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SPACES WIDCH LOOK LIKE 
QUA TERNIONIC PROJECfIVE n-SPACE 

BY 
C. A. McGIBBONI 

ABSTRACT. The projective n-spaces which correspond to the various multiplicative 
structures on the three sphere are studied. Necessary and sufficient conditions for a 
projective n-space to extend to a projective n + I-space are described. At each odd 
prime, an infinite family of exotic projective spaces is constructed. These exotic 
spaces are not homotopy equivalent, at the prime in question, to the classical 
quaternionic projective n-space. It is also shown that these exotic projective n-spaces 
do not occur as the finite skeleton of a classifying space for a group with the 
homotopy type of the three sphere. 

1. Introduction and statement of results. Let Hp n denote quaternionic projective 
n-space. The results in this paper arose in an attempt to settle the following 

Conjecture 1. Let X be a space whose loop space, QX, has the homotopy type of 
S3. Then X is homotopy equivalent at each prime p to Hpoo. 

A space X with the property that QX"", S3 can be regarded as the classifying 
space for a topological group with homotopy type of S3. The conjecture thus asserts 
that, up to an Aoo -equivalence [18], there is only one group with the homotopy type 
of the localized sphere S(~)' 

Conjecture 1 would certainly be false if the clause "at each prime p" were 
omitted. In his thesis [16], J. Slifker showed that there are, besides Hp oo , at least 
three other homotopy types X with the property QX"'" S3. Later D. Rector [15] 
showed there are uncountably many homotopy types with this property! All of these 
examples are known to be locally classical (i.e., X(p) "'" HPt;) for each prime p). 

The results in this paper do not settle Conjecture 1, but they do make it seem 
credible. For if a counterexample exists, then a liml argument shows that some finite 
skeleton of it is an exotic projective n-space of S3. To be precise, this skeleton would 
represent the projective n-space of some An-structure on S3 which, for some prime p, 
is not p-equivalent to Hpn. With this in mind, projective spaces for the various 
An-structures on S3 are studied here. It is shown in Theorem 5 that exotic projective 
n-spaces of S3 do exist; in fact, for each odd prime there are infinitely many, as 
n ~ 00. But in the same theorem it is shown that these particular exotic projective 
spaces do not represent the finite skeleton of a counterexample. 
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The precise statement of results requires some special definitions. I shall use the 
symbol Kpn to denote any I-connected space whose integral cohomology ring is 
isomorphic to that of Hpn (i.e., Z[u]jun+I, dim(u) = 4). Equivalently, Kpn could 
denote the projective n-space of any An-structure on S3. However, in the case of S3, 
the cohomological definition seems to be the most convenient. 

A Kpn will be said to extend k-stages if there is a map of it into a Kpn+k which is 
surjective in integral cohomology. Most of the results in this paper deal with the 
following extension problem: Does a given Kpn extend? If so, how many stages? If 
not, what is the obstruction? 

The first result gives some necessary and sufficient conditions that a Kpn must 
satisfy in order that it extend (at least) one stage. 

THEOREM 2. For a given Kpn, the following properties are equivalent: 
(a) Kpn extends one stage. 
(b) 'lT4n +ZKpn"., 'lT4n+I S 3. 
(c) There is a fibration S3 --> s4n+3 --> Kpn. 
(d) There is a homotopy equivalence OKpn "" S3 X os4n+3. 
(e) There is a retraction r: OKpn --> S3. 
(f) There exists a spherical generator y E H4n+Z(OKpn; Z). 0 

In the classical case, the fibration in part (c) is usually taken to be the principal 
Sp(1)-bundle, Sp(1) --> s4n+3 --> Hpn. In the general case, one should not expect this 
much structure. Part (c) is only a statement about the homotopy types of the fiber 
and total space of a certain fibration over Kpn. 

In the next theorem, the obstruction to a I-stage extension is examined in a more 
general context. To state this result, it is necessary to recall some general facts about 
projective spaces. These facts can be found in Stasheffs original papers [18] or in 
Chapters 8 and 11 of his book [19]. 

Let X be a connected CW-complex which is an An-space in the sense of Stasheff. 
There is a sequence of fibrations, each with fiber X, 

E1(X) --> Ez(X) 

hI h2 
* --> PI( X) 

in which 
(a) ElX) is the i-fold join of X, 
(b) Ei ( X) is contractible in Ei+ I( X), and 
(c) Pi(X) is the mapping cone of "ri. 

--> ••• --> En( X) 
J,Yn 

--> ••• --> Pn-I(X) 

Although the homotopy type of the total space Ei(X) depends only upon X and i, 
the same cannot be said for the projective space Pi( X) when i > 1. The latter 
depends upon the particular choice of An-structure on X which gives rise to the 
above fibrations. Therefore the notation Pl X) will be used with some fixed, but 
unmentioned, A;-structure in mind. 
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Even though X may not be an A,,+ I-space, one can define the projective space 
P,,(X) as in (c). If there is a fibration 

Yn+1 
X -> E,,+\(X) -> Pn(X) 

with the properties listed in (a) and (b) above, then P,,(X) will be said to extend one 
stage. By Theorem 2, this agrees with the previous definition given when X = S3. 

The obstruction to a one-stage extension for P,,( X) will be described in terms of 
the fibration y" and the following three structure maps of OP,,_\(X): 

t: X -> OPn_\(X) 

which is the adjoint of the inclusion P\(X) -> Pn-\(X), 

"9,,: ~-\En(X) -> OPn_\(X) 

which is the adjoint of y" (this makes sense since the n-fold join of X has the 
homotopy type of an (n - I)-fold suspension L13, Theorem 4]) and 

r,,_\: OP,,_\(X) -> x. 
This third map occurs as the connecting map in the dual Puppe sequence (hence 
rn-\ 0 Oy" ~ *) and, by property (b), is a left inverse for t. 

THEOREM 3. Given P,,(X) as described above, the following statements are equiva-
lent: 

(a) P,,(X) extends one stage. 
(b) The fibration y,,: En(X) -> Pn-\(X) is an A2-fibration. 
(c) The retraction r,,_\: OP,,_\(X) -> X is an A 2-map. 
(d) r,,_\ 0 (t, "9,,>~ *. 0 

The last three statements in Theorem 3 are to be interpreted as follows. The 
notion of an A2-fibration in (b) is defined in Nowlan's thesis [12]. Briefly, it means 
that the A 2-structure on the fiber extends to an action of the fiber on the total space. 
This action should preserve fibers but it is not assumed to be homotopy associative. 
This is what Zabrodsky calls weakly principal [25, p. 53]. The retraction in (c) is to 
be an A2-map (or H-map) with respect to the loop multiplication on the domain and 
the fixed underlying A 2-structure on X. In the last part, the brackets denote the 
generalized Samelson product formed using the loop multiplication on OPn -\( X). 

The retraction r,,_\, together with the adjoint operator, determine the boundary 
operator in the long exact sequence of homotopy groups for the fibration Yn. The 
next result thus follows by taking adjoints. 

COROLLARY 3.1. If KP" = KP"-\ U y e 4n , then Kp n extends one stage if and only if 
the Whitehead product [t4' y] E Kernel a: 'TT4,,+2Kpn-\ -> 'TT4n +\s3. 0 

Suppose that the attaching map for the top cell of Hp n is altered by an element, 
say g, of finite order. It will be shown that exotic Kpn's can be built by such a 
process. What role does g play in determining how many stages the resulting Kp n 

will extend? The next theorem looks at this question in detail. 
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THEOREM 4. Let "y denote the homotopy class of the principal quatemionic fibration in 
7T4n -1 Hpn-I and let g be a class with finite order in this group. Then 

(a) The mapping cone of"Y + g is a Kpn. Hereafter, Kpn will refer to this mapping 
cone. 

(b) If g has odd order and p is the smallest prime which divides this order, then Kpn 
extends (p - 3)/2 stages. 

(c) Let P denote the set of primes;;;" p. The obstruction to extending any (p - 3)/2 
stage extension of Kpn one more stage is an element in 7T4n -2+(2p-3)S3 which, when 
localized at P, has the form 

nl(ag) 0 E 4n- 5a l + n 2a l 0 E 2p-3(ag) 
where 

(i) a denotes the boundary operator in the long exact sequence of homotopy groups for 
the fibration "y, 

(ii) g represents the P-primary part of g, 
(iii) Ej denotes the iterated suspension, and 
(iv) a l denotes a generator of 7T2pS(~). D 

The next result shows that the estimate given in Theorem 4(b) is the best possible 
in infinitely many cases. 

THEOREM 5. For each odd prime p and t = 1,2, ... let at E 7T2t(P_I)+2S3 be unstable 
representatives of Toda' sa-family [22]. If in Theorem 4 the deviation element 
g E 7T4n _ 1Hpn-1 is chosen so that ag = mal' where 

(a) m = 0 or -4 (mod p) when t = 1, or 
(b) m = 0 (mod p) when t> 1, 

then the resulting Kpn is not p-equivalent to Hpn and it does not extend (p - 1)/2 
stages. D 

Part (a) of Theorem 5 is proved using Steenrod operations in Zip-cohomology. 
The condition that m = -4 (mod p) is necessary. In fact, it is known that the exotic 
loop structures on S3 found by Slifker and Rector correspond, for various odd 
primes, to this choice of g. 

Part (b) of Theorem 5 is proved using the Chern character and the Adams 
e-invariant along with the following result which is due to J. F. Adams [4]. 

THEOREM 6. Let P be an odd prime. Then, 
(a) If X is a space such that OX ~ S3, there exist ring generators x and u in the 

localized K-theory and cohomology of X such that 
2u; 

and ch( x) = ~ (2 .) , . 
;;.0 I. 

(b) Given KP n, where n·;;;.. p, there exist ring generators x and u in the localized 
K-theory and cohomology of Kpn such that 

n 

K(Kpn; Z(P») ~ Z(P)[x]jxn+1 and ch(x) = ~ a;u;, 
;=0 

where ai = 2/(2i)! if 0 ..; i"; n - (p - 1)/2. D 
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The first part of Theorem 6 can be regarded as saying that "through the eyes of 
K-theory localized at an odd prime, every loop structure on S3 appears to be locally 
classical". This is strong evidence in support of Conjecture 1. 

On the other hand, Theorem 4 can be regarded as the geometric reason why one 
cannot be more specific about the coefficients in the second part of Theorem 6. 

By studying the multiplicative properties of spheres one begins to see new 
interpretations for their homotopy groups. Let me cite a few examples. The genera-
tor at can be regarded as the higher order Samelson product in (p + 1)/2 variables 
for a loop multiplication on S(~) [13, p. 132]. By Theorem 5, we have seen that each 
member of the a-family gives rise to exotic An-structures on S(~)' Linear combina-
tions of the unstable compositions at 0 at and at 0 at can be interpreted as the 
obstruction to extending these exotic structures (p - 1)12 stages. 

My last example concerns the generator of the first kernel of the double suspen-
sion at an odd prime p. Recall the following result which is due to J. C. Moore [11] 
and A. L. Liulevicius [9]. 

THEOREM 7. If P is an odd prime and n > 1, the double suspension E2: 'TTqS(~)-t ...... 
'TT/J,2S(~rt is an isomorphism for q < 2np - 3 and a surjection with kernel Zip when 
q = 2np - 3. 0 

A generator for this first kernel can be described as follows. Again assume that 
n> 1, and that all spaces have been localized at an odd prime p. Let Jk(X) denote 
the kth stage in the James construction of ll~X [8]. 

y 
COROLLARY 3.2. There is a fibration s2n-t ...... s2n(p-t)-t ...... Jp _ 2(s2n) such that 

the boundary 3['2n' Y] in 'TT2np_3S2n-t generates the kernel mentioned in Theorem 7. 
o 

Now Jp-2(S2n)(p) may be regarded as the projective (p - 2)-space of a certain 
Ap_t-structure on S(~)-t. It follows therefore by Theorem 3 and the result just stated 
that the first kernel in the double suspension may be interpreted as the obstruction 
to extending this Ap - t structure one stage further. 

2. Organization and acknowledgements. The results are proved in numerical order. 
For Theorem 4, some facts about higher order Whitehead products (absolute and 
relative versions) are needed. This material is contained in an appendix. 

This paper contains some of the results in my thesis written at the University of 
Wisconsin. I want to thank my advisor Sufian Husseini for the guidance he gave me 
and for the many insights he shared with me. I also thank Professor J. F. Adams for 
answering a letter of mine. His answer, Theorem 6, proved for all odd primes what I 
had previously only been able to prove for 13 of the first 17 odd primes. I shall spare 
the reader the details of my calculations. They can be found in [10, Chapter 3]. 

3. Proofs. 
PROOF OF THEOREM 2. The Serre cohomology spectral sequence, applied to the 

universal patl! fibration over Kpn, implies that there is an isomorphism (not 
necessarily natural) of graded rings 

H*(llKpn; Z) ~ H*(S3 X lls4n+3; Z). 
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the bottom row is a cofibration. Thus the pullback 'In * 'In is trivial. By [25, Lemma 
2.4.7], this implies that 'In is an A2-fibration. 

(b) => (c). Let L(E, F) denote the space of paths on E which start at the basepoint 
and end in F. If F ~ E ~ B is an A2-fibration, the action q,: F X E ~ E gives 
L(E, F) the structure of an H-space in the following way; for a, {3 E L(E, F), 
define 

{ a(2t), 
a' {3(1) = q,(a(l), {3(21 - 1», 

00;;; t 0;;; t, 
to;;; t 0;;; 1. 

(If the reader prefers strict units, he can use instead the Moore path space analogue 
for L(E, F); see [25, p. 15].) With respect to this multiplication on L(E, F) the 
maps 

e: L(E, F) ~ (F, p.), 
rlp: L(E, F) ~ rlB, 

a ~ a(I), 
a~p(a) 

are easily seen to be A2-maps. The connecting map r: rlB ~ F is defined as the 
composition eo A: rlB ~ L(E, F) ~ F, where A is a homotopy inverse of rlp. Since 
rlp is an A2-map, so is A [19, p. 33], and thus r is an A2-map. 

(c) => (d). Samelson products are natural with respect to A2-maps. Since rn - I 0 Yn 
~ * and rn _ 1 is an A2-map, the result follows. 

(d) => (b). Throughout the proof of this implication, the subscripts on En' Pn- I, 'In' 
and rn - I will be omitted 

The goal of the proof is to show that the fibration 'I: E ~ P is an A2-fibration. By 
[25, Lemma 2.4.7] this is equivalent to showing that the pullback fibration 'I * 'lover 
E is trivial. Since E is a suspension, there is a clutching function 1/;: X X ~-IE ~ X 
for the pullback 'I * 'I [17, p. 455]. It is clear that 'I * 'I is trivial if and only if its 
clutching function is homotopic to the projection on the first factor. The following 
proof amounts to showing that I/; has this simple form. 

It is not difficult to see that the clutching function I/; is given by the composition 
IXy 8 

XX ~-IE ~ XX rlP~X 

where y denotes the adjoint and (J is the right-action of rlP on X, which is 
determined by 'I (cf. [17, p. 457]). We need to examine this action in detail. Let A be 
a lifting function for 'I [17, p. 92]. Then, in particular, for each (x, w) E X X rlP, 
A( x, w) is a path in E which starts at x and covers w. (J( x, w) is the endpoint of this 
path. Therefore, (J may be viewed as the composition 

A e 
(J: XX rlP~LI(E, X) ~X 

where L1(E, X) denotes the space of paths in E which end in X, and e denotes 
evaluation at 1 = 1. 

I shall show that (J factors, up to homotopy, through the function space L(E, X). 
To this end, let h be a contracting homotopy for the inclusion i: X ~ E such that 

(a) h(x, 0) = * and h(x, 1) = i(x), and 
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(b) the composition x 1-+ y 0 h( x, t) is homotopic to the standard inclusion L: 
X -> OP. 

For 00;;;; sO;;;; 1, define an action ()s: X X OP -> X by the formula ().(x, w) = 
eo 'A(h(x, s), ~s) where 

~ (t) = {y 0 h (x, 2t{ 1 - s) + s), 
s w{2t - 1), 

00;;;; t o;;;;!, 
! 0;;;; t 0;;;; 1. 

Then () ~ ()I ~ ()o and ()o(x, w) = eo 'A(*, L(X) + w). The clutching function 1/1 is thus 
homotopic to the composition 

'Xi' add r 
1/1: X X ~-IE -> OP X OP -> OP ->X, 

where r = eo 'A: OP -> L(E, X) -> X, as in the proof of (b) ~ (c). Notice that if r is 
an H-map, then the relation r 0 '9 ~ * implies that 1/1 ~ r 0 L 0 'lT1 ~ 'lT1 and by earlier 
remarks we are done. The weaker hypothesis, r 0 (L, '9 > ~ *, requires a bit more 
work. 

In the principal fibration OE -.J L(E, X) ->e X, there is a left action of OE on 
L( E, X) given by the addition of paths. If L( E, X) is replaced by its homotopy 
equivalent OP, the resulting fibration 

Oy r 
OE ->OP->X 

is still principal and OE still acts on the left. This action, say 7]: OE X OP -> OP, is 
compatible with the loop multiplications on OE and OP. 

For the moment let K = X X ~-IE and, in the group [K, OP], let a = to 'lT1 and 
b = '9 0 'lT2 • Then by [25, p. 51], r*(b + a) = r*(a) since b + a = 7]*(c, a) where 
C E [K, OE] is the obvious map. The hypothesis r *(L, '9)= * implies that there is a 
class c' E [K, OE] such that Oy*(c') = a + b - a-b. Since 7]*(c', b + a) = a + b, 
it follows, again by [25, p. 51], that up to homotopy, 

1/1 = r*{a + b) = r*{b + a) = r*{a) = 'lT1' 

which, by the earlier remarks, implies that y is an A2-fibration. 
(b) ~ (a). The proof is an application of the Dold-Lashof construction [17, p. 3]. If 

Yn: En -> Pn- I is an A2-fibration, one can identify along the action </>: X X En -> En 
to obtain a quasifibration 

[x, t, e] 1-+ [t, e]. 

This construction yields a commutative diagram 

!Yn !Yn+l 
Pn - I -> Pn 



576 c. A. McGIBBON 

The following proof will make repeated use of this isomorphism. I shall follow the 
proof scheme, 

(a) ~ (b) 
t ! 

(c) ~ (d) 

~ (f) 
t 

--> (e) 

(a) ~ (b). Let f: Kpn ~ Kpn+l be a I-stage extension and let i: S3 ~ OKpn+l 
represent a generator of 'lT30Kpn+ 1 R< Z. By the Whitehead theorem the maps f and i 
induce the following left and right isomorphisms, respectively 

'lT4n+2Kpn R< 'lT4n+2Kpn+l R< 'lT4n+10Kpn+1 R< 'lT4n+l S3 . 

(f) ~ (b). Let g: S3 V s4n+2 ~ OKpn realize the spherical generators in dimen-
sions 3 and 4n + 2. Then g induces isomorphisms in H * and 'IT * in dimensions 
.;;; 4n + 3. Thus there are isomorphisms 

Kp n ~ 0Kpn g. (S3 V s4n+2) ~ S3 'lT4n+2 ~ 'lT4n+1u ~'lT4n+l ~ 'lT4n+l . 

(d) ~ (c). Let h: s4n+3 ~ Kpn be a map whose adjoint induces a homology 
isomorphism in dimension 4n + 2. Since there is a homotopy equivalence cp: 
OKpn ~ S3 X Os4n+3 it is clear that such a map h exists. 

I claim that Oh has a left inverse. To see this, consider the composition 
Oh. ~ Os4n+3 ~ OKpn ~ S3 X os4n+3 --> os4n+3. 

This composition evidently has degree ± 1 in H4n+2. Since H*Os4n+3 is a divided 
polynomial ring [17, p. 514], it follows that the composition is a homology equiva-
lence. Thus Oh has a left inverse by the Whitehead theorem. 

Let F denote the homotopy theoretic fiber of h. We must show that F ~ S3. Since 
Oh has a left inverse, it follows from the long exact sequence 

Oh. P. 4 +3 h. 
~'IT OKpn~'IT F~'IT S n ~ 

* * * 
that 'IT *S3 R< Coker( cp 0 Oh)* R< Coker Oh* R< 'IT *F. It is not hard to find a map that 
induces the composition of 'these isomorphisms; take p 0 '3 where '3 generates 
'lT30Kpn. 

(d) ~ (e). This is obvious. 
(c) ~ (a). Letf: s4n+3 ~ Kpn be a fibration with fiber a homotopy S3. The Thom 

space of f can be identified with the mapping cone Cf. The Thom isomorphism 
implies that H*(Cf ; Z) R< Z[u]ju n+2, where u restricts to a generator of H4(Kpn; Z). 
Thus Cf is a Kpn+ 1 and the inclusion Kpn --> Cf is the required I-stage extension. 

(b) ~ (d). The description of H*OKpn given earlier, together with the hypothesis 
'lT4n+2Kpn R< 'lT4n+lS3, implies that there is a generator g: s4n+3 ~ Kpn whose 
adjoint induces a homology isomorphism in dimension 4n + 2. Let '3: S3 --> OKpn 
be a generator and let JL denote the loop multiplication on OKpn. The map 
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induces a cohomology equivalence since the induced homomorphism is an isomor-
phism on the primitive generators and the rings are isomorphic. Since both spaces 
are I-connected, the above map is a homotopy equivalence. 

(e) => (f). Let r: OKpn ~ S3 be the retraction. Let a E 77'4n+lS3 be a class whose 
mapping cone Ca represents the 4n + 3-skeleton of OKpn. Consider the diagram 

j 
~ 

!r 

where i and j are inclusions. Comparing routes, it follows that a ~ * and so 
Ca "" S3 V s4n+2. Since the map j is 4n + 3-connected, H4n+20Kpn is generated by 
a spherical class. • 

The proof of Theorem 3 will follow the scheme 

(c) 

(d) 

In the proof some familiarity with fibrations is assumed. Just as the notion of an 
A2-space (or H-space) may be regarded as a first approximation to that of a loop 
space, the notion of an A2-fibration may be regarded as a first approximation to that 
of a principal fibration. For the reader's convenience we recall how the structure 
maps in an A2-fibration are related. In the following diagram 

F 

IX; 

E 

H 

FXF ~ FXE 

p 
~ 

?' P 0 77'2 

B 

the top row is the fibration in question. The map JL is an A2-form (or multiplication) 
on the fiber F. This diagram is assumed to commute pointwise. In addition the 
action map </> is assumed to extend 0,1): F V E ~ E. 

Throughout the proof, the abbreviations En and Pn will be used for En( X) and 
PiX). 

(a) => (b). Assume that Pn extends one stage. Then there is a fibration Yn+l: 
En+ I ~ Pn such that Yn = Yn+ I I En. In the diagram 

En ~ En+l 
!Yn !Yn+l 

Yn in-I 
E--'> Pn- 1 --'> Pn n 
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in which the top map i: e ~ [*, 1, e] is null homotopic. When Yn is converted into a 
fibration, the inclusion of En into En+ I is still null homotopic and the resulting fiber 
has the homotopy type of X. • 

PROOF OF COROLLARY 3.2. In this proof, assume that n > 1 and that all spaces 
have been localized at an odd prime p. Let y: s2n(p-l)-1 ..... Jp_2(s2n) be a class 
whose mapping cone is Jp_ 1(s2n). Since H*(Jp_ 1(s2n); Z(p») ~ Z(p)[U 2n l/(U2n )p, 
it follows by the proof of Theorem 1 that the fiber of y is s2n-l. 

Thus Jp_lS2n ) represents the projective space of an Ap_1-structure on s2n-l. If 
the class o['2n' y] = 0, then by Theorem 3 there is a I-stage extension of Jp_ 1(s2n). 
In the Zip-cohomology of this extension, uP oF 0. As noted by J. C. Moore [11], the 
unstable axiom 0' nu = uP and the stable decomposition of Jp_ 1(s2n) as a wedge of 
spheres then imply that the Steenrod operation 0'n is indecomposable. Since n > 1, 
this contradicts the results of Liulevicius [9]. 

Therefore the given obstruction is nonzero. To see that this class lies in the kernel 
of double suspension, let ['2n' y] = Y 0 g + EO['2n, y] in 7T*Jp_2, where g is some 
class in 7T*s2n(p-l)-1 and E denotes the suspension operator followed by the 
inclusion of the bottom cell in Jp - 2 = Jp _ 2(S2n). Consider the sequence of inclu-
sions 

S 2n ~J ..... J ..... J ..... J ~ ~s2n+l I p-2 p-l 00 • 

Since Whitehead products vanish on loop spaces, the left side of the above equation 
is mapped to zero in Joo • The composition y 0 g is also mapped to zero because y is 
an attaching map for Jp - 1• The image in Joo of the remaining term is thus forced to 
be zero. 

When the loop functor is applied to this sequence of inclusions, the double 
suspension factors through the resulting composition. The equality E 2o['2n, y] = ° 
follows .• 

PROOF OF THEOREM 4. Let y' = y + g: s4n-l ..... Hpn-l. Since g has finite order, 
the Hurewicz homomorphism takes the adjoint of y' to a generator of 
H4n_2(~Hpn-l; Z). To prove that the mapping cone of y' is a Kpn, the reader can 
now retrace the steps from (f) to (a) in the proof of Theorem 2, while keeping track 
of the maps involved. 

The extension of Kpn in Theorem 4(b) will be constructed one stage at a time. At 
each intermediate stage I shall first show that an extension exists. By Corollary 3.1, 
this amounts to showing that o[ '4' y] = 0, where y is the attaching map for the top 
cell. Then I shall choose the extension with care. The proof is quite technical. It 
makes repeated use of the following calculations [21] in whichp is an odd prime. 

{ 

0, 
3 _ Zip, 

7Tk S(p) - 0, 

Zip, 

3<k<2p, 
k= 2p 
2p<k<4p-3, 
k = 4p - 3 

TABLE 4.1. 
The proof is divided into three cases. 

generated by ai' 



QUATERNIONIC PROJECTIVE n-SPACE 579 

Case 1. n = (p + 1)/2. By the above table and a little arithmetic, it follows that 
og = ai' up to a unit of Z/p. Thus Kpn is classical at all primes other than p. By 
Corollary 3.1 and Table 4.1, the localization KP(~) extends (p - 3)/2 stages. Indeed, 
those hom9topy groups of S(~) in which the obstructions lie are all zero. 

The extension in part (b) then exists by the following lemma. 

LEMMA 4.2. Let I and I' denote sets which partition the set of all prime numbers. 
Assume that Kpm is classical at all primes in I. If KP{F) has an r-stage extension, then 
there is an extension Kpm+r of Kpm which is also classical at all primes in I. 0 

PROOF. Let Kq denote the 4q + 2-skeleton of the rational Eilenberg-Mac Lane 
space K(Q, 4). The hypothesis and Sullivan's arithmetic square [20] imply the 
existence of maps 

Hl(i) 

whose pullback is homotopy equivalent to Kpm. In the next diagram 

Hpm+r 
(I) 

hm+r 
--> Km+r 

i i 

Hl(i) 
h m 
--> Km 

the vertical maps are the skeletal inclusions. The top map exists by a simple 
obstruction theory argument. Let KP{F)+r denote an extension of KP{F). The analo-
gous map, km+r' exists by the same argument. To obtain the required extension of 
Kpm, return to the first diagram, replace m by m + r throughout, and take the 
pullback. • 

The obstruction in part (c) of Case 1 lies in 7I'4p-3S3. Since og is a multiple of a l 

and a l 0 E 2p-3al generates the P-primary part of this group, the result follows. 
Case 2. n > 2 and p = 3. In this special case there is nothing to prove in part (b). 
The proof of part (c) requires a detailed analysis of the Whitehead product [t4' y']. 

This analysis will make use of the two splittings of 7I'*Hpn-1 which are induced by 
the S3-fibrations y and y'. 

To fix notation, let 0 and 0' be the corresponding boundary operators and let E: 
71' *_IS3 --> 71' *Hpn-I be the homomorphism t4 0 EI-that is, suspension followed by 
the inclusion of the bottom 4-cell in Hpn-I. Notice that E is a splitting homomor-
phism for both 0 and 0'. Since the deviation element g has finite order, it is in the 
image of E, and henceg = Eog = Eo'g. Now, 

[L 4• y'] = [t4• y] + [t4' g] 
=Y O X+[L 4 ,g] 
=yoX±E(L3,Og) 

by bilinearity 
for some x. by Corollary 3.1 
by [5, Formula 1.1]. 
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On the other hand, 

[t4' y,] = y' 0 u + Ev 

= (y + g) 0 u + Ev 
= you + g 0 u + Ev 

= you + E(ag 0 w) + Ev 

by the y' splitting 
(note that u E 7T4n+2S4n-l) 
since u is a suspension 
where E1w = U. 

The two expressions thus obtained for [t4' y'], when compared in the splittings 
mentioned above, yield a'[t4 , y'] = v = -(ag) 0 w ± (t 3 , ag). The class w is in the 
stable 3-stem and hence is a multiple (say, - n I) of the classical generator v. The 
other term, (t3' ag), is the quaternionic Samelson product of these two classes. 
Hence (t3' ag) = w 0 E3(ag), as can be seen from the diagram 

S3 X sq '3 X / S3 X S3 
(x, Y)f-+xyx-1y-1 

S3 --> --> 
as quaternions 

! ! ,llw 

S3 1\ sq '31\/ s6 --> 

in which w denotes the Blakers-Massey element. Since a l is the 3-primary part of v 
(stably) and w (unstably), the conclusion of part (c), Case 2 follows. 

For the facts on the 3-stem, used above, the standard reference is of course Toda 
[23]. 

Case 3. n > (p + 1)/2 and p > 3. In the proof of Case 2, the obstruction to a 
I-stage extension of Kpn (i.e., a'[t, y']) was shown to have order 2Q 3b• The hypothesis 
of Case 3 implies that y' is classical at these primes and so a I-stage extension of 
Kpn exists. By Lemma 4.2 this extension can be chosen to be classical at all primes 
less thanp. 

To evaluate the obstruction to the next I-stage extension, and the ones that follow, 
I shall use higher order Whitehead products. The absolute version of these products 
is well known (e.g. see Porter [13]) but the relative version appears to be new. In the 
appendix, the precise definition is given for the relative version. The proof of the 
following lemma is deferred until that time. 

LEMMA 4.3. Let Hpn-I --> Kpn --> ••• --> Kpn+k-2 --> Kpn+k-I be a sequence of 
extensions in which all spaces are localized at P. If 1 < k ,,;;;; (p - 1)/2, there is a 
relative higher order Whitehead product 

[t l , ... ,tk' e4n ] C 7T4(n+k)_I(Kpn+k-l, Hpn-I), 

in which each tj generates 7T4Hpn-1 and e4n generates the relative group in dimension 
4n. This relative product consists of a single element whose order is infinite. Moreover 

(a)a[tl> ... ,tk,e4n l = [t l,···,tk,ae4n ]in7T*Hpn-l, 
(b)i*[tl>'" ,tk , e4n l = u[t, e4(n+k-l)] in 7T *(Kpn+k-I, Kpn+k-2) 

where i is the obvious map of pairs, u is a unit in Z(p), and e4(n+k-l) is a relative 
generator. 

The absolute product in part (a) is equal to 
(c) 0 ifl <k«p -1)/2, 
(d) n1y 0 E 4n - 4a l + n2E(al 0 E 2p-3(ag) if k = (p - 1)/2. 0 
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The localized extensions in Lemma 4.3 appear in the following commutative 
diagram 

Wm(}(pn+k-I, }(pn+k-2) 
a 

Wm - I }(pn+k-2 -> 

j. j j i • 
Wm( }(pn+k-I, Hpn-I) 

a 
wm_1Hpn-1 -> 

Let m = 4(n + k) - 1 and choose the relative generator so that oe4n = y'. Let y" be 
the attaching map for the top cell of }(pn+k-I and choose the other relative 
generator so that oe4(n+k-l) = y". A diagram chase using parts (a), (b), and (c) of 
Lemma 4.3 then shows that u[ L, y"] = O. Since u is a unit in ZiP)' the obstruction 
vanishes. 

The argument just given can be used for k = 2,3, ... ,(p - 5)/2. This proves part 
(b) for Case 3. The proof of Theorem 4(c) for this case uses parts (a), (b), and (d) of 
Lemma 4.3, the following commutative, P-Iocal diagram 

Wm - I }(pn+k-2 a" 
wm _ 2S 3 -> 

j i • j= 

wm_1Hpn-1 
a' 

Wm_2 S3 -> 

and an argument similar to the one used in Case 2. The details are left to the reader. 
This completes the proof of Theorem 4. • 

PROOF OF THEOREM 5. The Adem relation 0'10'1 = 20'2 implies that if 0 =1= u E 
H4(}(pP; Zip), then 0' l u = ±2U(p+I)/2. However if we (1) specify the generator u, 
(2) identify the classical coefficient as + 2, and (3) agree that the mod p Hopf 
invariant of a l is + 1, it then follows that in the mapping cone of 

y + Ema l : S2p+ 1 -> HP(p-I)/2, 

the relation 0' l u = (2 + m )u(p+ 1)/2 holds. This relation would remain true in any 
extension. In particular, for a (p - 1)12 stage extension, the equality 2 + m == ± 2 
(mod p) is forced. The conclusion of part (a) follows. 

In part (b), let r = 1 + t( P - 1)12 and let }(pr denote the mapping cone of 
y + Emat : S2t(p-I)+3 -> Hpt(p-I)/2. 

The canonical complex 2-plane bundle over HP' is well known to have the Chern 
character described in part (a) (e.g., see [7]). Following Adams [3, p. 67] we specify 
Elat to have complex e-invariant {-lip}. Using the description of the e-invariant 
in terms of the Chern character, [2, §7] or [7], it is not difficult to see that there is a 
class y E K( }(pr; Zip»~ with Chern character 

2d m 
ch{y) = j;l (2i)! - ]iv' 

where v E H\}(P'; Zip»~ is a generator. 
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Suppose that Kr extends (p - 1)/2 stages. Then by Theorem 6(b) there is, by 
restriction, a class x E K(Kr; Z(p)) with Chern character ch(x) = ~~=I (2u i/(2i)!) 
where u is also a generator of H4(Kpr; Z(p)). If z E K(Hpr; Z(p)) denotes the 
image of the canonical complex 2-p1ane bundle, then the assignments 

x~z, chZ<x)~ch2(z) 

induce isomorphisms between the localized K-theories and cohomologies of Kpr and 
Hpr, which commute with the Chern character. This implies, in particular, that for 
any p-adic square {J E Z(p)' there is a class, say xp E K(Kr; Z(p))' such that 

r 2{JiUi 
ch( xp) = i~\ (2i)!· 

This follows because K(Hr; Z(P)) Rj K(HP(~); Z(p)) and HP(~) has self-maps with 
degree {J in dimension 4. Sullivan constructed them in [20, p. 5.93]. 

Since u and v are generators of H\Kpr; Z(p))' there is a unit k E Z(p) such that 
ku = v. I claim that k is the square of a p-adic integer. One way to see this is first to 
apply the idempotent E2: K(Kr; Z(p)) <-= defined by Adams in [3, p. 85]. Then 

ch(E2x) = u + 2U(p+I)/2/(p + 1)!+ higher terms 

and 
ch(E2y) = ku + 2(ku)(P+I)/2/ (p + 1)!+ higher terms. 

The Chern character applied to the difference E2 x - (1/ k )E2 y, together with 
Adams integrality [1], imply that k(p-I)/2 == 1 (mod p) and so the claim follows by 
elementary number theory. Letting k = {J in the above remarks, it follows that 
ch(xk - y) = mvr/p which again contradicts Adams integrality if m :e 0 (mod p). 
Hence in this case there is no (p - 1)/2 stage extension of Kpr. The nonexistence of 
such an extension implies, by Lemma 4.2, that these Kpn 's are not p-equivalent to 
Hpn .• 

Appendix. Higher order Whitehead products. The treatment of relative products 
given here follows closely G. J. Porter's exposition of the absolute case [13, 14]. The 
spaces involved are assumed to be countable, connected, CW -complexes with 
basepoints. All maps are assumed to preserve basepoints. We first recall some facts 
about nth order absolute Whitehead products. 

Given spaces AI' . .. ,An' there is a cofibration 
w j 

Q(AI, ... ,AJ --->T(~AI, ... ,~An) --->~AI X··· X~An 

in which the space in the middle is the fat wedge. As a subset of the cartesian 
product on the right, the fat wedge consists of all points which have at least one 
coordinate equal to a basepoint. The map j is the inclusion. The first space 

n 
Q(A\, ... ,An) = U CAl X ... XA i X ... X CAn C CAl X ... XCA n, 

i=\ 

is a model for the suspended smash product ~n-\A\ /\ ... /\An. Using this model, 
there is a simple description of the map W; it is the identification map which 
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collapses each Ai C CAi to a point. Equivalently W is the restriction of the obvious 
quotient map CAl X ... X CAn -- ~AI X ... X ~An. 

The map W is called the universal Whitehead product. All other nth order 
Whitehead products which involve ~AI' ... ,~An factor through W. In more detail, 
assume that maps.t;: ~Ai -- X, for i = 1, ... ,n, are given. 

DEFINITION. The Whitehead product [fl' ... ,fn] in [Q(A I, ... ,An), X] is the set of 
homotopy classes {F 0 WI F: T(~AI' ... ,~An) -- X and FI ~Ai ""'.t; for each i}. 

For n = 2, this set consists of one class, but for n > 2 it may contain many classes 
or it may be empty. The latter possibility can be ruled out if enough lower order 
products contain a null homotopic class. 

THEOREM A.1. The product [fl' ... ,f,,) is nonempty if and only if 0 E [.t;" ... ,.t;)for 
each sequence 1 .;;; i l < ... < ij ';;; n (1 <j < n). 0 

The proof of this result requires the following basic characterization of trivial 
Whitehead products. Both results are proved in [13]. 

THEOREM A.2. The trivial class 0 E [fl' ... ,f,,) if and only if there is a map '?J: 
~AI X ... X ~An -- X such that '?JI ~Ai "'" .t; for each i. 0 

DEFINITION. Given a Whitehead product [fl' ... ,fn], its indeterminacy, denoted 
In[fl' ... ,f,,], is the set of differences {x - y E [Q(A I,··· ,An), X] I x, y E 
[fl'·· .,f,,]}. 

The group structure used in forming these differences is assumed to be the one 
that is induced by the homotopy equivalence h: ~n-IAI /\ ... /\An -- Q(A I, ... ,An), 
described in [13, Theorem 1.2] and the suspension structure on the domain of h. 

In general it is difficult to compute the indeterminacy of a Whitehead product, but 
some special cases are known. The following result is due to F. D. Williams [24]. 

THEOREM A.3. Assume that.t;: ~Ai -- X, i = 1, ... ,n, are maps with the following 
properties: 

(a)[.t;" ... ,.t;) = {OJ for each sequence 1 .;;; i l < ... < ij ';;; n (1 <j < n). 
(b) For each pair (i, j) where 1 .;;; i <j';;; n and for each map g: ~Ai /\ ~Aj -- X, 

the (n - l)th order product [g, fl'· .. ,!;, ... ,t,··· ,f,,) = {OJ. 
Then In[fl' ... ,f,,) = {OJ. 0 

The relative higher order Whitehead products considered here involve spaces 
A1, ... ,An and a pair (CB, B). Here, as before, CB denotes the reduced cone on B. 
There is a cofibration of pairs 

(W' W) ("' ") 
(Q', Q) ~ (T', T) J.l (p', P) 

in which Q' = Q(A1, ... ,An' CB), P' = ~Al X ... X~An X C~B and T' C P' is 
the corresponding fat wedge. The abbreviations Q, T, and P denote the spaces 
Q(A1,··· ,An' B), T(~Al' ... ,~An' ~B) and ~Al X ... X~An X ~B, respectively. 

If a typical point in Q', T' or P' is represented in coordinates « ai' t 1 ), ••• ,( an' t n ), 
(b, t, s », with the necessary identifications understood, then the subspaces Q, Tor P 
correspond to the value s = o. 
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The map W' is the identification which collapses each Aj C CA j to a point and 
which also collapses the cone CB C C2 E, given by coordinates (b, 0, s), to a point. 
Notice that the restrictions W' I Q and j' I T agree with the definitions of W and j 
given in the absolute case. The quotient map (CAl X ... X CAn X C 2B, Q')-
(P', T') is clearly a relative homeomorphism. Since this map restricts to W' on Q' 
and since the product of cones is contractible, the sequence Q' - T' - P' is a 
cofibration. 

DEFINITION. Given a pair of spaces (X, Y), and maps /;: ~Aj - Yand (g', g): 
(C~B, ~B) - (X, Y), the relative higher order Whitehead product[fl'··· ,fn,(g', g)] 
in [Q', Q; X, Y] is the set of relative homotopy classes {(F' 0 W', F 0 W) I (F', F): 
(T', T) - (X, Y) is a map of pairs such that FI ~Aj ~ /; for each i and (F', F) I 
(C~B, ~B) ~ (g', g)}. 

From this definition it is clear that there is a boundary operator a given by 
restriction, such that 

a[tp ... ,/",(g', g)] ~ (fl' ... '/'" g] C [Q, Y]. 
The next two results are relative versions of Theorems Al and A2. Their proofs 

are straightforward relative versions of Porter's proofs for the absolute case and are 
therefore omitted. 

THEOREM A4. The relative product [fl' . .. ,/", (g', g)] is nonempty if and only if, for 
each sequence 1 OS;;; i l < ... < ik OS;;; n, 0 E [/;" ... ,/;.1 where 1 < k < n, and 0 E 
[/;" ... '/;k' (g', g)] where 1 OS;;; k < n. 0 

THEOREM AS. The trivial class 0 E [/I, ... ,/",(g', g)] if and only if there is a map 
(%', %): ~AI X ... X~An X (C~B, ~B) - (X, Y) such that %1 ~Aj ~ /; for each i 
and (%', %) I (C~B, ~B) ~ (g', g). 

PROOF OF LEMMA 4.3. All spaces, maps, and groups in this proof are assumed to 
be localized at P. Let L denote the fiber of the inclusion Hpn-I _ Kpn+k-I. An 
application of the Serre cohomology spectral sequence shows that H*(L; Z(P» ~ 

H*( s4n-1 X {ls4(n+k)-I; Z(P». Since p-torsion first occurs in 7T *s4n-1 in dimension 
4n - 1 + 2 P - 3, the relative group has the following values: 

7T (Kpn+k-I Hpn-I) ~ L q , ~ 7Tq _ 1 

Z(P)' 

0, 

Z(P)' 

q = 4n, 

4n < q < 4( n + k) - 1, 

Z(P) EB Zip, 

q = 4( n + k) - 1, k < (p - 1)/2, 
q = 4( n + k) - 1, k = (p - 1)/2. 

TABLE 4.3. 
From the equivalence {lHpn-1 ~ S3 X {ls4n-1 it follows that 7TiHpn-l) = 0 for 
4 < q < 2 P + 1. These two computations, together with Theorem A4, imply that 
the product ['I' ... , 'k' e4n] is not empty. 

If u E H4(Hpn-l) and v E H 4n(Kpn+k-I, Hpn-I) are generators, it is clear, for 
dimensional reasons, that the product ukv is zero. However, if 0 E ['I' ... ,tk, e4n ], it 
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would follow from Theorem A.S and naturality that the product Ukf) is not zero. This 
observation has a number of implications for the relative Whitehead product. The 
most obvious implication is that 0 f£. ['I"" ,'k' e4n ]. By using rational cohomology, 
the above observation shows that the relative Whitehead product contains no 
elements of finite order. Finally, it implies that the set ['I"" ,'k' e4n ] consists of a 
single element. To see this, choose a generator a', n E '1T4(n+k)_I(Kpn+k-1, Hpn-I) 
so that some member of the Whitehead product maps trivially into the relative 
mapping cone (q, Cr). Let the symbols 'i' e4n , u and f) denote the corresponding 
generators in the homotopy and cohomology groups of this mapping cone. 

By Theorem A.5 there is a map ('F' , 'F): (P', p) ~ (q, Cr) where (P', P) = 
(S4)k X (D4n, s4n-l) which restricts to e4n and to each 'i' Lety E H4n(p', P) and 
Xi E H 4(P) denote the generators associated with these restrictions. A simple 
calculation shows that ('F' , 'F)*(ukf) = k!x l •• ,XkY' Since k.;;;; (p - 1)/2, the class 
k!x l ••• xkY generates H4(n+k)(p', P; Z(p». Hence ('F' , 'F) induces a Z(pfcohomol-
ogy isomorphism in dimension 4( n + k). It follows, by a standard argument, that 
the member in [, I' ... , 'k' e 4n] through which the restriction (F', F) factors is a 
multiple, by a unit in Z(P)' of (r', n. 

Assume that k < (p - 1)/2. From Table 4.3, it is clear that each member of 
['I"" ,'k' e4n ] is a multiple of the generator (r', n. Therefore, the previous cohomol-
ogy calculation is applicable to each member of the product. But it is easy to see that 
different members of the product must produce different cohomology homomor-
phisms in dimension 4( n + k). Thus, in this case, there is only one element in the 
relative product. 

The case k = (p - 1)12 is more delicate because Table 4.3 suggests that there 
may be more generators (r', n from which to choose. However it follows by 
naturality that any generator, through which a Whitehead product factors, must 
have the property that ~If) = 0 in the Zip-cohomology of its mapping cone. The 
class a l generates the Zip-summand in Table 4.3. Since a l is detected by ~\ it 
follows that a generator (r', n can be chosen so that every member of [, I' ... , 'k' e 4n] 
is a multiple of this class. The argument used in the case k < (p - 1)/2 then 
applies. 

For the moment let N = n + k and consider the homomorphism 
J*: '1T4N_I(KpN-I, Hpn-I) ~ '1T4N_I(KpN-I, KpN-2). 

The method used earlier in computing the first group can be used to compute the 
next two groups (moving right) in the long exact sequence of the triple. Their values 
can be shown to be Z(P) and 0 respectively. Hence the map J* is surjective with a 
finite kernel. The Blakers-Massey theorem [6] asserts that [" e4(N-l)] is a generator 
of the second group. It follows that the generator (r', n, used earlier, may be chosen 
to map to this product. The conclusion of part (b) follows. 

Part (c) of Lemma 4.3 is a consequence of the following more general result. 

PROPOSITION 4.4. Assume that k < (p + 1)/2 < nand q.;;;; 4(n - 1) + 2p, where 
p is a prime number. Then all kth order Whitehead products in '1TqHI(~)1 equal {O}. 
o 



586 C. A. McGIBBON 

PROOF. Suppose that the result is true for k - I where k satisfies the above 
inequality. By Theorem A.3 it follows that each kth order Whitehead product in 
question consists of a single element. Using the addition formula of [13, Theorem 
2.13a], each product in this range of dimensions can be expressed as a sum 
f\[g\, ... ,gd + f 2[g\,··· ,gk-\' y] where each gi = to "'£h i and each fi = 0 or 1. By 
Theorem 2.1a of [13], there is a factorization 

[t\, ... ,td 0 ",£k-\h\ 1\ ... I\h k = [g\, ... ,gk], 

and 

[t\, ... ,tk-\, y] 0 ",£k-\h\ 1\ ... I\h k_\ 1\ 1 = [g\, ... ,gk' y]. 
In each factorization, the conditions on k, nand p, together with Tables 4.1 and 4.3, 
respectively, imply that the class on the left is zero. 

This completes the induction step. The argument just given can easily be adapted 
to handle the initial case, k = 2, and so the proof is complete. • 

For the proof of part (d), let k = (p - 1)/2. The result just proved, together with 
Theorem A.3, implies that the following products have zero indeterminacy. 

[t, ... ,tk , y,] = [t\, ... ,tk' y] + [t\, ... ,tk' g]. 

The class in the middle is the boundary of a relative product in 7T *(Hpn+k-\, Hpn-\) 
and so it certainly vanishes in 7T *Hpoo. This implies that the middle class has the 
form y 0 x for some x E 7T4n -\ +(2p_3)s4n-\. Thus x = n \ E 4n - 4a\ for some integer 
n\. 

Since g = t 0 "'£( a g), thereis a factorization 

[tp ... ,tk , g] = [t\, ... ,tk+\] 0 ",£k11\·· ·1\11\ ag 
= (n 2Ea\) 0 (E 2p-2(ag)) = n2E(a\ 0 E 2p-3(ag)). 

This completes the proof of Lemma 4.3. 
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