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FRÉCHET SPACES WITH NUCLEAR KÖTHE QUOTIENTS1

BY

STEVEN F. BELLENOT AND ED DUBINSKY

Abstract. Each separable Fréchet non-Banach space X with a continuous norm is

shown to have a quotient Y with a continuous norm and a basis. If, in addition, Y

can be chosen to be nuclear, we say that X has a nuclear Köthe quotient. We obtain

a (slightly technical) characterization of those separable Fréchet spaces with nuclear

Köthe quotients. In particular, separable reflexive Fréchet spaces which are not

Banach (and thus Fréchet Montel spaces) have nuclear Köthe quotients.

The problem of determining what kinds of subspaces and quotients can be found

in arbitrary Fréchet spaces arises not only from the aesthetic imperative to under-

stand the internal structure of these spaces but also from certain apphcations. One

recent example is the construction, in nuclear Fréchet spaces, of subspaces and

quotients which do not have certain approximation properties such as basis, strong

finite dimensional decomposition, etc. [1].

In this paper we are specifically concerned with the determination of those

Fréchet spaces which have quotients that are nuclear, admit continuous norm and

have a basis. We call such spaces nuclear Köthe spaces. We obtain a characterization

which permits us to answer most reasonable questions, but there are some fine

points which we are unable to settle.

This problem has a history which relates to subspaces as well as quotients and also

involves the (rather trivial) case in which the quotient is not required to have a

continuous norm. Therefore we begin, in §1, with a very brief historical discussion of

known results.

§2 hsts the generally standard definitions and notations. In §3 we give the main

construction that forms the basis of our results. The characterization is estabhshed in

§4 and §5 is devoted to concrete situations and open questions.

1. History of the problem. The case of subspaces was solved some time ago. In

1957, C. Bessaga and A. Pelczyñski [2] showed that a Fréchet space fails to admit a

continuous norm iff it has a subspace isomorphic to w. If a Fréchet space admits a

continuous norm then so does every subspace, which simplifies the problem a little.

In 1959, Bessaga, Pelczyñski and S. Rolewicz showed that a Fréchet space which

admits continuous norm has a nuclear Köthe subspace iff it is not Banach [4]. Thus it
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follows that, in general, a Fréchet space has a nuclear Käthe subspace iff it has a

non-Banach subspace which admits continuous norm.

The situation with quotients is somewhat more complicated. In the first place, a

Fréchet space which admits continuous norm can have a quotient which does not.

Indeed, in 1936, M. Eidelheit showed that any non-Banach Fréchet space has a

quotient isomorphic to w [9]. Another complication is that in order to obtain results

one usually has to assume that the original space is separable. The nonseparable case

seems to be much more difficult—even for Banach spaces. Thus, for the rest of this

paper we will be looking for nuclear Köthe quotients in separable Fréchet spaces.

Of course our space must be non-Banach and different from w. Even so it might

fail to have a nuclear Köthe quotient. For example, in §5 we will see that this is the

case for countable products of Banach spaces and also for a slightly larger collection

of Fréchet spaces called quojections.

On the other hand, if we consider only nuclear Fréchet spaces, then we are looking

for Köthe quotients and here the problem has a positive solution: every nuclear

Fréchet space not isomorphic to 03 has a Köthe quotient. The proof of this fact which

appears in [7, p. 42] is completely false. A correct proof is given in [8].

2. Definitions and notations. We use many concepts from the standard theory of

locally convex spaces. For definitions and notations not explicitly explained we refer

to the book of G. Köthe [12].

Generally we will be considering a locally convex space E which will be either

normed, metrizable, Banach, or Fréchet. The completion of E will be denoted (E).

The dual of E will be indicated by E' and, unless otherwise stated, will be considered

to have the strong topology from E. The symbol E" will stand for the dual of E'. If

A is a subset of either E or E' we will denote its polar in E' or E by A°. We recall

that if E is Fréchet, then in view of the uniform boundedness theorem, "bounded

subset of E'" is an unambiguous phrase.

We recall that a Fréchet space E is a projective limit of operators Ak: Ek+X -+ Ek

(k = 1,2,...) on Banach spaces. That is, E is the set of all sequences (xk) 3 xk =

Akxk+X (k — 1,2,...) with the product topology. The maps Py. E ■-* Ej (j = 1,2,...)

defined by Pj((xk)) = Xj are called the canonical projections. If E is such a projective

limit with each Ak a one-to-one map, then we say that E is countably normed.

The topology of a metrizable locally convex space E is determined by a fundamen-

tal sequence of seminorms (|| ■ \\k). That is, each \\ ■ \\k (k — 1,2,...) is a seminorm

on E and (x„) converges to 0 in £ iff, for each k, (llx„||¿) converges to 0 as a

sequence of real numbers. We always assume that (II • \\k) is "increasing", that is, 3

a sequence of positive constants, (Ck) 3 \\x\\k < CJ|x||t+1 (x G E, k = 1,2,...).

If E has the property that (|| • \\k) can be chosen 3 each || • \\k is a norm then we

say that E admits continuous norm. Obviously this is the same as the existence of a

single continuous norm defined on E.

If II • II is a seminorm on a locally convex space E its dual norm (not necessarily a

seminorm) is a function || • ||' on £' defined by

Hull' = sup{|w(x) I : x G E, \\x\\ < 1}        (u E E').

Clearly || • II' is a norm if restricted to a vector subspace of E on which it is finite.
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A sequence (x„) in a locally convex space F is a basis if for each x G E 3 unique

expansion x = 2„ tnxn, t„ scalars. In this case, the sequence (/„) C £' defined by

fn(xm) = à„m (Kronecker delta) is called the dual basis. A basic sequence in £ is a

sequence that is a basis for the closed subspace it generates.

A sequence (xn) in a normed space is a-basic, where a > 0 if it is basic and the

projection of the space generated by x,,... ,xm onto the space generated by x,,... ,x„

along the space generated by xn+ x,... ,xm has norm «£ a for all n < m. The smallest

such number is called the basis constant of (x„).

Unless otherwise stated the term "subspace" means closed vector subspace. The

reader is invited to insert the term infinite dimensional where appropriate to avoid

trivial situations.

If £ is a locally convex space and M is a vector subspace of £ then E/M denotes

the usual quotient with the usual quotient topology. The map T: E -> E/M defined

by Tx = x + M will be called the canonical quotient map. If II ■ II is a seminorm on

£ then the seminorm induced by \\ ■ II on E/M will be the seminorm | ■ | given by

|Fx|=inf{||y||: Ty = Tx).

The expressions [xj, [xj"=1 refer to the closed subspaces generated by the

sequences (x,)°i,, (x,)"=1 respectively.

We denote by w the Fréchet space of all sequences of scalars (product topology)

and by c0 the Banach space of all sequences of scalars which converge to 0 (sup

topology).

The symbol N stands for the set of positive integers.

3. Basic construction. In this section we consider a separable Fréchet space £ for

which there exists a biorthogonal sequence (x„, /„) in £ X £' satisfying certain

conditions. We show (Theorem 1) that such a space has a nuclear Köthe quotient.

There are several approaches to constructing quotients with bases in a Fréchet

space. One is to use the Mazur selection method [3] on the Banach spaces de-

termined by the bounded sets in the dual. It was shown in [8] however that this does

not lead to a basic sequence in the strong topology of the dual. Another method is to

embed the dual in the dual of a Köthe space—in analogy with the embedding of a

separable Banach space in C[0,1]—and construct a basic sequence in the dual by

considering block basic sequences and using stability theorems. This approach was

used successfully in [8] but it seems to require that the original space be nuclear.

In this paper our approach is based on a variation of the construction of W. B.

Johnson and H. P. Rosen thai [10]. This is worked out in Proposition 1. The main

difference is that we work with a normed space rather than its completion and

instead of requiring that the sequence (/„) converge weakly (from £) to 0 we have it

eventually vanish on certain finite sets whose union is dense. By this means we are

able, in the proof of Theorem 1, to avoid serious difficulties that occur when one

completes the canonical normed spaces determined by seminorms in a Fréchet

space. With the help of Lemmas 2, 3 we are able to apply a diagonalization

procedure to construct the desired quotient.
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We begin with a selection theorem which follows from Helly's condition [11, p.

151].

Lemma 1. Let (X,\\ • \\) be a normed space, («,),"=, EX', <t> E ([«,-]"=,)' with

\\4>W = 1 and let e > 0. Then 3 x G X with 1 < ||x|| < 1 + e and <b(u¡) = w,(x)

(/ = 1,...,«).

The next result is our main tool in constructing quotients.

Proposition 1. Let (£0, II • II) be a normed space, (dn) a dense sequence whose

span is E0, (/„) C E¿ with fm(dn) = 0 for m sufficiently large (depending on n) and

(xn) C £0 biorthogonal to (/„).

Then 3 a subsequence of indices (n(i))¡ 3 if M = n(ker/n(() and T: £0 -» E0/M is

the canonical quotient map, it follows that (F(x„(l))), is 4-basic in E0/M and spans

EJM.

Proof. We may assume that || /„ ||' = 1. We will choose sequences (e,) of positive

numbers («(.)) of indices and (D¡) of finite subsets of £0 3

(1)D(CDI+I.

(2)/„(,+1)(A) = o.
(3) d¡/\\ d¡ Il G D¡ and each element of Di is one of dj\\ d„ || (n E N).

(4) If <i> G a/„(/)J.= i)' with H*H = 1 then 3 x G £>,. 3

|*(/)-/Wl<e,-ll/ll'  v/g[/„(/)];=1.

(5)0<E,<l,n;=1(l-e/)>iande,2'/=lllx„!OH<l.

Our construction is by induction. We begin by setting «(1) = 1 and ex =

min{¿, l/||x,||}. Let <¡> be as supposed in (4). By Lemma 1 (with n — l)3x G £0

with fx(x) = <t>(fx) and 1 < ||x|| < 1 + e,/3. We choose m 3 \\dm - x\\ < e,/3.

Now we calculate,

<(iijt-i..ii + |M»ii-i|)ii/,r<(^+3t)ii/,ii-=«iii/,r.

Thus if we set 79, = {dx/\\dx ||, dm/\\dm\\) we have (4) and also (3). Our choice of e,

gives (5) and (1), (2) are vacuous.

Now suppose the choice has been made for 1,2,...,/' — 1. We choose n(i) large

enough so that (2) holds and e, so that (5) holds. Let <>,,... ,<f>k be an e,/4-net in the

unit sphere of ([/„</)]}= i)'. We apply Lemma 1 to each fy and obtain Xj G £0 with

1 < ||xy|| < 1 +e,/4 and <?j(fn{l)) =/„(/)(x7) (j = l,...,k; /= 1,...,/). Then for

eachy we have m(j) 3 ||xy — dmU)\\ < e,/4. Let <j> he as supposed in (4). We choose

ü'>-4vb



FRÉCHET SPACES WITH NUCLEAR KÖTHE QUOTIENTS 583

jB II*-*,II

*(/)-/

e,/4. Then given/ G [/„(/)]J= x we calculate

l*(/)-*,(/)| +!*,(/) -/(*,)
'm(7)

'mUV

+ f^-f\Td
'm(j)

'm(j)<

lm(j)

«m(7) I
l/lII*-*,ll 11/11'+

<(e,/4 + l|x,-¿m0,|| + |||¿m0,|| - 1 1)11/11'<e,ll/ll'.

Thus if we set Z>, = 2>,_, U {¿,/KII} U {d^/ti^O)^! we have ^ <3> and

(4), which completes the induction.

Next we show that(fn(j))j is a basic sequence in E¿. Suppose that ||2'/=, ajn(l) \\' =

l.Then3<i,G([/„(/)];=1)'with

/   < \

i = 11*11 =*( 2 «//»(/>

so by (4) 3 x G Z),

\ i=\ I

Hence, in view of (2) and the fact that x G D¡ implies || x II  = 1, we have,

1 -   2 alfn(l)(x) <e,

i + i

a)

i+i

2 a,fn(l)(x)
i=\

2 alfn(l)(x)
l=\

>1   "£,.

Therefore, by (5), (/„(l)) is basic with constant < 2.

Now we define S: E0 -* ([/„(l)],)' by (Sx)(f) =/(x). Let (y¡) be the sequence in

([/„,,)],)' biorthogonal to (/„(,)), ad let Y he the vector subspace it generates. If

x G £0, then since (dn) spans £0 it follows from (3) that x is in the span of D¡ for

some / and so by (1), (2) we have

i

Sx = 2 fn(i)(x)y,
i=\

so S(E0) C F. On the other hand Sxntj) = y, since they agree on each /1(/). Hence

5(£0) = Y. Moreover it follows from standard duality that (y,) is 2-basic in Y.

It is clear that kerS = M and so we have the canonical map S0: EQ/M -» y

uniquely defined by the relation S0T = S. The map 50 is 1-1, onto and continuous

with norm 1. We will calculate II Sq ' II.

Lety G Y C ([/„(/)]/)' and suppose llyll = 1. Fix 5 > 0. Since (/„(/))/is 2-basic we

can choose . 3y G [y¡]'=x and if we consider that y G ([f„,iy]'¡=x)' with operator

norm ||| • |||, then {- — 8 =s mym < 1. Thus we can choose X E [1,2/(1 - 2ô)] 3

III Xy m = 1. Applying (4) we have x G D¡ with

IM/«*,,)-/»(/)(*)!<£,     ('= L...,i).
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Set /3, = Xy(fn(l)) -/„(/)(x) and w = x + 2'/=1/5/X„(/). Then it follows from (2) and

the biorthogonality that Xy(fní¡)) = /„(/)(w) (/ G N) so Sw = Xy. Moreover, from

(5), since ||x|| = 1,

lwlKl+6,2 ll*n(/)l
/=i

2.

Therefore we have S0T(j^w) =y and ||F(^w)|| =£ 2. This shows that II5o"1 II « 2 and

so (SQXy¡)¡ is 4-basic in E0/M, and it spans E0/M. Since y, = Sx„,¡y = S0Txnli) we

have Fx„(() = Sñxy¡ and the result is proved.    D

The next two lemmas are simple facts that will be useful in Theorem 1 when we

pass to subsequences. We include the straightforward proofs for completeness.

Lemma 2. Let X be a normed space and (xn, fn) a biorthogonal sequence 3(xn) is

K-basic and spans X. Let (n(i)) be a subsequence of indices, M = D^ker fn(i) and T:

X -* X/M the quotient map.

Then (F(xn(I))), is K-basic in X/M and spans X/M.

Proof. Let x = 2¡I'=1/„(x)x„. Then x - lnli)^Nfn(i)(x)xn(i) E M so applying F

we see that the second statement holds.

Now we make the following calculations with the understanding that all sums are

finitely nonzero.

Suppose 112™=?a,Fx„(1)|| = 1. Then for any e > 031nß„x„ 3 \\2„ß„xn\\ < 1 + e

and \ßnTx„ = 2T=ip a,Txníl). The last equality means that 2„/3„x„ - 2JLY«i*«(o

G M so in view of the biorthogonality, ßn = 0 if n > n(m + p) or n ¥^ n(i) for all i,

and ßn = a, for n = n(i) (i = 1,... ,m + p). Therefore we have,

Zl  ai^Xn(i)
i=\

<AT

Z  ßn(iyXn(i)
i=\

m+p

Zl   ßn(i)Xn(i
i=\

Li  ßn(i)X„(i)
i=\

K Z]ßnXn K(l + e).

Since this holds for all m, p, e we have the desired result.    D

Lemma 3. Let X be a normed space, (x„, /„) a biorthogonal sequence 3(x„) spans

X. Let M — C\n>kker /„, F: X -> X/M the quotient map and suppose that (Txn)nS,k is

K-basic in X/M.

Then 37 3 (x„) is J-basic in X.

Proof. This is clear because M is finite dimensional so X/M is isomorphic to

[xn]n>k via F and (x,,... ,xk_x} is linearly independent.    D

Now we have the first major result of the paper which says that under certain

technical conditions, a Fréchet space will have a nuclear Köthe quotient.
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Theorem 1. Let E be a separable Fréchet space which admits continuous norm. Let

(II • II,.) be a fundamental sequence of norms for E with dual norms (\\ ■ \\'k). Let (dn)

be a dense sequence in E and E0 the vector subspace it generates. We suppose that there

is a biorthogonal sequence (xn, fn) satisfying

(a) (x„)c£0,(/„)C (£0,11-11,)'.

(h)fm(dn) = 0form>n.

(c)\\f„\\'k+x/\\fn\\'k^l/n2fork= l,...,n- 1.

Then E has a nuclear Köthe quotient.

Proof. We shall write Ek for the normed space (£0,ll • II*) and E'k for its dual,

(£0,|| • II k)' equipped with the norm || • \\'k. In view of (a) we may consider/, to be a

continuous linear functional on any Ek.

We apply Proposition 1 to Ex, (dn), (x„, /„) to obtain a subsequence (/.,(/')) of

indices 3 if Mx = f^ker/,,,) and F,: £, -» Ex/Mx is the quotient map, then

(F,(x„ (i))) is 4-basic in Ex/Mx and spans Ex/Mx.

Proceeding inductively we apply Proposition 1 to Ek, (dn) and (xn jn, f„. m)¡

to obtain a subsequence (nk(i)) of (nk_x(i)) 3 if Mk — f^ker/, (() and Tk: Ek -*

Ek/Mk is the quotient map then (Tk(xn (l))) is 4-basic in Ek/Mk and spans Ek/Mk.

Now we consider the diagonal sequence («,•(/)). For each k, (n¡(i))i>k is a

subsequence of («*(/)),-. Set Nk = D^ker/, (i) and let Sk: Ek -* Ek/Nk be the

quotient map. We claim that (Sk(x„M))i>k is 4-basic in Ek/Nk and spans Ek/Nk.

To show this, we define/Ml) G (Ek/MJ by f„kii)(Tkx) = f„k{l)(x) (i = 1,2,...).

It is immediate that (Tkx„ (l), % (/A is a biorthogonal sequence. Set N =

r\j3mkktt/„j* and let S: Ek/Mk -» (Ek/Mk)/N be the quotient map. It follows

from Lemma 2 that (5FA.xn.y/))is,-: is 4-basic in (Ek/Mk)/N and spans it.

The map A comes from the hfting property for quotients and the fact that

Tk(Nk) C N. The maps B, C are defined similarly using the facts that Tkx(N) C Nk

and Mk C Nk. The commutativity follows from diagram chasing and the fact that Tk

is onto. Also, from the facts that STk and Sk are onto it follows that AB and BA are

the identities.
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Therefore it follows that B is an isometry and Skxn (/) + BSTkxn(i) and the claim

is proved.

Now we make a similar argument to apply Lemma 3. Fix k and for each / we

define /„ (l) G (Ek/Nx)' by fn(i)(Rkx) =/„,(0(x) where Rk: Ek-*Ek/Nx is the

quotient map (equal to Sx as a function). It is immediate that (Rkxnlj), /„(,>), is a

biorthogonal sequence. Since Ek/Nx = Ex/Nx as a vector space and Rk — Sx as a

function, it follows that (Rk(xníi)))¡ spans Ek/Nx. We will show that it is basic. Set

L = Picker/, (() and let P: Ek/Nx -» (Ek/Nx)/L be the quotient map. We claim

that (PRk(x„0)))i>k is 4-basic. Consider the following commuting diagram:

(Ek/Nl)/L

The map A = PRk. The maps B, C, D are defined using the quotient property and

the facts that TV, C Nk, Rk(Nk) C L and R~kx(L) C Nk. Again the commutativity

follows from the fact that Rk is onto and both CD, DC are the identity because P, B

are onto.

Hence C is an isometry so (CSkxn(i))i>k is 4-basic. But PRkxn(i) — CSkxn,iy

This proves the claim and by Lemma 3 applied to Ek/Nx, (Rk(xnii)),fnli)), L, P, k

it follows that 3 a* 3 (Rk(x„,n))j is a,-basic in Ek/Nx.

Now we are ready to construct the quotient. Consider the metric space E0/Nx with

quotient map F: £0 -» E0/Nx (as a function this is the same as Rk). The seminorms

| • |* induced by II • II * are given by

\y\k = M{\\x\\k: Tx=y).

Because of (a), Nx is closed in £0 with respect to each norm II ■ II * and hence each

| • |* is a norm.

On the other hand, for each k we have, on the set E0/Nx = Ek/Nx, the other

quotient norms ||| • ||| k given by

111^111* = mî{\\x\\k:Rkx=y) =inf{||x||t: Tx = y) =\y\k

and it follows that (Fx„ (;)), = (RkxnU))¡ is «¡¿.-basic in E0/Nx for each | |* so this

sequence is basic in each (E0/Nx, \ -\k)~ so it is basic in (E0/Nx). We also know that

(•R/c*W|(0). sPans Ek/Nx = E0/Nx so (Fx„(/)),. is a basis for (E0/Nj.
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Since T: E0 -» E0/Nx is a quotient map of metrizable spaces it follows that the

completion T: E -» (E0/Nx) is a quotient map. Moreover since each | -\k is a norm

in E0/Nx the same holds for the completion.

Hence, (E0/Nx) is a Köthe quotient of £. It remains to prove that it is nuclear.

Let us write (y,, g¡) for (x„ (l), /„ (l)) so that (y,) C £0 and (fyj) is a basis for

(E0/Nx). Because of (c) and the fact that («,(/')) is a subsequence of (n) we have

xxgiXXk+i - i//2   for*<i.
I ft II*

For each / we define g, G (£0/tV,)' by g,(Fx) = g,(x). This is valid because

Nx = Dj.kerg,-. If | -|* is the dual norm of the norm | -\k induced by II • II* on the

quotient E0/Nx we have,

|g,|*'=   sup   |g,(Fx)|=    sup   |g;(*)|=Uftll'*.
|7x|.<l ||yt||.<l

Moreover (Tyjy g,) is biorthogonal and so (g,) is the dual basis to (Ty¡). Hence, for

each k 3 C* > 0 3

i/lftl*<|ï>,l*<c*/lfl*'      (<-eN),
and so,

I   TYk I*       .,   y-,     lftl*+l C*
-=—¡-< C*   i _ .,   < —    for/>A:.
?>, *+i ft*        i2

Since (Fy,) is a basis for (E0/Nx) it follows that (E0/Nx) is nuclear.    D

4. The characterization. Our characterization of Fréchet spaces with nuclear Köthe

quotients will be in terms of the following condition which we label (*). If £ is a

Fréchet space and (II • \\k) a fundamental sequence of seminorms we denote by E'k

(k G N) the Banach space determined by the unit ball of the dual norm || • \\'k on £'.

, . There exists / such that for every k there exists/ such that the

' II • 11'¿-closure of £/ is not closed in Ej.

It is easy to check that this condition is independent of the choice of (II • \\k).

Moreover, in view of the open mapping theorem, the condition has the following

equivalent formulation:

3/3V/c3y3sup{H|*: u E £/, ||«||; < l} = oo.

In this form our condition is very close to being a dual to the following condition

used by Bessaga, Pelczyñski and Rolewicz [4] in thier determination of those Fréchet

spaces which have nuclear Köthe subspaces:

Vfc3/3sup{||x||/: x G F, ||x||* < 1} = oo

for every subspace y of £ with finite codimension.

The role of condition (*) in our characterization is contained in the following result.

Proposition 2. A Fréchet space E satisfies condition (*) iff it has a quotient which

admits continuous norm and satisfies condition (*).
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Proof. Suppose that £ satisfies condition (*). We may assume for this condition

that / = 1 and j — k + 1. Let M — (E{)°° which, by the bipolar theorem, is the

closure of E'x in the weak topology from £. We will show that E/M° is the desired

quotient.

First we check that E/M° admits continuous norm. Let x G £ and suppose that

the seminorm in E/M° induced by II ■ II, annihilates x + M°. This means that

3(y„) EM° 3limJ|x + y„ll, = 0. Let u E M. Then 3 t; G E{ 3 |«(x)-u(x)|< 1.

Hence we have

\u(x)\<\v(x)\ + \u(x) - v(x)\<\v(x + yn)\+ I.

Since v E £,' it follows that limu(x + y„) = 0 so |k(x)|<1. This shows that

x G M°, so the seminorm induced by || ■ ||, is a norm.

Now we verify condition (*) for E/M°. Fix k and let Vk be the unit ball of II • II *

in £. Since £ satisfies condition (*) we have a sequence (w„) C £,' with II«„II* > 1

and II un ||'*+, =£ ¿. This implies that u„ E ¿ V°k+, ~ V° so a fortiori u„ G (Vk + M°)°.

Moreover, if x G Vk+X,y G M° then, since un E M,

\nun(x+ y)\ =|««„(x)| < 1.

Hence un E j;(Vk+x + M°)°. Thus we have shown that un E j¡(Vk+x + M°)° ~

(Vk + M°)°. But, (E/M°)' = M and the unit ball of the dual norm of the norm in

E/M° induced by II • II* is (F* + M°)°. This shows that E/M° satisfies condition

(*)■
Conversely let E/H be a quotient of E. If (Vk) is a fundamental sequence of nbds

of 0 for £ then by general duality, (E/H)' can be represented as a vector subspace

of £' and a fundamental sequence of equicontinuous sets for (E/H)' is given by

(F*° n H°)k. Hence if E/H satisfies condition (*) (say with / = 1 and j = k + 1)

then 3(un) C H° and a sequence of constants (C„) with un E (CnV° D H°) D

(LnV£+x n H°) ~ (F*° n 77°). It follows that un E £,', l|wj|'*+, < i but since un E

H° then un $ F*° so || u„ ||* > 1. Hence £ satisfies condition (*).    D

We remark that in the second half of the proof of Proposition 2 we did not use the

fact that the quotient admits continuous norm.

We are now ready for the main result of this paper.

Theorem 2. A separable Fréchet space E has a nuclear Köthe quotient iff it satisfies

condition (*).

Proof. Suppose that £ satisfies condition (*). By Proposition 2 we may suppose

that £ admits continuous norm. Let (dn) he a dense sequence in £ and £0 the vector

subspace it generates. We will establish the existence of a nuclear Köthe quotient by

constructing a biorthogonal sequence (xn, /„) which satisfies conditions (a), (b), (c)

of Theorem 1.

Let (|| • II*) be a fundamental sequence of norms for £. The space E'k defined in

the beginning of this section is the dual of the normed space (£0, II • II*) so the

notation here is consistent with the notation in Theorem 1.
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We may assume that condition (*) is satisfied with / = 1 and/ — k + I. Then we

have for each k E N,

sup{\\g\\'k/\\g\\'k + x:gEE'x) = œ.

Our construction is by induction. We can choose /, G £,' with fx¥=0 and so that

(c) holds. Since £0 is dense in £3 x, G £0 3 /,(x,) = 1 so we have (a). Condition

(b) is vacuous.

Before passing to the induction step we must prove that the above statement of

condition (*) remains true if the requirement g G £,' is replaced by the weaker

requirement that g G G where G = {g G £,': g(x) = OVx G L} for some finite

LC£.

We may assume that L is a linearly independent set say L = {zv)"/=x. Since II • ||,

is a norm, E[ is dense in £' with respect to the weak topology from £ so we can find

{g„}™=, C £,' 3(z„, g„) is biorthogonal. Then the map P: E{ -» £,' defined by

P/= 2™=,/(z^)gr is a projection whose kernel is G and P is continuous for every

II • ||'*. Hence if H = P(E'X) we have C* > 0 (/c G N) with

llgll*+l|A||*<C*||g + Ä||*        (gGC.AGJï)

and, since i/ is finite dimensional,

¡i*<CjÄ||*+.        (h EH).

Therefore we have, for each k E N,

ii/ii'* .,_J_í iig + Air*
00 = supl TTI^T: ' e £|J = supk + Air*+,: g

Hence we may conclude that sup( II gll'*/ Il g II '*+,: g G G} = oo.

Turning to our induction step we assume that (x,, /) (/' = 1,... ,n — 1) have been

selected. We apply the above condition with

G= {gEE'x:g(xi)=g(di) = 0,i=l,...,n-l).

Then we select g„,...,g, inductively so as to annihilatex,,... ,x„_,, dx,..-,dn_x and

satisfy, for k — l,...,n — 1,

llg*ll*+.< 1/2*,     llftll* >(«2+ i)(i +l|g*+,ll*+ ■•• +lkll*).
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Next we set /„ = g, + ■ • • +g„ E E'x so /„ annihilates x„ d¡(i = 1,... ,n — 1). This

gives (b). To obtain (c) we calculate, for k = 1,... ,n — 1,

H/JVh _        Hftll'*+i + ••• +Hftll'*+i + Hg*+iH'*+i + ••• +Hft,H'*+i
l/JI'* -(llg1ll'*+"-+llft-,ll'*)+llft:ll*-(llft+lll'*+---+llftll'*)

< l/2 + ---+l/2*+||g*+1H'*+, + ---+||gJ|'*+

1 +(1 +«2)(l + --- + llg*+1ll'*+ ••• + llgnll'*)-(llg*+1ll'* + --- + llg„ll'*)

<i + iig*+1ii'*+i + ---+iigjr*+,^ i

"2(i + iift+,ii'* + ---+iift,ii'*P«2

as desired.

Finally since £0 is dense in £ and /„ ¥= 0 we can find xn G £0 3 f„(x„) — 1 and

f(xn) = 0 (/' = 1,... ,n — 1), which gives (a) and the induction is completed.

The converse follows from Proposition 2 and the easily checked fact that a nuclear

Köthe space satsifies condition (*).    D

We remark that the construction of /„ in the above proof is based on the method

of Bessaga, Pelczyñski and Rolewicz [4, Lemma 2]. Also we note that in the proof of

Theorem 2 we did not use separability to show that the existence of a nuclear Köthe

quotient imphes condition (.).

5. Special cases and open questions. The collection of Fréchet spaces which do not

have nuclear Köthe quotients is somewhat more diverse than the set of those which

do not have nuclear Köthe subspaces (see §1). We consider two general situations—

countable products of Banach spaces and spaces which admit continuous norm.

Using our characterization we obtain a fair amount of information, but there are still

some unanswered questions. We close with a brief consideration of the weaker

question of existence of quotients with continuous norm and basis.

Quojections. It is not hard to show directly that a countable product of Banach

spaces cannot have a nuclear Köthe quotient. We obtain this fact below as a

corollary of a more general result concerning an interesting class of Fréchet spaces.

We say that a Fréchet space is a quojection if it is isomorphic to a projective limit of

a sequence of surjective operators on Banach spaces. Obviously a countable product

of Banach spaces is a quojection. The class of quojections was considered by V. B.

Moscatelli [13] who gave examples of quojections which are not isomorphic to

countable products of Banach spaces. In view of [5], such Fréchet spaces do not have

unconditional bases.

Proposition 3. A Fréchet space E is a quojection iff every quotient of E which

admits continuous norm is a Banach space.

Proof. Let £ be a quojection and £ a quotient of £. If £ is the projective limit of

the surjections Ak: £*+, -» £* then it is easy to see from the definition of projective

limit that the canonical projections P*: E ^ Ek (given by Pk((xj)j) = xk) are also

surjections: Let F: £ -> £ be the quotient map, | • | a continuous norm on F and

II ■ II* the norm on £*.
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By the continuity of F 3 k and C> 0 3 | Fx | < C || P*x II *, x G £. Hence from an

algebraic point of view 3 a unique map S: £* -» F 3 SP* = F. Since F is a

surjection, 5 is also. Moreover, it follows from the closed graph theorem and the

fact that | -1 is a norm that S is continuous. Hence F is a quotient of a Banach space

so it is a Banach space.

Conversely let (|| ■ ||*) be a fundamental sequence of seminorms for £, Nk the

kernel of II ■ II * and E/Nk the quotient Fréchet space. Since (II • II *) is increasing we

have the canonical maps E/Nk+X -» E/Nk which are surjections and it is easy to see

that £ is isomorphic to the projective limit of this sequence of maps. On the other

hand, the seminorm induced on E/Nk by II ■ || * is clearly a norm so by assumption,

E/Nk is a Banach space. Thus, £ is a quojection.    D

Corollary I. If E is a quojection then E does not have a nuclear Köthe quotient.

Corollary 2. // £ is isomorphic to a countable product of Banach spaces then E

does not have a nuclear Köthe quotient.

It would be nice to know that the quojections are precisely those Fréchet spaces

(amongst separable spaces) which fail to have nuclear Köthe quotients. Unfor-

tunately, we are unable to prove the converse of Corollary 1 so this remains open.

We can obtain this result, however, if we restrict our considerations to reflexive

spaces.

In order to investigate this situation we consider, for an arbitrary Fréchet space £,

the vector space E'b of all linear functionals on £' which are bounded on bounded

sets. Obviously (£', £'*) is a dual system and we indicate the polar of a set A by Ab.

We will consider the topology 9" on E'b of uniform convergence on bounded sets,

that is, a fundamental system of neighborhoods of 0 is given by the sets Bb, B a

bounded subset of £'.

Proposition 4. // £ is a separable Fréchet space which does not have a nuclear

Käthe quotient then E'b is quojection.

Proof. We can apply Theorem 2 to conclude that £ does not satisfy condition (*)

and so we can find a fundamental sequence of seminorms (|| • || *) for £ 3 for every

k, the || • ||'*+, closure of £* is closed in each Banach space Ej, j > k + 1. This

imphes that if £* is the 11 ■ 11 *+,-closure of £* in £*+, and each F* is equipped with

the norm || ■ 11'*+, then F* is closed subspace of F*+1.

But the unit balls of the F* (k E N) form a fundamental sequence of bounded sets

for £' and it is easy to check that E'b is isomorphic to the projective limit of the

sequence of maps £*+, -> F*, adjoint to the inclusions F* -» F*+, (k E N). Since F*

is a closed subspace of F* + , it follows that the maps F'k+X -» F* are surjections so

E'b is a quojection.    D

Corollary 3. // £ is a separable reflexive Fréchet space, then E has a nuclear

Köthe quotient iff E is not a quojection.
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Proof. If £ is reflexive, the strong dual is bornological [12, p. 400] so £'* = £" =

£ (algebraically and topologically) and the result follows from Corollary 1 and

Proposition 4.    D

Corollary 4. Every Fréchet Montel space not isomorphic to to has a nuclear Käthe

quotient.

Proof. If £ is a Fréchet Montel space then, as is well known, £ is separable and

reflexive. We will show that £ is not a quojection. Suppose that £ is the projective

limit of the surjections Ak: Ek+X -» £*. We may assume that Ak maps the unit ball of

£*+, onto the unit ball of £*. Also, since £ is not isomorphic to « we may assume

that £, is infinite dimensional. Then, viewing £ as the projective limit, it is easy to

see that {(x*) G £: x* is in the unit ball of £*V k) is a closed, bounded subset of £.

But the projection of this set in £, is the unit ball so it is not compact. Hence the set

is not compact in £ which is a contradiction.    D

Fréchet spaces which admit continuous norm. Again the situation with quotients

seems more difficult than in the case of subspaces. We do not know whether a

separable non-Banach Fréchet space which admits a continuous norm (or is even

countable normed) necessarily has a nuclear Köthe quotient. Actually, this is the

same as the above question regarding the converse of Corollary 1. In fact, if £ is not

a quojection, then by Proposition 3, £ has a non-Banach quotient which admits a

continuous norm, so if this question had a positive answer, £ would have a nuclear

Köthe quotient and thus the converse of Corollary 1 would hold. Conversely, if £ is

a non-Banach Fréchet space which admits continuous norm then clearly £ is not a

quojection so if the converse of Corollary 1 held, £ would have a nuclear Köthe

quotient.

In particular, we have the following simple conclusions.

Corollary 5. If E is a non-Banach, separable, reflexive Fréchet space which

admits a continuous norm, then E has a nuclear Köthe quotient.

Proof. In view of Proposition 3, £ is clearly not a quojection so the result follows

from Corollary 3.    D

Corollary 6. // £ is a non-Banach separable Fréchet space 3£'fc admits a

continuous norm then E has a nuclear Käthe quotient.

Proof. Clearly £ is a subset of E'b and since £ is barreled the topology induced

on £ by £'* is the same as the original. On the other hand, by Proposition 4 if £

does not have a nuclear Köthe quotient then £'* is a quojection so by Proposition 3,

E'b is a Banach space. This is impossible because its subspace £ is not a Banach

space.    D

Unfortunately, if £ admits continuous norm, or is even countably normed, it can

still happen that £'* does not admit continuous norm. We establish this in the

following example.
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Let F: c0 -» c0 by F(|) = (£, — £,+ ,),. Clearly Fis continuous, one-to-one and has

dense range. Write X¡ — c0 (i E N) and let X be the Banach space (isomorphic to c0)

given by

X= {(x,.):x,GyY,.,lim||x,.|| = 0),       ||(x,)|| = sup ||x,.||.
1 ' ' i

For each k we take £* = X and define Sk: £*+, -> Ek by setting 5*((x,)) = (y.)

where

v,
Fx*    if z = k,

x,        if i ¥= k.

It was proved in [6] that since the Sk are one-to-one and have dense range, the

projective limit of (Sk) is a Fréchet space £ with a fundamental sequence of norms

(II • II*) 3 for each of the Banach spaces F* = (£, II • II*) there is an isomorphism

Uk: F* -» £* 3 SkUk+x = UkAk where Ak: F*+, -> F* is the canonical map. Thus £

is countably normed.

On the other hand, E'b is the projective limit of the maps Sk : £*'+, -» £*. It is not

hard to check that for each k0 3(x*) in this projective limit 3x* = 0 for k < k0 but

x* ¥= 0. This is because the map F" is not one-to-one and S'k consists of F" on one

coordinate and the identity on the others. Hence E'b does not admit continuous

norm.

Quotients with continuous norm and basis. If we do not require that our quotient be

nuclear but only that it admit continuous norm and have a basis, then the problem

becomes a little easier. For example if £ is a separable Fréchet space which admits

continuous norm it is easy to show (as in the proof of Theorem 2) that the

hypotheses of Theorem 1 are satisfied except for (c). Since condition (c) was only

used to prove that the quotient is nuclear, we can obtain the following result which is

analogous to the result of Johnson and Rosenthal [10, Theorem IV. 1].

Proposition 5. If E is a separable Fréchet space which admits a continuous norm,

then E has a quotient which admits a continuous norm and has a basis.

Of course, one cannot go further with Proposition 5 and take the quotient with

basis and look for a further quotient which is nuclear. In fact, the quotient provided

by Proposition 5 could be Banach. There is one case in which this difficulty does not

occur.

Proposition 6. // £ is a separable Fréchet space which admits a continuous norm

and has the property that no quotient of E is a Banach space, then E has a nuclear

Käthe quotient.

Proof. By Proposition 5, £ has a quotient F with a basis (xn). Since £ has

continuous norm we may assume that its topology is defined by a sequence of norms

(II • || *) and that ||x„ II, = 1 (n E N). Then if (/„) is the dual basis of (x„) and G is

the set of all finite linear combinations of (/„) it follows that G C £,'. We may
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assume that (x„) is 1-basic with respect to each norm || • ||*. It then follows from

standard Banach space techniques that for k E N and x G £,

||x||* = sup{|g(x)|:gGG,||g||*<l}.

Now we can verify condition (*) with I — I. Fix k E N and suppose that for every

;' 3Cj > 0 3 II u II'* =£ Cj II u \\'j for all u G F[.
In particular this will hold for u E G so we have for x G F,

\\x\\j = sup{|g(x)|: g G G, \\g% < 1} < sup{|g(x)|: g G G, \\g\\'k < C*}

= Cy.sup{|g(x)|: g G G, \\g\\'k < 1} = Cjx||*.

Since this is to hold for all / G N it follows that F is a Banach space which

contradicts our hypothesis.

Hence F satisfies condition (*) so by Theorem 2, F and hence £ has a nuclear

Köthe quotient.
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