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IRREDUCIBLE REPRESENTATIONS OF An
WITH A 1-DIMENSIONAL WEIGHT SPACE

BY

D. J. BRITTEN AND F. W. LEMIRE1

Abstract. In this paper we classify all irreducible linear representations of the

simple Lie algebra An which admit a one-dimensional weight space with respect to

some Cartan subalgebra H of An. We first show that the problem is equivalent to

determining all algebra homomorphisms from the centralizer of the Cartan subalge-

bra H in the universal enveloping algebra of An to the base field. We construct all

such algebra homomorphisms and provide conditions under which two such algebra

homomorphisms provide inequivalent irreducible representations of An.

1. Introduction. In this paper, we classify all irreducible representations (p, V) of

An = sl(n + 1, F) having at least one 1-dimensional weight space. This classification

includes all irreducible representations having a "highest" weight and hence all finite

dimensional irreducible representations. A precise statement of our main result is

given at the end of this section after we have developed the necessary terminology

and background.

We use Humphreys [8] as our basic reference for notation, terminology and

preliminary results. Throughout this paper, F denotes an algebraically closed field of

characteristic 0, L a simple Lie algebra of rank n over F, H a fixed Cartan

subalgebra, U(L) the universal enveloping algebra of L, C(L) the centralizer of H in

U(L) and (p, V) an irreducible representation of L having a weight space decom-

position with at least one 1-dimensional weight space. If/is a function with domain

D and A Ç D then we denote by/ IA the restriction of the function/to the set A.

A weight space Vx of (p, V) is a nonzero subspace of V corresponding to some

element X in the dual space H* of H and is defined by

Vx — (u £ V\ (p(h) — X(h))"v = 0 for some positive integer n and for all h £ H).

By our assumptions of the existence of a 1-dimensional weight space and of the

irreducibility of (p, V) we have that for each X £ H*, Vx = Vx= {v £ V\ p(h)v —

X(h)v for all h £ 77}. Clearly both Vx and Vx are p(77)-invariant subspaces of V

and

v = 2   ©fx=  2   ®vx.
Xe/7* Xeff*
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The adjoint representation (ad, L) of L induces a natural weight space decomposi-

tion of L called the root space decomposition. We write this as

L = Lq © ¿d   ®Ly,
ye*

where $ denotes the set of nonzero roots. Then L0 — H and, for all y £ <J>,

dim Ly = 1.

Let A = {ax,...,an} denote a base of 0 and $+ = {/},,.. -,ßm) the corresponding

positive roots. For each /}, £ «I>+, we select elements Xß_ and X_ßi belonging to Lßj

and L_ß respectively and for each a, £ A we select elements «a £ H such that

{Xß , X_ß , ha | ßj £ <&+ , a, £ A} forms a Chevalley basis of L. If we consider

U = U(L) as an L-module under the adjoint operation, U has a weight space

decomposition U = 2,,eff. © c/, with LfLj, Ç Uv+fi. The zero weight space U0 is a

subalgebra of U equal to C(L). A Poincare-Birkhoff-Witt basis for U is given by the

set of all monomials

(1.1) u(p, Ï, q) = XP_L ■ ■ ■ XP_hh'^ ■ ■ ■ h'iXft ■ ■ ■ Xß:,

where p — (p¡) and ¿7 = (¿7,) are m-tuples of nonnegative integers and / = (/,) is an

«-tuple of nonnegative integers. Using this basis we have that

(1.2) C(L) = t/0 = lin.spanju(p,ï, q) \ 2 (fc -pt)ß, = Ok

The following theorem is the key to our classification of all pointed representa-

tions of An. Although a proof of this theorem appears in the hterature [9], we include

it for the convenience of the reader and to free it from Zorn's Lemma.

Theorem 1.3. (i) // Vx is any weight space of the irreducible representation (p, V) of

L then Vx is an irreducible C(L)-module and if dim Vx — 1 and 0 ¥= vx £ Vx then the

map f : C(tL) -» F defined by Ç(c)vx — p(c)vx is a nontrivial algebra homomorphism.

(h) If I : C(L) -» F is a nontrivial algebra homomorphism, then there exists a unique

maximal left ideal M of U containing kerf. Moreover, the irreducible left regular

L-module U/M has (U0 + M)/M as a I-dimensional weight space with weight

\ = UH.

Proof, (i) Let Vx be a weight space of (p, V) and 0 ¥= vx £ Vx. Consider (p, V) as

a representation of U. Since p(U)vx = V and p(f^.)t)x £ Vx+ , the irreducibility of

(p, V) imphes that p(C(L))vx = p(U0)vx — Vx. Thus Vx is an irreducible represen-

tation of C(L). Suppose now that dim Vx = 1 and define f: C(L) -» F by setting

Ç(c)vx — p(c)vx. Since p(C(L))vx = Vx and p is an associative representation of U,

we have that f is a nontrivial algebra homomorphism.

(h) Let f: C(L) -* F be a nontrivial algebra homomorphism and set kerf = A.

Let / be any proper left ideal of U containing A. There exists at least one such

proper left ideal since UA n C(L) = A ¥^ C(L) and hence UA ¥^ U. Let x be any

nonzero element of 7" and write x = 2 x„ where x„ £ U„. We show that each x„ £ 7"
(• r* r1 p

by induction on kx=\{fi\x)i¥=0}\ . The result is obviously true when kx = 1 and
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hence we assume that kx — n > 1 and that the result is true for all y £ / with

ky<kx. Thus for each h £ H we have

(1.4) Ax = S**, = 2 ([A, *„]+*„*)

= 2(m(A)x(, + V(A))    mod £7,4

= 2(m(A) + Í(A))jci,   mod CM

For each p £ 77* with x, ¥= 0, define yrJt = 2^y(t>(h) - p(A))x,.. Then, by (1.4),

y„ . = (»»(A) + f(A))x — Ax mod Í/VÍ and hence yv h £ 7. Since kyh < kx we have

that (KA) — pWjx^ £ I for all A £ 77 and all p # p. If p i* e then there exist

A £ 77 with »»(A)- p(A)=7^0 and hence x £ I for all p ^ v which in turn implies

that Xj, £ / for all p.

From (1.4), we see that xM + UA is a weight vector in U/UA with weight

p + f 1H and hence 7/ IZ/1 has a weight space decomposition given by

(1.5) I/UA = 2{(mUlt)+UA)/UA.

Since / is a proper ideal, in C(L) =A and hence every proper left ideal /

containing A has the property that

(1.6) I/(UA)Q 2 (U^UA)/(UA).
u^O

It follows that the sum of all proper left ideals containing A is the unique maximal

left ideal M of U containing A.

Equation (1.4) implies that (C(L) + M)/M is a weight space of U/M with

weight X = tlH. Since (C(L) + M)/Mxs C(L)/(C(L) D Af ) = C(L)/A, this

weight space is 1-dimensional.    D

From Theorem 1.3, it follows that in order to determine all irreducible representa-

tions (p, V) of L admitting a 1-dimensional weight space, it suffices to find all

algebra homomorphisms f: C(L) -* F. An algebra homomorphism f: C(L) -» F is

called a mass function, and an irreducible representation admitting a 1-dimensional

weight space is called pointed.

In this paper, we construct all mass functions for the algebras An and hence

determine all pointed representations of An.

In order to illustrate how our results extend the standard results on classifying

irreducible representations of highest weight we briefly review these results. If (p, V)

denotes an irreducible representation with highest weight X then the weight space Vx

is 1-dimensional and there exists a base A of roots such that Vx+a = {0} for all

a £ A. Let f: C(L) -» F be the mass function associated with the 1-dimensional

weight space Vx. Let 4': C(L) -» F[X,,.. .,A„] be the Harish-Chandra homomor-

phism relative to the base A.

*(u(5 I S)) = \° *»(jÂM)eCiL)mthq*ô,
V "       [A, •••X/J!     if u(p, Ï, q) <EC(L) with/7 =¿7 = 0,
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where the A,'s are indeterminants. Now if e: F[XX,...,X„] -» F is defined by

e(A,) = ?(Aa ) for each a, £ A we have f = « » *. Thus for any base A we can

construct all mass functions associated with highest weight spaces with respect to A

by composing the Harish-Chandra homomorphism ty relative to A with any evalua-

tion map e.

Our aim is to generahze the preceding results for the case of L = An. For each

pair (A', A) consisting of a base A of the roots of An and a subset A' of A we define a

map ^ A from C(L) into a ring of polynomials over F in several commuting

indeterminants. This map generalizes the Harish-Chandra homomorphism in the

sense that the definition reduces to the standard Harish-Chandra homomorphism

relative to A where A' = 0. Our main result is

Theorem 1.7. Let f : C(L) -» F be a mass function. Then there exists a base A, a

subset A' of A and an evaluation map e such that f = e ° t^».

This paper is organized as follows. §2 contains the definition of the generalized

Harish-Chandra homomorphisms referred to in Theorem 1.7 and the definition of a

group of automorphisms on An which we use to change from one base of the root

system of An to another and to compute the values of a given mass function relative

to different bases. In §3 we prove Theorem 1.7 for the case Ax and A2. The proofs of

these results are outlined in [4, 15] but we present them here in full detail since our

approach is different and provides the key to the general result. §4 contains the bulk

of the technical results concerning mass functions on A3, A4 and An which we use to

establish Theorem 1.7 for the general case. Many of the results in this section depend

heavily on the use of identities in C(An). It should be noted that for the sake of

simplicity and convenience these identities have not been expressed in any fixed

linear basis of C(An). In §5, we complete the proof of Theorem 1.7. Finally, §6

addresses the problem of selecting a set of mass functions on C(An) which label the

equivalence classes of pointed representations of An in a one-one fashion.

2. Generalized Harish-Chandra homomorphisms. In the remainder of this paper,

we deal with L = An = sl(n + 1, F). The subalgebra of An consisting of all diagonal

matrices in An is a Cartan subalgebra which we denote by 77. The root system O of

An relative to 77 is then given by

$ = (w,. - Wj\i, j= 1,2,...,n,i^j),

where wk is the map which projects an order n + 1 matrix onto its (k, k)th

component. A base A of 3> is given by

A= {w,T<wl+i\i= 1,2,...,«}

and the set of positive roots í>+ of i> relative to A is

$+ =  {W,. - Wj. I 1 < / <j < « +  1 } .

If {e¡j} denotes the standard set of matrix units, then a Chevalley basis of An is

given by {h¡, XWk_w¡ \i= 1,2,...,«; k, I = 1,2,...,«+ 1 with k ¥= I) where A, = eü

- ei+i,i+ianàXWk_Wi = ekl.
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It should be noted that even if we select a different base of $ we always choose a

Chevalley basis of An corresponding to this base which has the same structure

constants as those arising from the basis {eH — e¡+1¡+,, ek ,}. This fact is used in the

computation of identities in C(An) which we need later in this paper.

Let A = (a,,... ,a„} be some fixed base of $ and let 4>+ be the corresponding set

of positive roots relative to A. We then select a Chevalley basis {A, = ha , Xß , X_ß \

a, £ A, ßj; £ 4>+ } as specified above. Assume that A' is either 0 or A' = Ü|= ,A¡cA

where the A,'s generate mutually orthogonal irreducible root subsystems <£, of $.

The subalgebra of An generated by {À^l p £ $,} is isomorphic to An¡ where

«, = | A, | . We identify An with this subalgebra. This identification extends naturally

to the universal enveloping algebra U(An ) and its cycle subalgebra C(An ). The

subalgebras of U(An) identified in this manner with U(An) and C(A„ ) are denoted

by i/(A,) and C(A,) respectively.

Let % denote the subalgebra of C(An) with 1 generated by (A¿ | a, £ A, a, £ A'}

and let C denote the linear subspace of C(An) generated by all elements u(p, /, ¿7)

£ C(An) of the form (1.1) such that ¿7 = (¿7,) and ¿7, =^ 0 for some ßj £ U'=1 $,. It

is shown in [12] that C is an ideal of C(An). It then follows from the proof of the

Poincaré-Birkhoff-Witt Theorem that C(An) can be written as a vector space direct

sum C(An) = DCC(A,)C(A2) • • • C(A,) 0 C. In case A' = 0, we have C(y4„) =

%® C and % is the universal enveloping algebra of 77.

Lemma 2.1. Let R be any commutative associative F-algebra with 1. If %: % -* R

and'fy/. C(A,) -* R for i = 1,2,...,/ are F-algebra homomorphisms with ^¿(l) = 1 for

i = 0,1,...,/, then there exists a unique F-algebra homomorphism ^: C(y4„) '-* R such

that * I % = %, ^ i C(A¡) = % and C O ker ^.

Proof. When A' = 0 the result follows trivially from the decomposition. Since

the A,'s are mutually orthogonal we have that [£/(A,), l/(A-)] = 0 for all i, j —

1,2,...,/ with i ^j. We also have that [%, C(A,)] = 0 for / = 1,2,...,/ and hence

every monomial u(p, I, ¿7) £ C(An) of the form (1.1) is either in C or can be

expressed uniquely as a scalar times a product of monomials hcx ■ ■ ■ c, where A £ %

and ct £ C(A,). Thus if there exists an F-algebra homomorphism ^ satisfying the

condition above it must be unique. On the other hand, if we define ^ on each basis

element u(p,l,q) £ C(A„) by setting ^(u(p, l,q)) = 0 if u(p,l,q) £ C and

*(u(p, Î, q)) = k%(h)<!rx(cx) • • • %(c,) where u(p, /, ¿7) = khcx ■ ■ ■ c, with h £ %,

c, £ C(A,) then it readily follows that ^ is an F-algebra homomorphism satisfying

the required conditions.    D

Let Xx,...,Xn,sx,...,snhe commuting indeterminates over F and

F[Xx,...,Xn,sx,...,sn]

be the corresponding polynomial ring. We use Lemma 2.1 to define the generalized

Harish-Chandra homomorphism associated with the pair A'çA which we write

%'A:C(An)^F[Xx,...,Xn,sx,...,s„].

Our first step is to note that using the Dynkin diagram associated with A, we can

define an equivalence relation on A' by a ~ ß iff the subgraph of the Dynkin
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diagram connecting a to ß has all of its vertices in A'. We denote the equivalence

classes of this relation by A,, /' = 1,...,/. The root subsystems $, generated by A,,

respectively are irreducible and mutually orthogonal. According to Lemma 2.1, we

can define the map 4^, A with C C ker ^A, A by specifying its restrictions to %,

C(Ax),...,andC(b,).

Let A = (a,,... ,a„) be indexed so that A, = {ctk+x,... ,<xk +n }. Then SCis merely

the polynomial ring in the commuting indeterminates A, = A0 for a, £ A'. There-

fore, we can define the algebra homomorphism %: %^> F[Xx,...,Xn, sx,...,sn]by

extending the map sending A, to X¡. The restrictions to C(A,) are more comphcated.

We generalize the construction of [14] and defined,: C(A,) -* F[X,,.. .,Xn,sx,.. .,sn]

as follows. Let V[i] denote the free F[Xk +x,.. .,Xk +n , s,]-module with basis

{v(î) | / = (/,,...,/„)£ Z"'}. We now define an F-algebra embedding p¡ of the

subalgebra An into the minus algebra of EndF[A + x <s] V[i] by describing the

action of Pj on the basis of A„. For/ = 1,2,...,«, define p-(hk +j) by

(2.2) Pt(hkl+j)v(ï) = (Xki+J - lj_x + 2/, - lj+x)v(ï)

and for £ = wp — wq £ $,+ = $, n í>+ define p,(X() and Pi(X_() by

(2.3) Pi(X()v(î) = (s, - Xkí+X-Xki+p_x - lp_x + lp)v(î+ I),
-

Pi(X_t)v(l ) = (5,. - À,+I-X,i+^, - /,_, + lq)v(l - I),

where \ is the «,-tuple with 1 in the p, p + l,...,q— 1 components and zero

elsewhere. By convention we set Xk , l0 and /„ +1 to be zero whenever they occur in

these expressions.

Theorem 2.4. The map p, is an infective F-algebra homomorphism.

Proof. Clearly the map p, defined above is injective and F-linear. In order to see

that it is also an algebra homomorphism it suffices to verify that p, preserves the

following multiphcation relations in An .

[A„,Ay,]=0 foTkxi+Kp<q <Jct + nil
(2 5)

[hp, X(] = £(hp)X(    forp = k, + l,...,k, + «,; I £ «D,.,

[xt>Xi] =

hp+---+hq_x for -T, = I = wp - wq £ $+ ,

~(hp + ■ ■ ■ +Ay,-,)     for î, = -i=Wp-wq& <ï>,+ ,

(8qk - sjp)x(+v ior£ = wp - wq ̂  -y = -(wk - Wj).

A direct computation completes the proof of this result.    D

Let pi be the extension of p, to U(An ). For each c £ C(A,) Q C(An), define %(c)

by

(2.6) %(c)v(Ô) = p,(c)v(Ô).

We   are   using   here   the   fact   that   the   operator   p¡(c)   maps   t>(0)   to   a

F[Xk +1,.. -,Xk+n , Sj] multiple of v(0), that is

%(c) eF[Xk+x,...,Xk+n,s¡\ ÇF[Xx,...,Xn,sx,...,sn].
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Now, let %,... ,¥, be the algebra homomorphisms just defined. Then the gener-

alized Harish-Chandra homomorphism ^ A: C(An) -» F[XX,...,Xn, sx,...,sn] is that

unique algebra homomorphism with C £ ker ^ A which extends all of %,... ,ty¡.

In the case A' = 0, ^0 A differs from the usual Harish-Chandra homomorphism

only in that normally the codomain is taken to be F[X,,...,XJ while here it is

F[Xx,...,Xn,sx,...,s„].

The following table is a complete hst of all ^A- A: C(A2) -> F[XX, X2, sx, s2] where

A = {a, /?}. The fact that ^A.A is determined by the values listed in this table is

given in §3. We are writing X_a as Ya.

TABLE 2.7

*{«>,<* *(/<}.A

hß

YaXa

YßXß

Ya + ßXaXß

X, X, X, X,
A2 X2 X2 X2

sx(sx -X, - 1) sx(sx -X, - 1) 0 0

(*,-A,Xi,-A.rrXj-l) 0 sx(sx - X2 - 1) 0

sx(sx -X, -X2 - 1) 0 0 0

*i(*i - *tX*i - Xt - X2 - 1) 0 0 0

If A'= 0, then the image of *A,A = F[X,,...,XJ Q F[Xx,...,Xn, sx,. ..,s„] and

in this case the evaluation e which we use in Theorem 1.7 is defined by convention to

be 0 on sx,...,sn. If A' is the union of nonempty A,,...,A, as described above, then

the image of *A, A Ç F[X,,. ..,X„, j„...,*.] Ç F[X,,...,X„, s,,.. .,.*■„] and in this

case e is defined by convention to be 0 on sl+ x,... ,sn.

We close this section with the definition of a certain class of automorphisms which

are associated in a natural way with the Weyl reflections and the Dynkin diagram

reversing map.

Let a £ A and aa be the usual Weyl reflection of the root system i> through the

hyperplane perpendicular to a. If we define, for ß £ A, aa(hß) = ha (/3) and aa(X±ß)

= Xa^±ß, then by [8, Theorem 14.2], aa extends uniquely to an automorphism of An,

which in turn extends uniquely to an automorphism of U(An). Each of these

automorphisms is denoted by aa. Since aa(H) — H and aa(X() — Xa (i) for all

i £ <ï>, we have that aa acts as an automorphism on U0(An) = C(An). The set of

automorphisms {aa \ a £ A} on U(An) generate a group which is isomorphic to the

Weyl group of An. The elements in this group of automorphisms are called the Weyl

automorphisms.

If we let oy denote the isomorphism on $ corresponding to reversing the Dynkin

diagram of An so that ay(a, ) = a„+,_, for 1 </<-«, then the map on An determined

by Of(hß) = h„i(ß) and af(X±ß) = X±a/(ß) for ß £ A is an automorphism on An

called the flip map.

Our use of these automorphisms a is primarily to keep track of how a mass

function f"B with the property that f ° a — e ° ^A, A can be used to give us

Theorem 1.7. This is done by observing that in this case f = e ° tyaá. oA.
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3. Mass functions on C(AX) and C(A2). In this section we prove Theorem 1.7 for

the case « = 1 and 2. Lemire and Pap [15] completed the work begun by Bouwer [4]

and exhibited a complete hst of all mass functions on C(A2). This hst is of central

importance in our proof of Theorem 1.7 for arbitrary «. Because of this, we believe

that it is worthwhile to devote the major portion of this section to reworking this

material. Our presentation differs from [15 and 4] in that it is complete and self

contained, it introduces the set of roots Se which is the vehicle allowing us to

generalize to arbitrary «, and its cases are simplified by making an appropriate

choice of base A.

We begin by studying mass functions on C(^l,). Let A = {a} be a base of the root

system of Ax, let A, = ha and Ya = X_a. Then A,, YaXa are algebraically indepen-

dent over F and C(AX) is merely the polynomial ring F[hx,YaXa]. There are only

two generalized Harish-Chandra homomorphisms associated with A = {a}, namely

^ A and ^A A. The first of these differs from the usual Harish-Chandra homomor-

phism only in that the codomain is normally taken to be F[XX] while ^0 A takes on

values in F[XX, sx]. The second map ^A A is defined by

*a,a(A,) = X„        %jYaXa) = sx(sx - X, - 1).

Since every mass function f: C(AX) -» F is uniquely determined by its values on A,

and YaXa, we see that there is an evaluation map e: F[X,,i,] ->F such that

f = £" ^A A. This proves Theorem 1.7 for « = 1.

We now start our investigation of mass functions on C(A2). Let A = {a, ß) be a

base of the root system 5> of y42 and let

Ai=Aa,       Xß,

h2 = hß,       Yß — X_ß,

(3-1) y y
Aa> ^a + ß'

Ya ~ X-a'        Y<x + ß ~ X-(a + ß)

be a Chevalley basis of A2 relative to A with structure constants as indicated in §2.

The elements A,, A2 and

(3-2) c, = YaXa,    c2 = YßXß,   c3 = Ya+ßXa+ß,

C4 = 1+j!\^>     c5 = YßYaXa + ß

are called the basic cycles of C(A2) relative to (a, ß). When it is necessary to

emphasize the base A = (a, ß) we speak of the basic cycles of C(a, ß). Also, when

we write C(a, ß) for C(y42), we are using the basic cycles of C(a, ß) unless

otherwise specified. By direct computation, one can establish the following multipli-

cation relations in C(a, ß).
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A,A2 = A2A,,

h,Cj = Cjhi   for i = 1,2; 1 </ < 5,

cxc2 = c2cx +c5-c4,
_        ■■_      ,

cxc4 = c4cx - c2cx + c3cx - c4hx + c3hx - c5 + c4,

cxc$ = cscx + c2cx — c3cx + c5hx — c3hx + c5 — c4,

C2C3 ~ C3C2 "■" C5 ~ C4'

(3.3) c2c4 = c4c2 + c2cx — c3c2 — c4h2 + c5 — c4,

C2C5 = C5C2 - C2C1  + C3C2 + CsA2 + C¡ ~ C4 »

c3c4 = c4c3 + c3c2 — c3cx + c4hx + c4h2 — c3hx,

c3c5 = c5c3 + c3cx — c3c2 — cshx — c5h2 + c3hx — 2c5 + 2c4,

c4cs = c3c2cx + c3c2hx + c3cxh2 + c3h2hx + 2c3cx + 2c3hx — 2c

+ c4c2 — c4cx — c4hx — c5hx — c5h2 — 2c5 + 2c4 + c5c3,

c5c4 — c3c2cx + c2cxhx + c2cxh2 + c5c3 — c4h2 + c4c2 + 2c2cx

_y,    „      —~>„   „-c4cx - 2c3c2.

Lemma 3.5. The set of elements of C(a, ß) of the form

(3.6) (c5orc4)eic^c^c^h^hV

where the exponents e¡ are nonnegative integers, constitutes a basis for C(a, ß).

Proof. In §1 we noted that a basis of C(a, ß) is given by the set of all elements of

the form (1.2)—i.e.

u(p,ï,q) = Y&ßYf>Yf>h'fh'jX?XfX?+ß

where ¿7, + ¿73 — px — p3 = 0 and ¿72 + ¿73 — p2 — p3 = 0. If ¿73 > p3 this element

can be written as

u(p, Ï, ¿7) = cp~P3cf3c^2cf <h'x<h22 + terms of lower degree.

If p3 > ¿73 this element can be written as

u(p, Ï, ¿7) = cg,~'l3c$3c2'2cxp>h'x<-h'22 + terms of lower degree.

Hence, using induction on the degree, we have that the elements of the form (3.6)

generate C(a, ß) as a linear space.

It is clear that the element c|6cf5c|4cf3A|2Af ' can be written as

Ya+ßeiYßeiY^h^h22Xa6+e3Xß6+e'Xa+ß + terms of lower degree

and similarly cl'cf'c^cf'A^Af1 can be written as

Y^pype6+eiya6+eiKh22XaXft>Xa^ei + terms of lowei" degree.

Since the term of highest degree in the expansion of each element of the form (3.6) in

the basis of C(A2) of the form (1.2) is unique, we have that the elements of the form

(3.6) are linearly independent.    D
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Remark 3.7. Let (W) be the free semigroup generated by w,,... ,w7, and F(W)

the corresponding free algebra. Let E be the subset of F(W) obtained from the

equations (3.3) by replacing A, by wx, h2 by w2, and each c, by wi+2, and let I be the

ideal of F(W) generated by E. Then Lemma 3.5 imphes that C(a, ß) =* F(W)/I,

and that the problem of determining all mass functions on C(a, ß) is equivalent to

finding all algebra homomorphisms t: F(W)^> F with I £ kerr. Such a map t is

uniquely determined by the 7-tuple (r(wx),. . . ,t(w7)) in F7. We define

(a, b, zx,... ,z5) £ F7 to be admissible provided there exists an algebra homomor-

phism t: F(W/)-> F with I C kerr such that (a, b, zx,...,zs) = (r(wx),.. .,t(w7)).

Equivalently, we could require that there exist a mass function f on C(a, ß) such

that(a,b,zx,...,z5) = tt(hx),$(h2),$(cx),...,$(c5)).

Let t: F(W/)-> F be an algebra homomorphism with (t(w,),...,t(w7)) =

(a, b, zx,.. . ,z5). Then if we apply t to the elements of E, equate the result to zero

and simphfy, we obtain the condition that (¿2, b, zx,... ,z5) is admissible if and only

if its components satisfy the equations

(3.8)

(3.9)

(3.10)

(3.11)

z5 — z4 = 0,

a(z4 - z3) - zx(z3 -z2) = 0,

bz4 — z2(zx - z3) = 0,

0 ,)0 z4)+z3(z2 + b)(zx+a) = 0.

Let ¿2, è, andp be arbitrary elements of F. Then the 7-tuple (a, b, zx,... ,z5) is said

to be 7] for 1 =£ /' =s 6 provided it equals the 7-tuple headed by T¡ in Table 3.12, and

it is said to be T0 provided it equals the 7-tuple headed by T0 in Table 3.12 and

0 ¥= zxz2(zx + a)(z2 + b). A mass function f on C(a, ß) is defined to be T¡ provided

(£(hx),l;(h2),!;(cx),...,$(c5)) is Tt.

Table 3.12

a

b

p(p- a- 1)

(p - a)(p - a- b- 1)

p(p-a-b-l)

p(p - a)(p- a-b - 1)

p(p - aXp- a- b - 1)

a

b

0

-b

P

P

P

a

b

-a

P
-a- b

P

P

a

b

-a

0

P
0

0

a

b

P
-b

-a-b

-a — b — p

-a — b — p

We now prove a sequence of lemmas which establish

Theorem 3.13. The 7-tuple (a, b, z,,...,z5) in F1 is admissible if and only if

(a, b, zx,...,z5) is T¡for some i = 0,1,2,.. .,6.

By direct computation one can verify that for arbitrary values of a, b and p, each

of the 7-tuples listed in Table 3.12 satisfies equations (3.8) through (3.11) and hence,

is admissible.
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The proof of the converse amounts to the determination of all admissible 7-tuples

(a, b, zx,...,z5). We break this investigation into two main cases defined by whether

z,z2(Z| + a)(zx + b\a + b) is nonzero or zero.

Lemma 3.14. Let (a, b, zx,... ,z5) be an admissible 1-tuple such that

z,z2(z. + a)(z2 + b) ¥= 0.i 2\  i        n 2       i

Then:

(i) if N = zxb + z2a + ab, the equations

(3.15) 25 - z4 = 0,

(3.16) Az3 — (¿j + b)zxz2 — 0,

(3.17) Az4-(z,+¿j-z2)z,z2 = 0,

(3.18) N(a + b) - (z2 - z, + b)(z2 - z, - a) = 0,

hold;

(ii) if a + b ¥= 0, then (a, b, zx,... ,z5) is T0 where the p needed to satisfy Table 3.12

is p — (z2 — zx + b)/(a + b).

Proof. Since (a, b, z,,...,z5) is admissible, it satisfies equations (3.8) through

(3.11). These equations can be used to obtain equations (3.15) through (3.18) by

following the outhne given now.

(1) Equation (3.15) is identical to equation (3.8).

(2) Equation (3.16) is equal to a times equation (3.10) minus b times equation

(3.9).
(3) Equation (3.17) is z2 times equation (3.9) plus (z, + ¿i) times equation (3.10).

(4) Equation (3.18) is obtained by using (3.16) and (3.17) to simplify

A/(z,z2(z1+¿.)(z2 + /y))

times equation (3.11).

This proves part (i). For part (ii), we may assume (¿j, b, z,,... ,z5) satisfies (3.15)

through (3.18), and p = (z2 — z, + b)/(a + b). Substituting z2 = p(a + b) + zx —

b into equation (3.18), we find

(3.19) (¿2 + A)2(z,-p(p-a-l))=0.

Since a + b ¥= 0, we have z, = p(p — a — I). From the definition of p it follows

that z2 = (p — a)(p — a — b — 1). Finally from equations (3.15) through (3.17), we

have z3 = p(p — a — b — 1) and z4 = z5 = p(p — a)(p — a — b — 1). Thus any

7-tuple (a, b, z,,... ,z5) £ F7 satisfying (3.15) through (3.18) with

zxz2(zx + a)(z2 + b)(a + b) ^ 0

is equal to one of the admissible elements of F7 of the form T0 in Table 3.12.    D

Lemma 3.20. Let Ç be a mass function on C(A2), Í» the root system of A2 and

Ss = {y £ $ | $(YyXy) *0or -ftA,)}. Then:

(i) S¡ = O,
(ü) Se = {±a} for some a £ $ or

(iii)Sf= 0.
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Proof. Suppose 5f ^ <&, 0 or ( ±a} for some a £ $. Then since for each y £ Sf,

-y £ Sj, it must be the case that | S¡ \ = 4. From this it follows that Sf contains some

base A = (a, ß) of 0. Let Aa, A^, c¡, Ki^S, denote the basic cycles of C(a, ß),

and let a — f(Aa), A = C(hß) and z, = f(c,), I < i < 5. Then since a, ß G Sç we have

zxz2(zx + a)(z2 + b) ¥= 0. By part (ii) of Lemma 3.14, if ¿2 + b ¥= 0 then f is F0,

contrary to a + ß £ S?. Therefore, ¿2 = -A.

Since f(/ia + A^) = ¿z + b = 0 and a + /3 £ 5f, it must be the case that z3 = 0. In

this case (3.9) and (3.11) become

(3.21) ¿2Z4 + zxz2 = 0,

(3.22) z4(z2 - z, - ¿2 - z4) = 0

respectively. From (3.22), we conclude that ¿2 ¥= 0 ¥= z4 and hence (3.23) imphes

z2 — z, — ¿2 = z4. Substituting this into (3.22), we get

0 = a(z2 — zx — a) + zxz2 = ¿jz2 — azx — a2 + zxz2 = (zx + a)(z2 — a).

Therefore, zx = -a or z2 — a — -b either of which is a contradiction.    D

Lemma 3.23. Let Ç bea mass function on C(A2) such that Sf = {y £ $ | f(7y Xy) ¥= 0

or -$(hy)} = <&. FAe« f is T0for every choice of base A = {a, ß} used to describe the

basic cycles.

Proof. Let ha, hß, c¡, 1 < / < 5, be the basic cycles of C(a, ß) and let

(a, b, z,,...,z5) = (f(A0), $(hß), f(c,),.. .,f(c5)). If ¿j + b ¥> 0, this result becomes

part (ii) of Lemma 3.14. Therefore, we may assume a + b = 0 and reduce equations

(3.8) through (3.11) to

(3.24) z5-z4 = 0,

(3.25) a(z4-z3) - zx(z3 - z2) = 0,

(3.26) ¿2z4 + z2(zI -z3) =0,

(3.27) (z4 - z3)(z2 - zx - a - z4) + z3(z2 - a)(zx + a) = 0.

Since z3 ^ 0, equations (3.25) and (3.26) imply z2 = zx + a. If a = 0 then zx — z2

= z3. From this and equation (3.27) one can show that z4 = ((1 ± /l + 4z, )/2)z,.

Define p so that zxp — z4. It is easy to show that thisp is the one needed in column

T0 of Table 3.12.

If a ¥= 0, then using (3.26) and z2 — z, + ¿2 we obtain z4 = ¿(z3 — Z|)(z, + ¿j).

Define p so that zxp — z4. it is easy to show that thisp is the one needed in column

T0 of Table 3.12.

If ¿¿ ¥= 0, then using (3.26) and z2 = z, + ¿2 we obtain z4 = ¿(z3 — zx)(zx + a).

Define p = ¿(z3 — z,), so that z2 = zx + a, z3 — ap + z, and z4 = p(z, + ¿2). Sub-

stituting these into (3.27) we obtain

(P - l)zi(-/»(*i + a)) + (ap + zx)zx(zx + a) = 0

which simplifies to zx — p(p — a — 1). Now, one can readily show using the

expressions for z, in terms of z, and ¿2 given above that f is T0 on C(a, ß).    D
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Lemma 3.28. If f is a mass function on C(A2) such that St — {±a} or 0 then

(a, b, z,,... ,z5) = (f(Ay), f(As), f(c,),... ,f(c5)) appears in Table 3.12 for some base

(y, 5} where the c/s are basic cycles described using A = (y, 8}.

Proof. Let y be a root which is not in St. Then either Ç(YyXy) = 0 or £(XyYy) = 0.

Hence we can pick y £ S( such that ¡(YyXy) = 0. If St = (±a) let ô = a if

8 + a £ $ and let ¿5 = -a otherwise. In either case y + 8 £ $ and we can take

{y, 5} as a base of 0. If S = 0, let 8 be any root such that (y, 0} is a base.

Define the basic cycles c,, 1 < i < 5, in terms of this base. In particular, z, = f(c,)

= ¡(Y Xy) = 0. The lemma follows, once we have shown that every admissible

7-tuple (¿2, b, z,,... ,z5) for which z, = 0 appears in Table 3.12.

Under the condition z, = 0 equations (3.8) through (3.11) become

(3.29) z5-Za = 0,

(3.30) ¿z(z4-z3) = 0,

(3.31) bz4 + z2z3 = 0,

(3.32) (z4 — z3)(z2 — a — z4) + ¿zz3(z2 + b) = 0.

Our proof continues by studying two cases a = 0 and ¿z ̂  0.

Case I. ¿2 = 0. Equation (3.32) then imphes that (z4 — z3)(z2 — z4) — 0.

Subcase i. z4 = z3. Then equation (3.31) becomes z3(z2 + b) = 0. This leads to

two families of solutions. If z3 = 0 we have

(¿2,A,z,,...,z5) = (0, A,0,p,0,0,0)

where b and p are arbitrary. If z2 = -b we have

(¿2, b,zx,...,z5) = (0, A,0,-A, p, p, p)

where A and p are arbitrary. Both of these families occur in Table 3.12.

Subcase ii. z4 = z2. The argument is similar to subcase i.

Case II. a ¥= 0. From equation (3.30) we have z4 = z3. Using this in equation

(3.32)   we   obtain   z3(z2 + A) = 0.   If   z3 = 0   we   have   (¿2, b, z,,. .. ,z5) =

(¿2, b, 0, p, 0,0,0) where a, b and p are arbitrary. If z2 = -b we have (a, b, zx,... ,z5)

= (¿2, A,0,-A, p, p, p) where a, A and p are arbitrary. Both of these families of

solutions occur in Table 3.12.

Thus every admissible 7-tuple (¿j, A, zx>...,z5) such that z, = 0 is listed in Table

3.12.    D

The reader should note that the preceding lemmas establish Theorem 3.13.

Theorem 3.33. For mass functions f on C(y42), Theorem 1.7 holds. Moreover, if

Sç = $ fAe« Theorem 1.7 holds for every choice of base A used to describe the basic

cycles.

Proof. According to Lemmas 3.20, 3.23 and 3.28, we need only consider T¡ mass

functions. Let £ be a 7] mass function relative to A = [a, ß). The following table

gives the type of mass function that f, becomes relative to the bases aaA and ojgA

where aa, aß denote Weyl reflections.
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Table 3.34

°ß A

r„
r,

?2 &

t;

From this table one sees that by an appropriate choice of base we may assume that

the given mass function f is T0, Tx or T4.

If f is T0, then by Lemma 3.23 f is T0 for every base A. From this and Table 2.7 it

follows that ? = e ° ^a,a where e(sx) = p and p is the value given in column T0 of

Table 3.12.

If f is F, relative to A = {a, ß), then f = e ° ^{a}iA where ^{„i a is given by Table

2.7 and e^^s,

similar.    D

X, — 1)) — p — ftc,). The proof in the case of T4 mass functions is

Corollary 3.35. 7/f is a mass function on C(A2) with S{ = {y £ 4> | Ç(YyXy) ¥= 0

or -Ç(hy)} = 0, then there is a base A = {a, ß) such that if A is used to describe the

basic cycles then f = e ° %, A wAere e is an evaluation map satisfying e(Xx) = ftA0)

ande(X2) = ftA,,).

Proof. By Lemmas 3.20 and 3.28 and Table 3.34, there is a base A = {a, ß) such

that relative to A, J is F, withp = 0 or -ftAa) or f is F4 withp = -ftAr,). Suppose f

is F, relative to A = (a, /}} with p ^ 0. Then f relative to {-a, a + /?} is F, with the

corresponding p = 0. A similar change of base for F4 maps permits us to assume that

f is Tx relative to A and p = 0. The result then follows directly.    D

4. Mass functions on C(r43) and C(A4). In this section, we prove a series of

technical results concerning mass functions on C(r43) and C(r44). We make use of

the convention laid down in §2 that e(s¡) = 0 for / + 1 < / < n if Im^, A £

F[Xx,...,Xn,sx,...,s,].

We continue to use A = {<xx,... ,an} to denote a base of the root system O of An.

A basic cycle of C(An) relative to A is either an element of the form «, = Aa or an

element u(p,0,q) £ C(An) of the form (1.1) having the property that no proper

factor (ignoring commutativity) of u(p,0,q) is in C(An). It follows immediately

from the proof of the Poincaré-Birkhoff-Witt Theorem that the basic cycles generate

C(An) as an associative algebra with 1. Thus any mass function is completely

determined by its values on the set of basic cycles relative to any fixed base A. In

[15] it is shown that this statement can be considerably improved to read

Proposition 4.1. Any mass function f: C(An) -» F is completely determined by its

values on the set of all basic cycles of degree < 3 relative to a base A.

We now suppose that we are given a mass function f: C(An) -» F and wish to

determine an appropriate Harish-Chandra homomorphism required in Theorem 1.7.

We begin this determination by specifying a subset of the root system $ associated

with f, namely

(4-2) S, = {«£<!> I f(yaAj^0,-£(Aj}.
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Proposition 4.3. (i) S( is a root subsystem of <t>; (ii) S¡ is a disjoint union of a

mutually orthogonal irreducible subsystem $/ of O.

Proof. Let ( , ) denote the Killing form on $ and define an equivalence relation

" ~ " on St by setting a ~ ß for a, ß £ St iff there exist y,, y2,... ,ym £ S¡- such that

Yi = «> y m = ß an(i (Y*» Yf-f-i) ̂  0 for 1 < i: < m — I. Let $,' denote the equivalence

classes of S¡ under " ~ ". The proposition follows easily once we show that <&/ is a

root subsystem of 0. By [8, p. 42], it suffices to show that if a, ß £ $,' then

aa(ß) £ í>,' where aa is the Weyl reflection through the hyperplane perpendicular to

a. Let a, ß £ $/. If (a, ß) = 0 then aa(ß) = ß £ $,'. If (a, ß) # 0 then

«.(*) =

+ß if/3=±a,

a + ß    ifa + ß£$,

ß-a    ifa-ß£4>.

Clearly in the first case aa(ß) £ $,'. If a + ß £ $, then let r42(a, ß) be the

subalgebra of An isomorphic to A2 and generated by {Xa, Ya, Xß, Yß). By employing

Table 3.12 for f restricted to C(a, ß) one verifies that aa(ß) = a + ß £ 0,'. Simi-

larly, by considering f restricted to C(a, -ß) we have that aa(ß) = ß — a £ <S>'¡ in

the third case. This completes the proof that $,' (and hence S^) is a subsystem of $.

D
Our proof of Theorem 1.7 in the general case requires a number of technical

results concerning mass functions on C(y43). To facilitate the presentation of these

results we introduce the following notation for C(A3). A base for the root system of

A3 will be denoted by A = {a, ß, y} and the set of basic cycles of C(A3) relative to

this base are given as follows.

(4.4)

A, =K, h2 = hß, A3 = Ay,

Cl  —   YaXa> C2 ~   YßXß' c3 ~  YyXy,

C4 ~   Ya + ßXa+ß> CS  —   Yß + yXß + y C6 =   Ya + ß + yXa + ß + y

Cl =   *a + ßXaXß' C8 =  Yß + yXßXy, C9 —   YßYaXa + ß,

cio — YyYßXß+y, cxx = Ya+ß+yXa+ßXy, cX2 = Ya+ß+yXaXß+y,

C13 —   Yy*a+ßXa + ß + y> C14 ~~   *ß + yYaXa + ß + y> C15 =   *a+ß+yXaXßXy>

C16 =   *y*ßYaXa + ß + y C17 =  Yß + yYa +ß Xa + ß + y Xß >

=   YßYa+ß + yXa + ßXß + y>       C19 =  YyYa + ßXaXß + y 'C

C20 ~~   *ß + y

18

~   *ß + yYaXa + ßXy

The fact that this list exhausts the set of all basic cycles of C(A3) relative to A

follows directly from the results of van den Hombergh [16] or from [15]. In the

remainder of this paper whenever we refer to the basic cycles of C(a, ß, y) we mean



524 D. J. BRITTEN AND F.W. LEMIRE

those listed above. The subalgebras of C(A3) which are isomorphic to C(A2)

together with their basic cycles in this notation are

(4.5) C(a, ß) = <{A,, A2, cx,c2, c4, c7, c9}>,

C(ß,y) = <{A2,A3, c2,c3,c5,c8,c10}>,

C(a + ß, y) = <{A, + A2, A3, c4, c3, c6, cxx, c13}>,

C(a,ß + y) = <{A,, A2 + A3, c,, c5, c6, c12, c14}>.

By Proposition 4.3 the set S¡ for any mass function f : C(A3) -> F must have order

12, 6,4, 2 or 0.

Our first case is | St \ — 12. By using Lemma 3.23 we see that the restriction of f to

each C(A2) oí C(A3) must be a F0 mass function relative to any base. Let ¿j = ft A,),

b = ftA2) and c = ftA3). Then there must exist unique elements r, t, u, v £ F such

that

(4.6) r(r-a- 1) = ftc,) = «(w - ¿2 - 1),

(4.7) (r - a)(r - a - b - 1) = Ç(c2) = t(t - b - 1),

(4.8) (r - b)(t - b - c - 1) = ftc3) = (p - a - b)(v - a - b - c - 1),

(4.9) r(r - a - b - 1) = f(c4) = v(v - a - b - 1),

(4.10) t(t-b-c- l) = f(c5) = (u - a)(u - a - b - c - I),

(4.11) v(v - a - A - c - 1) = ftc6) = u(u- a-b- c- I).

Direct substitution shows that the roots of these quadratic equations must satisfy

the following conditions.

Column A Column B

(4.12) r = M or r = I + a - «

(4.13) r = t + a or r= I + a + b- t

(4.14) t = v- a or /=l-r-<2 + 2A + c-ty

(4.15) r = t> or r = 1 + ¿2 + A — v

(4.16) t = u-a or /=1+¿2 + A + c-m

(4.17) t> = » or v=l+a + b + c— u.

The possible choices for s, t, u and v axe reduced by the following observations.

(4.18) If three equations from Column A are vahd and all four of r, t, u and v are

involved in these three equations then r—u = v = t + a. In particular, if four

equations from Column A are valid, then r — u = v = t +a. If r=u = v = t + a

and some equations from Column B are valid then constraints are imposed on a, b

and c.

(4.19) If five equations from Column B are valid, then all equations from Column

B are valid and certain constraints are being forced on a, b and c.

These two observations aid us in the case study which makes up the proof of

Lemma 4.20. For any mass function f: C(^l3) -» F with \St\= 12, there is an

evaluation map e: F[XX, X2, X3, sx, s2, s3] ^> F and an automorphism a such that

f o a = e o *A A.
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Proof. If the condition of remark (4.18) holds, then define e by e(X,) = ft A,) = a,

«(^2) = $(h2) — A, e(X3) = ftA3) = c and e(sx) — r — u = v = t + a. In this case

then f = e ° ^A A for all basic cycles of degree < 3 and Theorem 4.1 implies that

f = e ° ^A A as required. Therefore, in the remainder of the proof, we assume that at

most three equations from Column A hold.

Case I. The condition of (4.18) fails and exactly three equations from Column A

hold. This is equivalent to the following subcases.

Subcase i. (4.12), (4.13), (4.16) Column A hold.

Subcase ii. (4.12), (4.15), (4.17) Column A hold.

Subcase hi. (4.13), (4.14), (4.15) Column A hold.

Subcase iv. (4.14), (4.16), (4.17) Column A hold.

Table 4.21 indicates the action of f on the basic cycles of degree < 3 relative to

the base (a, ß, y} in each of these subcases.

The analysis of these four subcases can be simplified by observing that if f

satisfies subcase ii then f ° aa together with a change of variable replacing r by r — a

yields a map which satisfies subcase i. Similarly with an appropriate change of

variable, we again arrive at subcase i by using f ° oy to alter subcase hi and ? ° oy ° o¡g

to change subcase iv where oy is the flip map defined in §2. Thus, it suffices to prove

Case I of Lemma 4.20 assuming subcase i holds.

Let ft C(a, ß, y) -» F be a mass function satisfying subcase i and consider the

following identities in C(a, ß, y).

Table 4.21

Subcase i Subcase ii Subcase iii Subcase iv

f(*l)
r(*2)
Î(A3)

?(c,)

r(c2)
t(e3)

f(c4)
!(c¡)

S(c6)

í(c7) = ?(<*)

f(c8) = ?(c,o)

?(Cll) = ?{Clî)

f(C|2> = «cu)

b = -a

c = 0

t = r - a

u = r

v = 1 — r

a

-a

0

r(r- a- 1)

<r- \%r-a)

f(r-l)

r(r - 1)

(r- \)(r-a)

r(r-\)

r(r-\){r-a)

r'r- \)(r-a)

-r(r- l)2

fir- l)(r-a)

b = c = 0

t = 1 + a - s

u = r

v = r

a

0

0

r(r- a- 1)

(r-a)(r-a- 1)

(r-a)(r-a- 1)

r(r- a- 1)

(r^a)(r-a- 1)

r(r- a- 1)

r(r — a)(r — a — 1)

-(r-a)(r-a- l)2

r(r — a)(r — a — 1)

r(r — a)(r — a — 1)

a = 0

c = -b

t = r

u = 1 — r

V = r

0
b
-b

r(r-\)

r(r-b-l)

(r- l)(r-ft)

r(r- è - 1)

/-(/•- 1)

f(f-l)

r2(r-f)- 1)

f(f- \)(r-b)

r(r- l)(r-b)

-r(r-\)2

a = b = 0

t= \ - r

u = 1 — r

v = 1 — r

0
0
c

/-(/•- 1)

r(r- 1)

(r- l)(r+c)

/■(/•- 1)
(r- l)(r + c)

(r- l)(r + c)

r2(r-

~(r-

~(r-

-(f-

■ O
1)V + c)
lfyr + c)
\)2(r + c)

(4.22) C|C,7 = (C|4 - C5)(C7 - C4) +(C8 - C5)C,,

(4.23) c17(c, + A,) = (c7 - c4)(cX4 - cs) + (cx3 - c6)(cx + A,).
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(4.22) and (4.23) are obtained by rewriting cX4c1 and cncX4. Since ftc,) and

ftc, + A,) are nonzero we can use each of (4.22) and (4.23) to find ftc17). This yields

(4.24) ftc17) = r(r-l)2(r-a),

(4.25) f(c17) = r(r - lf(r2 - ra - 3r + a + 1).

From this, it follows that r = f. In this case, we select an evaluation map e satisfying

e(X,) = ¿j, e(X2) = -a, e(X3) = 0 and e(sx) = {. Then f = e ° ^A A on all basic

cycles of C(a, ß, y) of degree < 3 and hence by Theorem 4.1, f = e ° ^A A.

Case II. Exactly two equations from Column A are valid. One can verify that

there are only three subcases.

Subcase i. (4.12), (4.14) Column A hold.

Subcase ii. (4.13), (4.17) Column A hold.

Subcase hi. (4.15), (4.16) Column A hold.

This is estabhshed quickly by noting that any other pair of equations from Column

A implies a third equation from Column A.

We list these solutions in the following table.

Table 4.26

Subcase i Subcase ii Subcase iii

ft*i)
f(A2)

Mi)
f(c,)
f(c2)

S(c4)

f(c5)

f(c6)

«c7) = S(c9)

?(c8) = f(c,o)

£(<•„) = f(c13)

Í(C,2) = ?(C.4)

a = c = 0

t= \ + b-r

u = r

v=\+b-r

0

b

0

1)

6-1)
1)
6-1)
6-1)
6-1)

b- 1)
-r(r- \)(r- b

-r(r- l)(r- 6

6-1)

c -

6 =
t = r — a

u= 1 + a

v = 1 + a

a

r(r

r(r-

r(r -

r(r

r(r-

r(r

r\r-

r\r-

1)
1)

a

0
-a

r(r- a- 1)

(r-a)(r-a- 1)

(r- \)(r-a)

r(r- a- 1)

(r- \)(r-a)

(r-a)(r-a- 1)

r(r-a)(r-a- 1)

(r- l)(r-a)2

-(r- \)(r-a)(r-a- 1)

-(r- \)(r - a)(r - a - \)

c = a

t= \ - r

u = 1 + a — r

v = r

a

-a

a

r(r- a- 1)

(r- l)(r-a)

r(r-a-l)

r'r-\)

r(r-\)

rtr-a- 1)

r(r-\)(r-a)

-r(r- \)'r-a- 1)

r\r- a- 1)

-r(r- l)(r- a - 1)

Once again we can use the Weyl automorphisms to simplify our analysis. If f

satisfies subcase ii, then f » o, « ^ with r replaced by r — a satisfies subcase i and if

X, satisfies subcase hi then f ° aß satisfies subcase i. Hence, we may assume the f is a

mass function on C(a, ß,y) satisfying this subcase i. By applying f to equations

(4.22) and (4.23), we obtain

Ç(cxl) = -(r-l)(r-a)(r-a-l)2,

t(cxl) =-r(r - af(r - a - I),

(1 + ¿j). Select an evaluation map e: F[XX, X2, X3, sx, s2] -* F which

satisfies e(X,) = -e(X3) = ¿2, e(X2) = 0 and e(sx) = ^(1 + ¿2),  and observe that

(4.27)

(4.28)

and hence r = \
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f = e o ^A A on all basic cycles of C(a, ß, y) of degree « 3. Thus, by Theorem 4.1,

we have f = £ ° ^ A.

Case III. Exactly one equation from Column A is valid. Remark 4.19 reduces this

case to

Case IV. Every equation from Column B is vahd. For the remainder of this proof

the numbers (4.12) through (4.17) refer to equations (4.12) Column B through (4.17)

Column B. By adding (4.12) and (4.13) and then using equation (4.16), we get

(4.29) 2r = 2-r-2¿2 + A-í-M=l + ¿2-c.

Similarly, (4.14), (4.16) and (4.17) give us

(4.30) u = \(l+a + c),

and

(A *1\ . L/ix     ±Vti.)(4.31) t — v — 2"(1 + a + 2b + c).

Therefore, the mass functions described by this case are uniquely determined by the

set of equations

(4.32) ftA,) = a,

(4.33) ftA2) = A,

(4.34) r(A3) = c,

(4.35) ftc,) = -ï(l +a-c)(l +¿j + c),

(4.36) ftc2) = -ii} -a- c)(l + a + 2b + c),

(4.37) ftc3) = -i(l+¿2 + c)(l-¿2 + c),

(4.38) ftc4) = -i(l + a - c)(l +a + 2b + c),

(4.39) ftc5) = -¿(1 - ¿2 + c)(l +a + 2b + c),

(4.40) ftO = -|(1 +a + c)(l +a + 2b + c),

(4.41) ftc7) = ftc9) = -|(1 + ¿2 - c)(l - a - c)(l +a + 2b + c),

(4.42) ftc8) = ftc,0) = -Ml - « + c)(l + ¿J + c)(l + a + 2A + c),

(4.43) ftc,,) = ftc,3) = -i(l - a + c)(l +a + c)(l +a + 2b + c),

(4.44) ftc,2) = ftc,4) = -1(1 - ¿2 + c)(l + ¿2 + c)(l + a + 2b + c).

From identities (4.22) and (4.23), we may deduce that

(4.45) ft>17) = tV(1 - a + c)(l - ¿2 - c)(l + ¿2 + 2A + c)(l - ¿2 - 2A - c),

(4.46) ftc,7) = tV(1 + ¿2 - c)(l + ¿2 + c)(l + ¿2 + 2A + c)(l - ¿2 - 2A - c)

and hence we must have one of

(1 +¿2 + 2A-r-c)(l -a-2b-c) = 0,    or   ¿2 = 0.

If the first of these holds then (4.36) implies either ftc2) = 0 or ftc2) = -ftA2)

but this contradicts our assumption that | S¡ |= 12. Thus we must conclude that

¿2 = 0.
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We may assume that f ° a is of the type described in Case IV for each Weyl

automorphism a for otherwise f ° a falls into one of the previous cases. Here we are

using the easily established fact that | St \= 12 imphes | S¡ 0 „ |= 12 for each Weyl

automorphism a.

The above assumption along with the fact that ¿2 = 0 quickly yields a — b — c — 0.

From this and equations (4.29) through (4.31), we obtain r = t=u = v = {. There-

fore, f = £ ° ^A A where e is defined by e(X,) = 0, 1 < i < 3, and e(sx) = \.

This concludes the proof of Lemma 4.20.    D

The key to the proof of Lemma 4.20 also unlocks the generalization of this lemma

as stated below in Corollary 4.47. Therefore, we emphasize this point now. If ft

C(A2) -» F is a mass function with S¿. equal to the entire root system of A2 then

f = £ ° \f/A A for some evaluation map e. Thus the choice of £ corresponding to f is

uniquely determined by A. One can check this easily by consulting Table 3.12.

Corollary 4.47. Let A be any base of the root system $„ of An, and Ç be a mass

function with 5f = $„. Then there is an evaluation map e: F[X,,...,X„, jj,...,ja] -» F

such that f = £ ° ^a A.

Proof. If n = 1, then C(An) — F[X,, sx] and the result is clear. For « = 2,3, we

use Corollary 3.32 and Lemma 4.20 respectively to conclude that there is an

automorphism and an evaluation map e' such that f ° a = e' ° ^A A or equivalently

f = e' o ^a a ° a~x. In both of these cases, define v: Im^ -» F[X,,...,X„, sx,. ..,sn]

by v(%(c)) = %(<j-x(c)) for all c £ C(An) where % denotes ^A A. Clearly v is a

homomorphism which makes the following diagram commute.

F[Xx,...,Xn,sx,...,s„]

The lemma for n = 2,3 follows after one defines e to be e' ° v.

We assume now that « s= 4 and proceed by induction. Let A^}_, be the subalgebra

of An which is isomorphic to An_, and has A(,) as a base for its root system where

A    = (a,,...,£*„_,},

A<2)= {a,,...,«n_2,a„_, +a„}

A<3)= {a1,...,a(I_3,an_2 + o„_1,an},

(4.48)

A«) ={«,+«2,«3,...,«„},

A"+')={«2)...,«,}.

Let £(,) be the evaluation map given to us by the induction hypothesis so that

£¿0(4'!,) = £(0 ° *A,„,A<„. Now define e: F[X„... ,X„, sx,... ,s„] -» F by e(X,) =

ftA,) and e(sx) = e(1)(j,). Since y42{a,, a2} is a subalgebra of both A(X)_X and A(2}_x,

we have e(1)(í,) = e(2)(í,). In a similar manner e'-k~x\sx) — £(A:)(j|), k = 2,...,«.
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Viewing A2{a2, a3] as a subalgebra of both A^l, and A^x\ one can conclude from

Table 3.12 that e("\sx) = e(n+X)(sx) + ftA,). Definee(X,) = ftA,)andE(i,) = e(X)(sx)

and extend this to an algebra homomorphism on F[X,,... ,X„, sv...,s„]. To show

that f = e o ^A we introduce a set of maps tt(,): F[X,,...,X„_,, sx,.. .,sn_x] ->

F[X,,... ,X„, 5,,... ,sn] defined by

•7t0)(sj) = Sj   for/ = 1,...,« + 1 and/= 1,2,...,« - 1,

'Xj j<n+l-i,

Xj + XJ+X    j = n + I - i,

XJ+X j>n + l-i.

The w(0's have the property that % lC(A%lt) = wít} ° *a»¿á and e has the

property that

E o %IC(A^_X) = E ° IT«' ° *A<„,A(.> = £<0 o *¿o> = f ¿K'll).

Since every basic cycle of C(y4„) having degree < 3 is contained in at least one of

C( y4(„'l, ), Theorem 4.1 imphes f = £ ° ^A.    D

In the case of Sç = í>, the preceding corollary proves that Theorem 1.7 holds for

every choice of base A. However, in general this is not the case, and we must choose

a base A corresponding to ft We do this by using Weyl automorphisms as indicated

in §2.

We now proceed to investigate the mass function f on C(.43) such that | S% \ = 6.

Without loss of generahty, we may assume that the base A = {a, ß, y} is such that

st={±ß,±y,±(ß + y)}-

Lemma 4.49. Let f be as above, then the restrictions of f to the three subalgebras

C(a,ß),C(a + ß,y) and C(a, ß + y) are either all T4 or all F3.

Proof. By using Table 3.12, one can verify that the restrictions of f to each of

C(a, ß), C(a + ß,y) and C(a, ß + y) is either F3 or F4. Therefore, it suffices to

show that if the restriction of f to one of these algebras is F4, then the remaining two

are also F4.

Assume first that f I C(a, ß) is F4 and f I C(a + ß, y) is F3. Then the following

equations hold.

?(c,) = ftc4) = ftc7) = ftc9) = 0,

S(c2) =p*0,    -ftA2),

S(c3) = ?(*n) = S(cl3) = q * 0, S(h3),

ftA,+ A2) = 0,       ftc6) = -ft«3).
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Applying f to the identities

(4.50) [c,,c5] =c,4-c,2,

(4.51) [cx,c$] =c20- c15,

(4.52) [c3,c7]=c,5-c,9,

(4.53) [c3,c9] = c20- c,6,

(4.54) [c,, c,7] = (c5 - c6)(c7 - c4) + (cx4 - c6)(c4 - c2)

+ c20 — cX4 — c,5 + c,2,

(4.55) cxoc7 = c3c-,+(cx9- cX3)c2,

(4.56) [c7, c,0] = (A2 + l)(c,9 - c,2) + (c,3 - cX2)c2 - c,5 + c,2

one sees that (4.55) imphes ftc,9) = ¿7 and that (4.54) imphes ftc,4) = -ftA3). Then,

from (4.56), we obtain (p + ftA2))(¿7 + ftA3)) = 0, which contradicts the assump-

tions on p and ¿7. Thus whenever f I C(a, ß) is F4, then f J, C(a + ß, y) is also F4.

We may now use Weyl automorphisms to complete the proof as follows. By direct

computation one sees that f I C(a + ß, y) is F4 if and only if f o ay ° aß ° ay i C(a, ß)

is F4. From this and the first part of the proof we have the imphcations

H C(cx + ß, y) is F4 « f ° ay ° aß ° 0y I C(a, ß) is F4

** Í » 0 » ff o ff 1 c(o + /3, y) is F4
t  p  y

«nc(«j) is f4.

Combining this with the first part gives us that f iC(a, ß) and f | C(a + ß, y) are

both F4 or both F3. From this and direct computation, we obtain the following chain

of imphcations.

nc(«, ß) is F4 =* f o oß lC(a, ß) is F4

=>?° o> ¿C(« + >8, y) is F4

^UC(a, ß + y) is F4.

By combining the above arguments, we see that if any one of the restrictions is F4

then they all are.    D

Corollary 4.57. If I is a mass function on C(a, ß,y) with

St= {±a,±ß,±(a + ß)},

then the restrictions of I to each of C(ß, y), C(a, ß + y), and C(a + ß, y) are all F,

or all T6.

Proof. By using Table 3.12, one can verify that the restriction of f to each of

C(ß, y), C(a, ß + y) and C(a + ß, y) is either F, or F6. According to Table 3.27,

corresponding to each such restriction there is some Weyl automorphism a such that

the same restriction of f ° a is either F3 or F4. The corollary now follows from

Lemma 4.49.    D

We postpone the proof that mass functions f on C(y43) with | St\= 0,2,4 or 6

satisfy Theorem 1.7 until we are treating the general case. We conclude this section
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with an analysis of the structure of mass functions ft C(^l3) -» F with \St\=2 and 4

which is similar to the analysis for | S¡ | = 6 and we estabhsh two technical results

about the structure of mass functions ft C(A4) -» F.

Lemma 4.58. Let I be a mass function on C(a, ß, y) such that S¡ = {±a, ±y}, then

the following are equivalent.

(i)SiC(a,ß)isTx.

(ii) £ l C(ß, y) is T4.

(iii) Ç I C(a, ß + y) is Tx.

(iw) S iC(a + ß,y) is T4.

Proof. First we prove the implication

SiC(a, ß) is F,=>HC(ß,y)is F4.

Assume £lC(a,ß) is F, so that ftc,) =p ^ 0, -ftA,), ftc2) = ftc4) = ftc7) =

ftc9) = 0. If f 1 C(ß, y) is not F4, then according to Table 3.12, it must be F3, and in

this case we have

r(c3) = ?(c8) = £(cIO) ==$*©,   -ftA3),

ftc5) = -ftA3),       ftA2) = 0.

Applying S to the identities

(4.59) [c7, c8] = c7(c5 - c3) + (c4 - c,)(c8 - c5) + c,9 - c15,

15 ~~ c19(4.60) [c3,c7]=c

and using the above values of ft we get ftc8) = ftc5), contrary to ¿7 ¥= -ftA3).

Next we prove f | C(ß, y) is F4 => f i C(a, ß) is F,. The combined assumptions of

Si C(ß, y) being F4 and f J, C(a, ß) being not F,, imply that SI C(a, ß) is T6 and the

following hold.

f(c2)=ft>5) = ftc8) = ftc10) = 0,

ftc3) = ¿7^0,  -ftA3),

ftc,)=p^0,   -ftA,),

S(c4) =-S(hx),

S(c1) = S(c9) = -p-S(hx).

When f is apphed to the identities (4.59) and (4.60) we obtain the contradiction

(p + ftA,))¿7 = 0. This proves the implication we are after.

The remaining equivalences can be obtained from this and direct computation

through the use of appropriate Weyl automorphisms. We outline this by the

following chain of equivalences.
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SiC(a + ß, y)isT4~S° °alC(ß, y) is F4,

<*S0oalC(a,ß)isTu

**SiC(a,ß)isTx,
o       W  y» X   •      yr,

^UC(ß,y)isF4,

~£ °ay|C(ß,y)isF4,

**£ °ayiC(a,ß) is F,,

*»fiC(o, ß + y) is F,.

This concludes the proof of Lemma 4.58.    D

Lemma 4.61. 7/ft C(a, ß, y) -» Fií ¿z mass function where

(i)St = 0,
(ii) ftA,) ¥* 0 andS(h3) # 0, am/

(iii)ftc,.) = 0/br/=l,2,...,5

íAe« ftc6) = 0.

Proof. Assume ft C(a, ß, y) -» F is a mass function satisfying (i) through (hi)

and S(c6) ¥= 0. Since S¡ = 0, and ftc6) ^ 0 we must have

f(c6) = -f(A, + A2 + A3)^0.

Since S i C(a, ß + y) is a mass function with ftA,) ¥= 0 then by Table 3.12 we must

have S(h2 + h3) — 0. Similarly, considering the restriction of S to C(a + ß, y), we

have ftA, + A2) = 0 and hence ftA,) = -ftA2) = ftA3) ¥= 0.
Table 3.12 and the conditions that ftc,) = ftc2) = ftc4) = 0 imply that ftc7) =

ftc9) = 0. Similarly considering the restrictions of S to C(ß,y), C(a, ß + y) and

C(a + ß,y) yields ftc8) = ftc,0) = ftc,,) = ftc,3) = 0 and ftc,2) = ftc,4) =

-ftA2)^0.
Then, using these values for ft in the identities

(4.62) [c,,c8] =c20-c,5,

(4.63) [c3,c7] =c15 - c,9,

(4.64) [cx,cx5] = ^(c,, - cg) - (A, + l)(c,5 - c,,) + c20 - c,,,

(4.65) [c7, cI0] = (A2 + l)(c„ - c,2) + (c,3 - c,2)c2 - c,5 + c,2

we obtain ftA2) = 0 which is a contradiction.    D

Lemma 4.66. If ft C(a, ß, y) -» F ¿s ¿z «i¿zsj function where St — { ±a}, f J, C(a, ß)

is F„ f j, C(a, ß + y) is F6 am/ ftc3) = 0 íAe« ftA3) = 0.

Proof. Assume ft C(a, ß, y) -* F satisfies the hypotheses and ftA3) ^ 0. The

restriction of S to C(ß,y) then must be either F3 with p = 0 and ftA2) = 0 or F5

withft«2) = Oandp = -fth3). In either case ftc5) = -ft«3)andftc8) = ftc,0) = 0.

A similar analysis of SiC(a + ß, y) yields ftA, + h2) = 0 and ftc,,) = ftc,3) = 0.
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Since S i C(a, ß) is F, and S i C(a, ß + y) is F6, we have that ftc7) = ftc9) = 0 and

S(cX2) = ft<M4> - -ftA, + A2 + A3) — ftc,). Now applying S to the identities

(4.67) [c7, c8] = c7(c5 - c3) + c4(c8 - c5) - (cg - Cj)«,

— c,2 + c,4 + c,9 — c20,

(4.68) [c,,cg] =c20-c,5,

(4.69) [c3,c7] = cX5-cX9

we have that ftc,)ftA3) = 0. This contradicts our assumptions and hence we may

conclude that ftA3) = 0.    D

Lemma 4.70. If ft C(«, ß, y) -> F w a waíí function where S¡ = { ±ß), f J, C(a, ß)

is F4 an¿/ f i C(ß, y) is F, then ftc6) = 0.

Proof. Assume that S satisfies the conditions and ftc6) ¥" 0. Since Se = { ±ß} we

have that ftc6) = -ftA, + A2 4- h3) ¥^0. Now S satisfies the conditions of Lemma

4.66 relative to the base {ß, y, -a — ß — y} which imphes that ftA, +A2 + A3) = 0

contrary to our assumption. Therefore ftc6) = 0.    D

Lemma 4.71. There does not exist a mass function ft C(A4) -* F such that, relative

to a base {a, ß, y, 8} of the root system of A4, we have:

(i)5f=(±a,±y),

(ii) S i C(a, ß), C(a, ß + y) and C(y, 8) are F„

(iü) SlC(a + ß, y) and C(ß, y) are T4, and

(iv)S lC(a, ß + y + 8) is T6.

Proof. Assume that ft C(a, ß, y, 8) -> F is a mass function which satisfies

conditions (i) through (iv) and seek a contradiction. Since S lC(a, ß + y, 8) and

S i C(a, ß, y + 8) satisfy the conditions of Lemma 4.66 we have that

£(A4) = £(AY + A4) = 0.

Also since S i C(a + ß, y, 8) and S i C(ß, y, 8) satisfy the conditions of Lemma 4.70

we have that ftAa + hß + hy + hs) — S(hß + hy + hs) — 0 and hence we may

assume that ftAJ = ftA„) = ftAy) = ftAs) = 0.

Let c = (Yy+sYa+ßXß+y+sXa)(YsYyXy+s) £ C(a, ß, y, 8). Since S i C(y, 8) is F,

we have S(YsYyXy+s) = 0 and hence ftc) = 0. On the other hand we have

C~ \^y + SXy + s)\^a + ßXß + y + SXcXs^y)

'    \Yy + 8*a + ßXaXß + y + B —   Yy + S^a+ß Xa + ß + y + S )

■(YsXs-YyXy-hy).

Since SiC(y, 8) is F, we have S(Yy+sXy+s) = S(YSXS) — 0. Also by considering
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SiC(a + ß,y + 8) we have that S(Yy+sYa+ßXa+ß+y+s) = 0 and hence 0 = ftc) =

-S(Yy+sYa+ßXaXß+y+s)S(YyXy). Finally by applying S to the following identities

(4.72) [l^A^, Yy+sYßXß+y+s\ = Yy+sYßYaXa+ß+y+s — Yy+sYa+ßXaXß+y+s,

(4.73) [^/y^/y» Yß+y+sYaXa+ß+y+8\ + Yß+y+$Ya+ßXa+ß+y+sXß

— *y+8YßYaXa+ß+y+s + Yß+y+sYaXa+ß+y+s,

(4.74)

(Yß + y + 8YaXa + ß + y + s)  ' \Ya+ßXaXß) ~ \ Yß + y + SVaXa + ß + y + 8 )( ^a+ß Xa + ß )

4- ÍY Y My        Y  Y   — Y       Y       \
r \Iß + y + 8Aß + y + 8)\Ia + ßAaAß Ia + ßIa + ß)

"*"  \^ß + y + 8Va+ßXa + ß + y + 8Xß ~   ^ß+y + 8 Xß Xy + 8 +   Yß + y + 8Xß + y + 8)\VaXa)

we   have   that   S(Yy+sYa+ßXaXß+y+s) = -S(YaXa)   and   hence   0 = ftc) =

H(YaXa)S(YyXy) which contradicts our assumption that 5f = {±a, ±y).    D

Lemma 4.75. There does not exist a mass function ft C(y44) -» F such that, relative

to a base {a, ß, y, 8) of the root system of A4, we have:

(i)Sj- (±a, ±8),

(ii) S i C(a,'ß) is Tx,

(ih)SiC(a,ß + y)isT6and

(iv)SiC(y,8)is T4.

Proof. If ft C(a, ß, y, 8) -» F were a mass function satisfying conditions (i)

through (iv) then S satisfies the conditions of Lemma 4.71 relative to the base

{«, -a — ß — y — 8, 8, y) and this is impossible.    D

5. Proof of main theorem. In this section, we complete the proof of Theorem 1.7.

First, we introduce some notation and terminology.

Let S be a mass function on C(yf„), $ a root system of An and S, = {y £ Í» |

S(YyXy) = 0 or -ftAy)}. By Proposition 4.3, St = LH=,$; where $,' are mutually

orthogonal irreducible root subsystems of 0. Let A't be a base of O/. By [6, Theorem

5.2], we can extend U|=, A'¡ to A as a base of í>. By permitting some A,'s to be void

if necessary, we may present the Dynkin diagram for An by

(5.1)
A,     ak      A2     akj ak¡     A,+ ,

where A, = 0 or A'j for some j and | {/1 A, ¥= 0} |= /. A base with such a

presentation is called a S-base. By convention, we set k0 = 0, a0 — 0 and kt+, = «

+ 1. If A is a ftbase of the form (5.1) and A, ¥^ 0 then A is assumed to be labeled

such that A, = {«,+,, cxk    +2,... ,ak   x).
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Let A be a ftbase of the form (5.1), 0+ be the positive roots relative to this base,

<J>, be the set of roots generated by A(, and $,+ = O, n $+ . For 1 < i </ < t + L,

we define

(5.2) 73,/A) = {<*,+ ...+«„ | «M £ A, U (àki) anda, £ A,. U {«*,_,}},

(5.3) 7,/A)= {(a,ß)|a£4>,+ ,ß£ß,/A)anda + ß£0>+},

(5.4) Jij(A) = {(ß,y)\ß £ ß,/A),y £ ^ and ß + y E *+ }.

These definitions allow us to get control over the value of S on entire blocks of

basic cycles as illustrated by

Proposition 5.5. If there exists a pair (a0, ß0) £ 7,/ A) stzcA íAaí S i C(a0, ß0) is

F, or a pair ( ß0, y0) £ Jtj(A) such that S i C(ß0, y0) is T4 then S i C(a, ß) is F, for all

(a, ß) £ 7,/A) and S i C(ß, y) is T4 for all (ß, y) £ 7,/A).

Proof. Suppose first that A, = 0 and (ß0, y0) £ Jtj(A) with S i C(ß0, y0) being

F4. Then ß0 ^ak,+ ■■■ +a)1 and y0 = a/J¡+x-\-+a„ where <*,.+ „... ,a„ £ Ay and

hence a^ £ Ay U (a,.    ). By Lemma 4.49, we have that

Si C(ß0, y0) is T4**SiC(ak¡+ ••■ + «*._,, «*._,+ , + ■■■ +a„) is F4,

y—   i"    I   W~ -U -l-y. yv \   i O   T**SiC(ak + ■■■ +ak      ak    +x)isT4.

Thus S i C(ß0, y0) is F4 iff S i C(ß, y) is F4 for all (ß, y) £ .//A). Since A, = 0

implies that 7,/ A) = 0 we have that the proposition is vahd for A, = 0.

A similar argument, applying Corollary 4.57, proves the proposition if A^ = 0.

Thus we may assume that A¡¥= 0 ¥= A ■. In this case the proposition follows directly

from

Lemma 5.6. With notation as above and assuming A, t^ 0 ¥=■ Aj we have:

(i)for (a, ß) E 7,/A), S i C(a, ß) is F, iff S i C(ak^x, a,. + • • • +ak¡ ,) is F„

(ii) for (ß, y) £ /(/A), SiC(ß, y) is T4 iff S i C(ak¡_x, «,,+ ■■• +akj¡) is F,.

Proof, (i) Set ß = ak¡ + • • • +ak _¡ and write ß = a' + ß + y' where a' £ 4>, n

<ï>+ or a' = 0 and y' £ í>y D í>+ or y' = 0. Applying Corollary 4.57 and Lemma

4.58, we have the sequence of equivalent statements

nC(«,ß)isF, ~(457>nc(a',yÖ + y')isF,,

~^SiC(a',ß)isTx,

~i4S1)SiC(ak_x,ß)isTx.

(Note that if a' = 0 we may start at the second statement replacing a' by a to obtain

the required result.)
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(ü) Applying Lemmas 4.49 and 4.58, we have the sequence of equivalent state-

ments

SiC(ß,y) is F4 «<4i"nc(«' + ß,y') is F4,

~(4-58)nc(/T,y')isF4,

~^SlC{ak¡J)isTx.

(Note that if y' = 0 we may start at the second statement replacing y' by y to obtain

the required result.)    D

Definition 5.7. Let A be a ftbase given by (5.1). Then the pair (/, /) with

1 < i <j < t + 1 is bad relative to A if

(i) when | A,/A) | = 1 we have

S{Yakt+...+akj_Xaki+...+akjJ = -ftX + ••• +A%J *0

or

(ii) when |5,/A)|> 1 we have SiC(a,ß) is F6 for all (a, ß) E 7,/A) and

SlC(ß, y) is F3 for all (ß, y) £ /,/A).

Lemma 5.8. For any mass function ft C(An) -* F, n > 3, there exists a S-base A such

that there are no bad pairs relative to A.

Proof. Our proof is by induction on t. For t = 0, the lemma is vacuously

satisfied. Let S be a mass function on C(An) and A be a ftbase having the property

that among all such bases the number of bad pairs is minimal relative to ft Evidently

we must show that this number is zero when t > 0.

Assume first that there is a bad pair (/, /) relative to A with i <j < t + 1. If

ft = S i C(ax,.. .,ak _,) then by our induction, there exists a ft-base A(1) of the root

subsystem generated by {a,,... ,ak _,} such that there are no bad pairs relative to

A(1). Also, there is some product a of Weyl reflections aa with a E {<xx,...,ak _,}

such that a(ax,...,ak _,) = A(1). From the form of a, we have that a leaves Ar+1

pointwise fixed and maps B¡ l+,(A) to some Bk ,+ ,(A). Therefore, the number of bad

pairs of S relative to oA is strictly less than the number of bad pairs of S relative to A.

This contradiction imphes that there are no bad pairs (/, /) of S relative to A with

i<j<t+ I.

By a similar argument, there are no bad pairs (/, /) of S relative to A with

1 < / </. Thus, if S has a minimum number of bad pairs relative to A, then the only

possible bad pair must be (1, t + 1).

We now assume that (1, t + 1) is the only bad pair of S relative to A and seek a

contradiction. Our argument splits into two cases.

Case I. One of A, or A,+ , is nonempty. If A, = 0 and Ar+, ¥^ 0 we can replace

the ftbase A = {a,,... ,an) by the ftbase A = {a„,... ,ax}. From Table 3.12 we have

that S i C(a, ß) is F, iff S i C(ß, a) is F4. It follows then that (I, t + 1) is the only

bad pair of S relative to A and moreover À, ^ 0. Therefore, without loss of

generality we may assume A, ^ 0.
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If t = 1 then there is only one pair (1,2),

A= {«^„...,«„-(«, + ...+«„),«„,. ..,ak¡_x]

is a ftbase, and S i C(ax,-(ax + ••■ +<*„)) is F,. Hence by Proposition 5.5 the only

pair relative to Â is not bad. This contradiction completes Case I for / = 1.

If t = 2 we consider two subcases.

Subcase (i). A,¥= 0 .In this case, S restricted to

C(ax,a2 + ■■■ +akr_2, ak_x, ak¡ + • • • +an)

satisfies the hypothesis of Lemma 4.71 and hence there is no such mass function.

Subcase (ii). A. = 0. If A,, , ¥= 0 then S restricted to

C(ax,a2 + ■■■ +ak_x,aki, ak+x + ■■■ +an)

satisfies the hypothesis of Lemma 4.75 and no such mass function exists. Thus we

may assume that A, = A,+ , = 0. Then S restricted to C(ax, a2+ ■ ■ ■ +an_x, an)

satisfies the hypothesis of Lemma 4.66 and hence ftAa ) = 0. Now oa A is a ftbase

and S admits exactly one bad pair namely (1, t) (and hence a minimum number)

relative to aa A. This contradicts our previous argument again and hence completes

this subcase.

Case II. A, = 0 = A(+1. If, in addition, there exists some i with A, ¥= 0 the

restriction of S to C(ax + ■ • • +a¡_x, a¡, a¡+x + • • ■ +an) where a¡ E A, satisfies the

hypothesis of Lemma 4.70 and hence

S{Ya¡+...+aXai + ...+J = 0.

Since | 7?,,+ ,(A) | = 1, this implies that the pair (1, r + 1) is not bad contrary to our

assumption. Thus we may assume that A,- = 0 for 1 </'</+ 1. This imphes that

t = n,S¡= 0,| 73,/A) |= 1 for 1 </</<« + 1 and S(YßXß) = 0 for all positive

roots ß except ax + • • • +an.

If ?(Aa ) = 0 or ftAa ) = 0 then by an argument similar to subcase (ii) of Case I

we arrive at a contradiction and hence we may assume that ftAa ) ¥= 0 ¥=■ ftAa ).

From this we see that S iC(ax, a2+ •■■ +an_ ,,a„) satisfies the hypothesis of

Lemma 4.61 and hence S(Ya¡ +... +aXa¡ +... +aJ — 0—i.e. the (1, t + 1) pair is not

bad. This contradiction completes this case and hence the entire theorem.    D

We now have all the facts needed to prove our main theorem.

Proof of Theorem 1.7. In §3, we proved this result for « = 1 and 2. Let A be a

ftbase as given to us by Lemma 5.8 so that A has form (5.1). By Corollary 4.47, there

is an evaluation map e: F[X,,.. .,X„, sx,.. .,s„] -» F such that

nC(A,.) = £o*A,AiC(A,).

Since A is a ftbase described by Lemma 5.8, S is zero on all degree 2 and 3 basic

cycles of C(An) relative to A which are not in U5+1C(A,). Therefore, ftc) =

e o ^A>A(c) for all basic cycles c of degree < 3. By Proposition 4.1, this implies that

S = e ° *.    □
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6. Pointed representations of An. In the introduction we proved that corresponding

to each mass function ft C(An) -> F there exists a unique (up to equivalence)

pointed representation of An. Unfortunately this correspondence is not one-one

since a pointed representation of An may admit many 1-dimensional weight spaces.

In this section we indicate how one may select a set of mass functions which label

the pointed representations of An in a one-one fashion. A first step in this direction

is provided by the following theorem.

Theorem 6.1 [11, Theorem 4]. If ft, ft: C(An) -* F are mass functions then the

pointed representations corresponding to ft and ft are equivalent iff there exist elements

x, y E U(An) such that yx E C(An), ft(yx) = 1 and ft(c) = S2(ycx) for al1 c e

C(A„).

To motivate our approach to the general labelling problem, we first review the

known results on highest weight (Verma) representations and show how these can be

interpreted in the setting of pointed representations. Fix a base A of the root system

of An and let ¥: C(An) -> F[Xx,...,Xn] be the usual Harish-Chandra homomor-

phism relative to A. For any evaluation map e: F[X,,...,XJ -* F, f = £°^isa

mass function and moreover it is clear that the left ideal 7f of U(An) generated by

{Xß | ß E $+ } U {ha - S(ha) ■ 1 | a E A} contains the kernel of ft Then the regular

representation of An on U(An)/I^ is the Verma representation with highest weight

X = S i 77 relative to the base A. By the argument given in the proof of Theorem

1.3(h), 7f is contained in the unique maximal left ideal A7? of U(An) which contains

kerft Thus, for any mass function ft as described above, the associated pointed

representation of An admits f 177 as its highest weight relative to the base A.

Conversely, if (p, V) is an irreducible representation which admits X £ 77* as a

highest weight relative to A then the mass function corresponding to this 1-dimen-

sional weight space Vx is equal to e ° ^ where £: F[X,,... ,XJ -* F with e(X,) =

X(Aa ) for all a, £ A.

If we restrict our attention to irreducible representations having a highest weight

relative to a fixed base A, it is well known that such representations are labelled in a

one-one fashion by their highest weight. To address the analogous question for

pointed representations we first restrict our attention to those pointed representa-

tions which are associated with mass functions of the form e o v^, A for some fixed

base A. These representations will be called A-pointed representations. Theorem 1.7

states that every pointed representation is a A-pointed representation for some base

A. We now specify a set of mass functions which label the A-pointed representations

in a one-one fashion.

Definition 6.2. A mass function ft C(An) -* F is said to be A-complete for some

base A of the root system of An iff S — £ ° ^a,a where the evaluation map e:

F[X,,... ,X„, sx,... ,sn] -> F satisfies the two conditions

(i) e(sx) &ZU(Z + S(ha¡)) U • ■ • U(Z + ftAa, + • • • +haJ) where A =

{a,,...,a„} and
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(ii) £ ° ^A A 177 = a,«, + a2a2 + ■ • ■ +a„an where the coefficients a, are normal-

ized as follows. Select a hnear basis of F as a rational vector space where the first

basis vector is 1. Each a¡, when expressed in terms of this basis must have first

coordinate greater than or equal to 0 and strictly less than 1.

In [14] it is proven that the pointed representation of An associated with a mass

function S — £ ° ^a a where e(sx) satisfies condition (i) in Definition 6.2 has the

property that its set of weight functions consist of (f i H + 2"=, n¡a¡ | «, £ Z} and

each of these weight spaces is one-dimensional. The role of condition (ii) in

Definition 6.2 is to provide a method to select a unique mass function for such

representations. In a sense we are selecting the unique mass function which is closest

to the center in the lattice of weights of such representations.

Definition 6.3. A mass function ft C(An) -» F is said to be A-extreme for a base

A iff there exists a subset A' of A such that S — £ ° ^a,a where the evaluation map e

satisfies the property that for each nonempty connected component A, of A', the

restriction of f to C(A,) is A,-complete.

Under the assumption that Theorem 1.7 holds, it has been shown in [15] that for

each pointed representation (p, V) of An there exists a base A such that V admits a

A-extreme mass function. It is also shown that distinct A-extreme mass functions

yield inequivalent pointed representations. Thus the A-extreme mass functions play

the same role for A-pointed representations as the elements of 77* play for irreduci-

ble representations admitting a highest weight with respect to A. In particular it

should be noted that for any X E 77* the mass function S — £ ° ^.a with e(X,) =

X(ha) for all ¿x¿ E A is A-extreme and yields the irreducible representation of An

admitting X as a highest weight relative to A.

The general problem of classifying all irreducible representations of An is as yet an

unsolved problem. Block [3] has recently completed a classification of all irreducible

representations for the case « = 1. In order to place the category of all pointed

representations of An in the perspective of all irreducible representations of An we

summarize some of the known types of such representations. In [1, 13] it is shown

that there exist irreducible representations of An (even of Ax) which do not admit a

weight space decomposition with respect to any Cartan subalgebra. It is known [10]

that if an irreducible representation of An admits a weight space decomposition then

either all weight spaces are infinite dimensional or all are finite dimensional. There

are examples [7] of irreducible representations of An having weight space decomposi-

tions with all weight spaces being infinite dimensional. More recently, Benkart [2]

has constructed an irreducible representation of y42 with all weight spaces being

2-dimensional by choosing an irreducible submodule of the tensor product of a

fundamental representation of A2 and a pointed representation coming from an

(a, ß}-complete mass function.

Combining the results of this paper with the general remarks in [14] we can

construct large families of mass functions for the other finite dimensional simple Lie

algebras over F and hence construct pointed representations for these simple Lie

algebras. The question of whether these exhaust all pointed representations is an

open question.
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