems on 
Lipschitz and mean Lipschitz functions are considered. Let I 0;;; p < 00 and 0 < a 0;;; 

l. For fholomorphic and bounded, If I < I, in I z I < I, the condition that 

j*(z) =If'(z) II (I -If(z) 12) = 0((1 - I z I)a-I) 

is necessary and sufficient for f to be continuous on I z 10;;; I with the boundary 
function f(e it ) E aA a , the hyperbolic Lipschitz class. Furthermore, the condition 
that thepth mean ofj* on the circle I z 1= r < I is 0«(1 - r)"-I) is necessary and 
sufficient for f to be of the hyperbolic Hardy class HC and for the radial limits to be 
of the hyperbolic mean Lipschitz class aA~. 

1. Introduction. We shall prove the non-Euclidean counterparts of the following 
Theorems A and B due to G. H. Hardy and J. E, Littlewood [2, Theorem 4, p. 627 
and Theorem 3, p. 625] (see [1, Theorem 5.1, p. 74 and Theorem 5.4, p. 78]). 

Let «I> be the family of complex-valued functions cp defined on the real axis such 
that cp is periodic with period 2'1T. We say that cp E «I> is of Lipschitz class A" 
(0 < a :s;; 1) if 

sup I cp{t) - cp{s) 1= 0(-1''') as'T -> +0. 
It-sl";;" 

Let D = {I z 1< I} and let D# = {I z I:s;; I} in the plane. 

THEOREM A. Let f be a function holomorphic in D and let 0 < a :s;; 1. Then f is 
continuous on D# and the function f( e it ) is of class A" if and only if 

(l.l) f'{z) = O({l-Izl)"-I) aslzl-> 1 - O. 

We say that cp E «I> is of mean Lipschitz class A~ (l :s;; p < 00,0 < a :s;; 1) if the 
restriction of cp to [0, 2'1T] is of LP[O, 2'1T] and if 

[12'" ] I/p sup Icp{t+h)-cp{t)fdt =0(.,.") 
O<h..;;.. 0 

as.,. -> O. For 0 :s;; r < 1,0 < P < 00, and for v nonnegative and subharmonic in D, 
we set 

[ 1· 12'" ] I/p Il-p(r, v) = 2'1T 0 v(reit)P dt ; 
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this is an increasing function of r. The Hardy class HP (0 < P < 00) consists of f 
holomorphic in D such that IL/r, If I) = 0(1) as r -> 1, or equivalently, the sub-
harmonic function If~ has a harmonic majorant in D. By the boundary value of a 
complex-valued function g in D at the point eit of the unit circle we mean the radial 
limitg(e it ) = limr~l g(re it ). Each functionf E HP (0 < P < 00) admits the boundary 
valuef(e it ) at a.e. point eit , andf(eit ) E LP[0,2'IT). 

THEOREM B. Let f be a function holomorphic in D, and let 1 ..;;; p < 00, 0 < a ..;;; 1. 
Then f E HP and the function f( eit ) is of class A~ if and only if 

(1.2) ILp{r,I/,I)=O({I-r),,-I) asr-d. 

In the case a = 1, (1.2) says that/' E HP. 
The non-Euclidean hyperbolic distance between z and winD is defined by 

_ 1 11 - zw I + I z - w I 
O'{ z, w) - -2 log 11 I I I . - zw - z - w 

We set 0'( z) == 0'( Z, 0), the hyperbolic counterpart of I z I ' zED. We say that cp E <I> 
is of class O'A" (0 < a ..;;; 1) if cp is bounded, I cp 1< 1, and if 

sup O'(cp{t),cp(s)) = O(T") aST-> +0. 
It-sl";;;T 

Let B be the family of functions f holomorphic and bounded, I f 1< 1, in D. Then, 
apparently, f( eit ) exists a.e. For fEB, the Schwarz-Pick lemma reads 

zED. 

We note that log /* is subharmonic in D, so that f* P = exp( p log f*) (0 < P < 00) is 
subharmonic in D. The hyperbolic analogue of Theorem A is 

THEOREM 1. Let fEB, and let 0 < a ..;;; 1. Then f is continuous on D# and the 
function f( eit ) is of class O'A" if and only if 

(1.3) /*(z)=O((1-lzl),,-I) aslzl->I-0. 

We say that cp E <I> is of class O'A~ (1 ..;;; p < 00,0 < a ..;;; 1) if I cp(t) 1< 1 a.e., if the 
restriction of 0'( cp )( t) == 0'( cp( t» to [0, 2 'IT ) is of LP [0, 2 'IT), and if 

[ [2., ] lip sup J~ O'(cp(t+h),cp(t))Pdt =O(T") 
O<h";;;T 0 

as T -> O. For fEB set O'(/)(z) == O'(/(z», the hyperbolic counterpart of If(z) I 
(z E D). Then log 0'(/) is subharmonic in D because X(x) == log O'(e X ) is a convex 
and increasing function of x E (-00,0), with -00 = X(-oo) == limx~_oo X(x), and 
log 0'(/) = X(log Ifl). For each a ED, the identity O'(g) = 0'(/, a) holds, where 
g = (/ - a)j(1 - iiI) E B for fEB. Therefore log 0'(/, a) and 0'(/, a)p = 
exp[p log 0'(/, a») (0 < P < 00) are subharmonic in D. Let H! be the set of allf E B 
such that ILp(r, 0'(/» = 0(1) as r --> 1, or equivalently, the subharmonic function 
0'( f)P admits a harmonic majorant in D. The hyperbolic Hardy class H! (0 < p < 00) 
is the counterpart of HP. We are now ready to propose a hyperbolic analogue of 
Theorem B. 
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THEOREM 2. Let fEB, and let 1 ..;; P < 00, 0 < a ..;; 1. Then f E H: and the 
function f( e it ) is of class aA~ if and only if 
(1.4) ILp(r, f*) = 0((1 - rt- I ) asr -d. 

In the case a = 1 in (1.4), the subharmonic function f*P admits a harmonic 
majorant. 

The proof of Theorem 1 is not difficult and depends on Theorem A; we need 
comparisons of the non-Euclidean distance and the Euclidean distance. The proof of 
the "if' part of Theorem 2 is, in a sense, routine. Not easy is the proof of the "only 
if' part of Theorem 2. There is no relation between a( f) and f* like that between 
I f I and I I' I ' namely, one cannot assert that a( 1') = f* even if I I' 1< 1. 

2. Proof of Theorem 1. Consider the two inequalities 
(2.1) Iz-wl";;a(z,w), z,wED, 

(2.2) a(z,w)";;2Iz-wl/l1-zwl 

for z, wED with I z - willI - zW I..;; II If. The inclusion formula aAa C Aa 
follows from (2.1). If q> E Aa and if I q>(t) 1< 1 for all t E (-00, (0), then q> E aA a. 
To observe this we set max I q>(t) 1= M < 1 because q> is continuous. Then there 
exist two positive constants K and 8 such that 

K8 a ..;;(I-M2)/fi and 1q>(t)-q>(s)I";;K'Ta 

for all 'T, 0 < 'T < 8, and for all t, S with I t - s I..;; 'T. Since 

I q>(t) - q>(s) I..;; (1 - M 2)/fi, 

it follows that 

Iq>(t) - q>(s) 1/11 - q>(t)q>(s) I..;; 1//2, 

whence, by (2.2), 

a( q>(t), q>(s» ";;[21 (1 - M2)] I q>(t) - q>(s) I..;; K1'T a 

for all t, S with I t - S I..;; 'T < 8 (KI = 2KI(1 - M2)). Therefore q> E aA a. 
To prove the "only if' part of Theorem 1, we notice first that f( eil ) E Aa. Since 

If(e il ) 1< 1 for all t, it follows from the maximum modulus principle that A = 
max{lf(z) I; z E D#} < 1. Since f* ..;;11' 1/(1 - A2), the conclusion (1.3) follows 
from (1.1). 

To prove the "if' part of Theorem 1 we first note that (1.1) holds by 11'1";; f*. By 
Theorem A, f is continuous on D# and f(e it ) E Aa. Now, if If(eil)l= 1 for a 
certain t, then 

00 = lim a(/(re it ) , f(O»";; Iimlrf*(peil)dp < 00 
r .... 1 r--> 1 0 

by (1.3); this is a contradiction. Therefore max If(e il ) 1< 1, which, together with 
f( eil ) E Aa , shows that f( eil ) E aAa. 
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3. Proof of Theorem 2. For the proof of the "if' part we assume that 

(3.1) JL/r, f*) .;;; K(1 - r t- 1 for 0 < r < 1, 

where K> 0 is a constant. To prove that f E H: we apply the continuous form of 
the Minkowski inequality (see [3, (7), p. 20)) to 

o(j(reil ), f(O)) .;;; io'f*(peil ) dp 

for 0.;;; t';;; 2'lT (0 < r < 1). Then 

JLp(r, oU, f(O))) .;;;io'JLp(p, f*) dp';;; K/a < 00 

by (3.1). Since 0(/) .;;; 0(/, f(O)) + 0(/(0),0), the Minkowski inequality in the usual 
form yields that JL/r, 0(/)) = 0(1), or f E H:' Since JL/r, 0(/)) is bounded for 
0< r < 1, the Fatou lemma shows that If(e il ) 1< 1 a.e. and o(/)(e it ) E LP[O, 2'lT]. 

Now, let 0 < h .;;; r < 1/2, and set s = t + h for t E (-00,00). Let (h <) 1 - h < 
r < 1, and set p = r - h. Then 

o(j(reiS ), f(re il )) .;;; [f*('Aeil ) d'A + [f*('Ae iS ) d'A 
p p 

The third term in the right-hand side is not greater than Kh(1 - p),,-l by (3.1). 
Applying the Minkowski inequality first in the usual and then in the continuous 
form we obtain 

(3.2) 
[21'lT fo2'lT o(j(rei(t+h») , f(reil)Y d{IP 

';;;2[JL/'A,f*)d'A+Kh(l-pt- l • 
p 

The first term in the right-hand side is not greater than (2K/a)ha by (3.1), together 
with (1 - p)a.;;; (1 - r)" + ha, while the second term is not greater than K(1 - p)" 
.;;; 2aKh a. Therefore the left-hand side of (3.2) is not greater than K1r a, where 
K 1 > 0 is a constant. Letting r --> 1 and considering the Fatou lemma one finds that 

[21'lT fo2'lTo(j(e i(l+h») , f(eil)Y dtr lP .;;; K1r a, 

which completes the proof of f( eil) E A~. 
For the proof of the "only if' part in the case 0 < a < 1 we remember [1, p. 74] 

that 

(3.3) 

Fix z = reo *- 0 in D for a moment, and set 

(3.4) g( w) = (f( w) - f( z )) / (1 - f( z ) f( w ) ), wED. 
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Since g E B, the Cauchy integral formula of g - g(e i8 ) yields 

g'(z) = _1 . r g(n - g(ei8 ) d~, 
2'lTlJ1tl =! (~-zf 

whence 

(3.5) 

Since 

f*(z) = I g'(z) IE;;; _1 /'IT I g( ei(t+8») - g( ei8 ) I dt. 
2'TT -'IT 1 - 2rcost + r2 

I g( ei(t+8») - g( ei8 ) IE;;; 0'( g( ei(t+8»), g( ei8 )) 

= 0'(t(ei(t+8»), f(e i8 )), 

it follows from (3.5) that 

. 1 /'IT 0'(t(ei(t+8»), f(e i8 )) (3.6) f*(re ,8 ) E;;; - dt. 
2'TT -'IT 1 - 2rcos t + r2 

Now, it is an easy exercise to observe that 

12'IT0'(f(ei(t+8»), f(e i8 )YdO E;;; K21 t fa 
o 
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for all t, It 1< 'TT, where K2 > 0 is a constant. The Minkowski inequality, together 
with (3.3), asserts from (3.6) that, for 0 < r < 1, 

/Lp(r, f*) = 0((1- r)"-I). 
To prove that /L/r, f*) = 0(1) if fE H: and if f(e it ) E O'Af we need some 

properties of FE H: with F(eit ) E O'Af. Since O'Af C O'A\ C A\, F(e it ) is equal a.e. 
to a function of bounded variation on [0, 2'TT] (see [1, Lemma 1, p. 72]). Since 
FEB C HI, F( eit ) can be considered as an absolutely continuous function on 
[0, 2'TT] by [1, Theorem 3.10, p. 42]. Furthermore, by [1, Theorem 3.11, p. 42], 

F~(eit) =~F(eit) = ieitlimF'(reit ) = eitF'(e it ) 
dt r-->I 

exists a.e. on [0, 2'TT]; this derivative F~( eit ) is of class LI[O, 2'TT]. The principal point 
we need is the fact that 

for t E [0, 2'TT] is of class LP[O, 2'TT]. In effect, since F( eit ) E O'Af, there exist 
constants K3 > 0 and a> 0 such that 

2'IT[ 0'( F( ei(t+h»), F( eit )) ] p fa I h I dt E;;; K3 

for all h with 0 < I h 1< a. Letting h ...... 0 and considering the Fatou lemma, one 
obtains that 
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Now, consider g of (3.4). Since f E Ht and f(e it ) E (JAf, if follows that g E Ht 
and g(eit ) E (JAf. Therefore g is absolutely continuous and g~(eil) is of L1[0,2'1T]. 
Differentiating the Poisson integral 

g( w) = 21'1T fo27Tp (R, s - t)g(e il ) dt 

with respect to s, where w = Reis =1= 0, and P(R, s - t) = (1 - R2)/1 eit - Reis 12, 
one observes that 

(3.7) 

1 (27T 0 . 
iwg'(w)=2'1TJo osP(R,s-t)g(e")dt 

= - 21'1T fo27T[ ;tP(R, s - t)] g(e it ) dt 

= 21'1T fo27Tp (R, s - t)g~(eil) dt. 

On the other hand, 

. If~(eit) 1 (1 -If(z) 12) . 
Ig~(e'I)I= 11 - f(z)f(e it ) 12 ";;'f*(e ll

). 

It then follows from (3.7), together withf*(ei' ) E LP[O, 2'1T] that 

1 w r 1 g'(w) r..;;, 2~ fo27Tp (R, s - t)f*(eitY dt. 

On setting w = z = reiD, one obtains that 

1 Z rf*(z Y..;;, 21'1T fo27Tp(r, () - t)f*(eitY dt, 

so that p./r, f*) = 0(1). 
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