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SOLVABILITY OF QUASILINEAR ELLIPTIC EQUATIONS

WITH NONLINEAR BOUNDARY CONDITIONS

BY

GARY M. LIEBERMAN

Abstract. On an «-dimensional domain Í2, we consider the boundary value problem

(*) Qu = 0   infi,       Nu = 0    on3ß

where Q is a quasilinear elliptic second-order differential operator and .V is a

nonlinear first order differential operator satisfying an Agmon-Douglis-Nirenberg

consistency condition. If the coefficients of Q and N satisfy additional hypotheses

(such as sufficient smoothness), Fiorenza was able to reduce the solvability of (*) to

the establishment of a priori bounds for solutions of a related family of boundary

value problems. We simplify Fiorenza's argument, obtaining the reduction under

more general hypotheses and requiring a priori bounds only for solutions of Qu = f,

Nu = g where / and g range over suitable function spaces. As an example, classical

solutions of the capillary problem are shown to exist without using the method of

elliptic regularization.

0. Introduction. Suppose that Qu — a'j(x, u, Du)D-jU + a(x, u, Du) is a quasilin-

ear operator on a domain Í2 C R" and that Am = b(x, u, Du) is a nonlinear operator

on 3fi. (Here and in what follows, the convention that repeated indices are to be

summed from 1 to « is observed.) Under suitable ellipticity and related conditions

on Q and N, Fiorenza [5] was able to reduce the solvability of the problem

(0.1) Qu = 0   infi,       Nu = 0   on 3fi

to the establishment of certain a priori bounds via a theorem of Caccioppoli

[11, §41.111]. Specifically (see [9, Chapter 10]), all solutions of

(0.2) Q,u = 0   in fi,       Ntu = 0   on 3ß

must be bounded in some Banach space (typically Ci+a(il)) uniformly with respect

to t and m for some appropriate family of pairs of operators (Q„ A,),6[0 X]. For

Dirichlet boundary conditions, i.e. b(x, u, Du) = u, this reduction is achieved under

very general conditions via the Leray-Schauder theorem (see, e.g., [7,9,12]); however

for more general boundary conditions, several complications arise in the reduction.

In this work we address ourselves to two of these.

First, Fiorenza used Schauder-type estimates (for related linear equations) which

require explicit knowledge of their dependence on the coefficients. In §2, we show

that simpler estimates may be used.
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Second, Caccioppoli's theorem requires that all problems (0.2) be uniquely solva-

ble for each t whereas the Leray-Schauder theorem does not require this uniqueness.

In §3, we shall use essentially a theorem of Kirk and Caristi to modify this

assumption.

1. Notations and definitions. We shall use the following norms and seminorms:

I « |o;£2 = SUPil I " I '
["]«;fl = SUP{| «(*) - "(JO \/\x~y Ia: x+y, x,y in ß},

l"la;S2=l"lo;ß + ["L;ß>   l«ll;8 =| " |o;S2 + I Du lo;H'  and  SO °n-   Here 0<« < 1,
Du is the gradient of u, and ß C R" is a domain. If also 3ß is sufficiently smooth,

say 3ß G C2+a, these norms can also be defined on 3ß. We shall always assume

(1.1) ß CR",«>2, is a domain with 3ß G C2+a.

The inner normal to 3ß at x will be denoted y(x) or just y. Its components are

Yi>- • • <Yn-

For K > 0, we define

Q(K) = {(x, z,p) GßX RX R": \z\ +\p\<K}.

3ß(AT) = {(x,z, p) G3ß X RXR": \z\ +\p\<K).

We shall also use the following abbreviations for derivatives: Let g = g(x, z, p, r)

be defined on ß X R X R" X R"2. Then

dg 3g \ _ 9g
8z      a, '    8,

_ |_9g_ 9g
"\3^,'---'3^8x'"'"'3xn/'   6z     dz'   bp

If Gu = g(x, u, Du, D2u), then

G'[u;x] = (G'[u;xl],...,G'[u;x"]) = gx(x, u, Du, D2u).

G'[u; z] and G'[u; p] are defined similarly. For example, if

Qu = aiJ(x, u, Du)Duu + a(x, u, Du),

then

da'j da
ô'["; Pk] =Jjr~(x' M> Du)Diju + j— (x, u, Du).

If g is defined on ß(7C) and ß > 0, we denote by | g \ß.K the norm | g l^o,^), ß(AT)

being considered as a subset of R2"+l. In particular if g depends only on x and z,

then

|g|o;K= sup{g(x,z):x EQ,\z\<K),

and similarly for | g \ß.K where ß > 0. Moreover if g is defined only on 3ß(7C), we

also denote by | g \ß.K the norm | g \ß;d^Ky (By assumption (1.1), this norm can be

defined.)

Finally we shall denote a matrix (a'j) by the corresponding script letter &, a

vector (a1) by a, and the sum a'b¡ by a ■ b.
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2. Schauder estimates and convergence results. In [7, Theorem 6.30] a Schauder

estimate for the linear oblique derivative problem is given. A slight modification of

the proof of this theorem yields

..
Lemma 1. Let Lu — a'J(x)Diju in ß, Mu — ß'(x)DjU(x). Suppose that

l<£|«+|fU<A,

\ß'(x)yt(x)\>\    o«3ß,       aiJ(x)iiij^X\i\2   /or x G fi, £ GR"

where a, A, A are positive constants with a < 1. Then any solution u E C2+a(fi) of

Lu — f in ß, Mu — <p on 3ß satisfies the estimate

| u \2+a ^ C(a, X, A, «, Q)(| u |0+ | <p |, +a+\f\a+ | Du \0-[ß]l+a).    D

Remark. (1) This estimate is similar to Fiorenza's [5, (5.2)].

(2) In fact the constant C depends on ß only through \ ß\0, X, and a modulus of

continuity for ß.

From this estimate, we obtain our basic result on convergence of solutions for the

nonlinear oblique derivative problem.

Lemma 2. Define

(2.1)        Qu = a'J(x,u, Du)DtJu + a(x,u, Du),       Nu = b(x, u, Du),

and suppose that

(2.2a)       a%íJ>X\Í\2,       bp • y >X   for (x, z, p) E Q(K),t E R",

(2-2b) l«U+|tfU*sA,

(2-2c) lftJl+«^+Hl+«**A>

where a, K, X, A are positive constants with a < 1. Suppose also that for each positive

integer m, there are functions um G C2+a(Ü),fm G Ca(ß), <pm G C1+a(3ß)iwc7i í/iaí

(2.3a) Q»m=L   mQ,       Num = <p„,   on 3ß,

(2-3b) |/„L + l«Ji+.<fi.
(2 3 ) the seauences (/«)' (f»')' ("«) conver&e uniformly to f, <p, w

respectively,

where Kx is a constant independent of m. Suppose finally that

(2-4) I «-,|i<'.        I"„li+s<*2   /orsomeS G (0,1)

vv/iere 7i"2 > 0 W a constant and K is the constant in (2.2). 77ie« u G C2+a(ß) a«¿/

(2.5) Qu=f   /«fi,       A« = <p   o«3fi.

Remark. Clearly / G Ca(fi), <p E C1+a(3fi), <pm-*q> in C'(3fi), and um -+ u in

C'(fi).

Proof. Let t> = um — uk where m, k are positive integers. Then t> is a solution of

the linear problem

Lv = g   in fi,       Mv = \p   on 3fi
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where

Lu = â,JDuu,       Mu = ß'D,u,

& = &(x, um, DuJ,       ß = Çbp{x, um,Duk + t(Dum - Duk)) dt,

g = (fm~fk) + {a(x, uk, Duk) - a(x, um, DuJ)

+ (a,J(x, uk, Duk) - aiJ(x, um, DuJ)Dijuk,

4> = (<Pm - <Ï>J +{b(x, uk, Duk) - b(x, um, Duk)).

\g\aS^e(m,k)(l+K3 + K4) + cxK3,        \ + \x+aS < e(m, k)(l + K3 + 7v4),

|/3L^c,,        [ß],+aS<cx(l+K3 + K4)

where e(m, k) is a constant depending on a, 8, k, K, Kx, K2, A, m, fi such that

e(771,7c)->0      aS771,^C^OO,

7C3 = max{|772Mm|0,|Z72M,|0},       K4 = max{[D2um]aS,[D2uk]aS},

and c, is a constant depending only on K, K2, A. Lemma 1 then applies giving

(2.7) [v]2+aS*Zc2(l+K3) + e'(m,k)K4

where c2 depends on a, 8, K, Kx, K2, A, and fi, e' depends on these quantities as well

as 771 and k, and e' satisfies (2.6).

We now apply the well-known interpolation inequality (see [7, Theorem 6.35] or

[11, §33]):

|7)2u|0<C3Î,-2/<«A'|M|0 + T}[M]2 + aS,

where c3 depends only on aô and Í2, with -q = (4c2 4- 4)"\ to obtain

(2.8) [v]2+aS<c4 + (l+e'(m,k))K4

where c4 depends on the same quantities as c2 and e' is the same as in (2.7).

Hence [um]2+aS is bounded independent of m. For suppose not; then

(2.9) K4[uJ2+aS>4[uk]2+aS^4c4,       e'(m,k)<l

for some m and k. Hence [v]2+aS> \K4. Therefore (2.8) implies that \K4 < c4

+ \K4 so that K4 < 4c4, contradicting (2.9). Thus [um]2+aS is bounded independent

of m. Therefore um -> u in C2(fi) so that (2.5) is valid.

To complete the proof, we note that

|*l«+in+«<cS + f(«.*)*3,        \ßl<c5,        [ß]x+a^c5(l+K5)

where cs depends on a, 8, K, Kx, K2, K3, K4, X, A, and ß, e depends on these

quantities as well as tti and k, (2.6) holds, and Ks = max{[«OT]2+a,[MJt]2+a}. We

then conclude (as from (2.8)) that [um]2+a is bounded independent of m.    D

Remarks. (1) Our proof is a modification of Fiorenza's in [5].

(2) Under stronger hypotheses on éE and a, Fiorenza showed that

[u]2 + a«^C6(l   +7C4)(|ü|,  +  \fm-fk\aS+  |<Pm-<P*ll+«i)-
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Hence, if fm -*f in Ca(ß) and <pm -* <p in C1+a(Sfi) then «m-*«in C2+aS(fi).

Although it is not noted there, it also follows that um -> u in C2+a(fi).

From the proof of Lemma 2 we see that in fact a stronger result, which has not

been noted before, is valid.

Corollary 1. For each positive integer m, define

Qmu = a'¿(x, u, Du)Duu + am(x, u, Du),       Nmu = b„{x, u, Du)

and suppose that &m, am, bm satisfy (2.2) with a, K, X, A independent of m. Suppose

also that there are functions um,fm, tpm as in Lemma 2 such that

Qmum = L   in fi,       Nmum = <pm   on 3fi

and (2.3b), (2.3c), (2.4) hold. Suppose finally that &m, am, bm converge uniformly (on

fi(7C )) to &, a, b, respectively. Then u E C2+a(fi), and u satisfies (2.6) where Q and N

are given by (2.1).

_
Proof. The same as Lemma 2 except that now 6B, g, and \p given by

« = *„.       g = (L - fk) + K - am) + {a'¿ - ajD,jUk,

t = (<Pm - <PJ + (Hx, uk, Duk) - b(x, um, Duk)) + yl>m-\l>k

where ^m = bm- b(x, umDuJ and &m, am, bm are evaluated at (x, u„, DuJ. A

straightforward calculation then shows that

I «/-m L < c2,       [4>Jx+a < c2 + e'(m)[uj2+a^

where c, depends on a, 8, K, K2, and fi, e depends on tti and the same quantities as

cx, c2 depends on K3 and the same quantities as cx, e' depends on m and the same

quantities as c2, K3 is defined as in Lemma 2, and e, e' tend to 0 as m -» oo.    D

Another convergence result for operators with smoother coefficients also follows.

Corollary 2. Define Q and N by (2.1) and suppose (2.2a) and

.   |*li+«5*+Mi+¿¡jr+l*b+.¡ir*A
where a, K, X, A are positive constants with a < 1. Suppose that 3fi G C3+a and that

for each positive integer m, there are functions um E C3+a(fi), fm E C1+a(fi), <pm E

C2+a(3_fi) satisfying (2.3a), (2.3c), (2.4) and \fm \x+a + | <pm \2+a < Kx.  Then u G

C3+a(fi) and u is a solution of (2.5).

Proof. By virtue of Lemma 2, m G C2+a(fi), m is a solution of (2.5), and | um \2+a

is bounded independent of m.

We now extend y to all of fi so that y E C2+a(fi) and | y |< 1 in fi. Noting that

the operator crkDk, where crk — 8rk — yryk, is a tangential operator on 3fi, we have

that v = crkDkum is a solution of

Lv = g   in fi,       Mv = \p   on 3fi.
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Here

Lv = ä'WljV,       Mv = ß'Dtv,

&=&(x,um,Dum),       ß = N'[um,p],

S = crk{Dkfm - Q'[um, xk] - Q'[um, z]Dkum - Q'[um, Pi]Dikum}

+ 2â'JD,(crk)Djkum + a'JDu(crk)Dkum,

* = crk{»k<Pm - N'[um, xk] - N'[un; z]Dkum) + ^Dt{crk)Dkum,

and Q' and N' are defined in §1. Hence Lemma 1 applies with all constants

independent of m and r. Therefore | v \2+a is bounded independent of m and r. It

therefore follws that |Km|3+o;3o, is bounded independent of m. The standard

Schauder estimates [7, Problem 6.2] then give a uniform bound on | uj3+a which

then implies that u E C3+a(ß).    D

For operators in divergence form (as in §§4,5), the results of this section can be

obtained more readily by other means. To do so, we introduce the following

notation:

i/(r) = {xER":\x\<r,x">0},        V(r) = {x E R": |jc |< r, x" > 0},

F(r) = {x ER": \x\<r,x" = 0},        G(r) = {x E R": | x \< r, x" > 0}

where r is a positive number. We then have

Lemma 1'. Let w E C](V(r)) satisfy the integral identity

(2.10) f     {aiJ(x)Dw(x) + g'(x)}DiTi(x) dx = 0

for all-q E Cl(V(r)) with support in G(r). Suppose that

(2.11) ß-Dw = 4>    onF(r).

If â, a, andß are as in Lemma 1, then

lM'll+a;K(r/2)< C(<X, X, A, n, r)(\ W \0;U(r) +  \g\a,u(r)+ \ 4< \a; F(r)) ■

Proof. The estimate is essentially a special case of [1, Theorem 9.3]. It may also be

proved by a modification of the techniques in [7, Lemma 6.29].    D

From this result, we have a version of Lemma 2 with weaker regularity assump-

tions on b.

Lemma 2'. Define

(2.1)'       Qu = div(A(x, u, Du)) + B(x, u, Du),       Nu = b(x,u, Du)

and suppose that (2.2a) holds with

a'J(x, z, p) = (dA'/dpj)(x, z, p).

Suppose also that

(2.2b)' í*1i+.:Jf+Míi+«;jc+l*L;-jr<A
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where a, K, X, A are positive constants with a < 1. Let u E C2+a(fi) be a solution of

(2.5) Qu = f   in fi,       Nu = <p   on 3fi

such that \u\x < K, and let 8 E (0,1). 77ie«

I " ¡2+a <C(a,8, F,K,X,A, U, 4>, fi)

whereF = \f\a,U=[Du]s,<ï>=\<p\x+a.

Proof. (In this proof C denotes any constant depending only on

a, 8, F, K, X, A, U, 3>, fi.)

It suffices to prove only that | u \2+a-N < C for some neighborhood N of 3fi. The

global result then follows from interior Schauder estimates, e.g., [7, Corollary 6.3]. By

a standard "straightening the boundary" argument we may assume that a is a

solution of Qu = f in U(l), Nu = <p on F(l) and that all hypotheses of this lemma

are still valid with fi replaced by U(l) and 3fi replaced by T^l). Then we need only

show that |w|2+a;t/(1/4)<C.

In this case, we have (2.10) being satisfied where w = Dku,

g' = DkuA\(x, u, Du) + A[k(x, u, Du) + 8ikB(x, u, Du) - 8ikf(x)

and 8,k is the Kronecker 8. Also (2.11) holds with

ß — b (x, u, Du),        \p — -Dkubz(x, u, Du) — bxt(x, u, Du) + Dk<p,

provided k ¥= n. A direct calculation shows that the hypotheses of Lemma 1' hold

with r = 1, a = a8, and all constants independent of k. Thus

\Diju\a8<C>        i=l,...,«,   j= 1,...,«- 1.

Solving for Dnnu in the equation Qu = f then yields \D2u\aS.U(X/2)< C. Thus the

hypotheses of this lemma hold with 0=1. We then follow the above argument with

r = 2- to obtain the desired estimate.    D

We then have

Lemma 2". Define Q and N by (2.1)', and suppose that (2.2a) and (2.2b)' hold where

a, K, X, A are positive constants with a < 1. Suppose also that, for each positive

integer m, there are um E C2+°(fi), fm E C"(fi), and <pm E C1+a(3fi) suchjhat (2.3)

and (2.4) hold with constants Kx and K2 independent of M. Then u E C2+a(fi) and u is

a solution of (2.5).    D

Analogs of Corollaries 1 and 2 are also valid with (2.2) replaced by (2.2a) and

(2.2b)' in Corollary 1.

3. Kirk and Caristi's Theorem. Our starting point is the following theorem of

Caris ti [2] (see also [4, Theorem 2] for a simple proof):

Lemma 3. Let (V, d) be a complete metric space and let g: V -» V be an arbitrary

mapping such that

d(v,g(v))*Z<p(v)-<p(g(v))   forallvEV

where <p: F-> R+ is a lower semicontinuous function. Then g has a fixed point.    □
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To apply this lemma, we first need a definition. Let X and Y be Banach spaces

and P: X -» Y a mapping such that

'",,.        ,.       P(x + ExP)-P(x)
Pjù) EEhm —*-^-±-t-

exists for all x and i// in X. Then we say that Px is the Gateaux variation of P.

Lemma 4. Let P: X -> Y have a Gateaux variation and suppose that P(X) is closed

in Y. If, for all x E X, there is >// G X such that Px(ty) + Px = 0, then 0 G P(X).

Proof. For each y E P(X), choose x E X and \p E X such that y = Px, Px(^) +

Px = 0. By the definition of Px, there exists e > 0 such that

\\(P(x + e+) - Px) - ePx($)\\/e < \\Px\\/2

where II 11 is the norm in Y. Then

(3.1) (e/2)||Pjc|| > \\P(x + e*) - (1 - e)(Px)\\.

The triangle inequality then imphes that

||(P(jc + e*) - (Px))\\ < (3e/2)||Px||,        (e/2)||Px|| < IIPjcII - \\P(x + m¡>)\\,

and hence that

\\(P(x + e*) - Px)|| < 3(||Px|| - HP(x + e^)||).

We now make the identifications V — P(X), d(vx, v2) = IIu, — u2||, <p(v) — 3\\v\\

in Lemma 3 and define g(y) — P(x + e\p). Since V is complete, g has a fixed point

which must be zero by (3.1). Therefore 0 = Px for some x E X.    D

A slight modification of the proof of Lemma 4 gives a result which we shall use in

§5.

Lemma 4'. Let P: X -> Y have a Gateaux variation and let Y0 be a subset of Y.

Suppose that Y0 D P( X) is closed. Suppose also that

(3.2a) 0 G y0,

(3.2b) Y0HP(X) is nonempty,

(3.2c) for  all x E P"'(T0)   and \¡, E X such   that  Px(^) + Px = 0,   we  have

P(X + e\¡/) E Y0 for all sufficiently small e.

If, for all x G P'\Y0), there is 4> G X such that Px(^) + Px = 0, then 0 G P( A').
i—I

Remarks. (1) Lemma 4 is implicit in the work of Kirk and Caristi (cf. [8]); the

above formulation and proof are from a personal communication from W. O. Ray.

(2) The quantity e/2 in (3.1) may be replaced by qe where q E (0,1) is arbitrary

but independent of y.

(3) If (3.1) with qe can be proved without the assumption that Px exists, then it still

follows that 0 EP(X).

(4) When using Caccioppoli's theorem, a similar circumstance arises (see [5, §7]).

In this case, the existence of the Fréchet derivative of P is used to invoke a theorem

of Hildebrandt and Graves (see [11, §41]).
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To apply Lemma 4, we define Q and N by (2.1) and suppose that for constant

a G (0,1) and all K > 0 the conditions (2.2a) and

(3.3) 3fiGC3+«,       \&\2+a.,K+\a\2+a.,K+\b\3+a;K^A

are satisfied with X, A positive constants possibly depending on K. For each

j8 £ (0, a) we define

(3.4a) P:C3^(fi)-e1+^(fi)

by

(3.4b) Pu = (Qu, Nu)

where, for any 8 > 0,

(3.4c) e5(fi) = Cs(fi)XC1+s(5fi).

Then the Gateaux variation of P exists and

pa*) = (e„(*). *.(*))
where

Qu(t) = a^(x, u, Du)D^ + Q'[u; pk]Dk^ + Q'[u; z]*,

NM) = N'[u;Pk]Dk>p + N'[u;zU.

We then have our main theorem.

Theorem 1. Define Q and N be (2.1). Suppose that conditions (2.2a) and (3.3) are

satisfied and define P by (3.4). Suppose also that for all (f, <p) E Cl+^(fi) and

u E C3+ß(Ü) such that Pu = (/, <p), the estimate

(3.5) \u\x+t<K(Q,N,F,*,tt)   for some 8 E (0,1)

is valid with P=|/||+/s,^=|<p|2+y8. Suppose finally that

(3.6) for all u E Ci+ß(Q), there exists >// G C3+ß(Ü) such that Pu(4>) + Pu = 0.

Then the problem

(3.7) Qu = 0    in fi,       Nu = 0   on 3fi

has a solution u E C3+ß(Q).    D

Remarks. (1) The space 61+^(fi) may be replaced by any subset Y0 satisfying

(3.2).
(2) The problem (3.7) is still solvable with u E C2+ß if & and a are only

Holder-continuous provided (3.5) and (3.6) hold uniformly for an approximating

sequence of operators. Here we may assume F = $ = 0 in (3.5).

(3) Since Pu(\p) + Pu — 0 is a linear boundary value problem for ip, condition

(3.6) follows from the conditions

(3.6)' daiJ/dz = 0,       da/dz < 0,       3/3/3z < 0.

(See [7, Theorem 6.31] or [9, §3.3].)

(4) If the estimate (3.5) holds with F = \f\ß, <ï> =| <p\x+ß, then a different version

of Theorem 1 can be proved (see Theorem 1' below) without using Corollaries 1 and

2.
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Theorem 1'. Define Q and N by (2.1). Suppose that for some a G (0,1) and all

K > 0, conditions (2.2) are fulfilled with X and A depending on K. Define P:

C2+/Î(fi) -> ßß(ü)for ß G (0, a) by (3.4) and suppose that (3.5) holds with F =\f\ß,

$ = I <p Ii +/8- Suppose finally that

(3.6)" for all u E C2+ß(fi), there exists 4> G C2+ß(ü)such that P„(i//) + Pu = 0.

Then problem (3.7) has a solution u E C2+ß(U).    G

Theorem 1 and 1' show that the crucial steps in solving (3.7) are establishing (3.5)

and (3.6) or (3.6)". The following two sections discuss two examples for which these

conditions have been obtained.

4. Uniformly elliptic equations. We now consider the problem of uniformly elliptic

equations as in [9, §10.2]. Specifically

Qu = div(A(x, u, Du)) + B(x, u, Du),
(4.1)

Nu — A'(x, u, Du)y¡ + \p(x, u).

We briefly list the results of Ladyzhenskaya and Ural'ceva from [9, §10.2].

Lemma 5. Define Q and N by (4.1 ), and suppose that

(4.2a)    (SA'/bpMx, z, />)£,.£, 3= 0   for x E dQ,p GR"    or x G Q,p = 0,

(4.2b) z[(dA'/dx')(x,z,0) + B(x,z,0)-f(x)]<0   for x G fi,

(4.2c) z[Ai(x,z,0)yi- (p{x) +yp(x,z)]<0   for x E 3fi

whenever \z\> R where X and R are positive constants. Then any solution u E C (fi)

n C2(fi) of (2.5) is bounded by\u\0<R.    D

Proof. [9, Lemma 2.1, Chapter 10].

Lemma 6. Define Q and N by (4.1) and let u G C2(fi) be a solution of (2.5) with

| u |0 =s M, some positive constant. Suppose also that

(4.3a) {dA'/dPj)(x, z, p)i¿j >v(l-k\p |)^21 ¿ |2,

(4.3b)     \A(x, z, p)\ +\Ax(x, z, p)\ +\A2(x, z, p)\

+ (\ + \p\)\Ap(x,z,>P)\<p(\ + \p\r-1,

(4.3c) \B(x,z,p)\<,ji(l + \p\)m

for all (x, z, p) E fi X R X R" with \z\< M,where m, [i, v are positive constants with

m > 1. 77ie«

(4.4) | Du\0<K0(F,m,Mtp>vt #;-*j«)

whereF = \f\0,<S>=\y\x,*=\^\x.M.

Proof. [9, Theorem 2.1, Chapter 10 (see especially pp. 468-476)].

The hypotheses (4.3) are actually somewhat weaker than those in [9], but the same

proof is still valid in this case. (This observation is made in [10, §V.7].)    D
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Lemma 7. Define Q and N by (4.1) and let u G C2(fi) be a solution of (2.5) with

| m |i < K0. Suppose that

p\t\2>(dA'/dpJ)(x,z,p)Sitj>v\t\2   forall(x,z,p)EÜ(K0),

l^ll;K„ + l£lo;/f„+ Ml + |/|o+ IH;*«,*^

where n and v are positive constants. Then, for some positive constants 8 and K

depending only on K0, n, v, fi, we have the estimate | u \x+s < K.

Proof. [9, Theorem 2.1, Chapter 10 (see especially pp. 467-468)].    D

Lemma 8. Define Q and N by (4.1) and suppose that u E C2+a(Q) is a solution of

(2.5) with \u\x<K0 for some a G (0,1). Suppose also that (4.4) holds for all

(x, z, p) E fi(Ä'g) where p, v are positive constants and that A E C2+a(fi(7C0)),

B E Ci+a(iï(K0)), »/- G C,+a(3fi(7í0)). Suppose finally that

(4.6a) fc(x,z)<0,

(4.6b) Bz(x, z, p) + (\A2(x, z, p)\2 + \ Bp(x, z, p) \2)/v < 0

for all x G fi, z = u, p = Du.  Then Pu:  C2+ß(Ü) -* Gß(Sl) is surjective for all

ß E (0, a) where P and 6 are defined in (3.4).

Proof. [9, Lemma 2.3, Chapter 10].    D

Combining these lemmata with Theorem 1' yields an existence result (cf. [9, Theo-

rem 2.2, Chapter 10]).

Theorem 2. Let Q and N be defined by (4.1) and suppose that conditions (4.2b) and

(4.2c) hold for sufficiently large z and all p E R". Suppose that (4.3) holds for all

(x, z, p) E fi X R X R" with m > 1 a constant, ¡i an increasing function of \z\ , va

decreasing function of\z\ , and v(t ) > 0 for all t > 0. Suppose that (4.6) holds for all

(x, z, p) G fi X R X R" and that

,     . A E C2+a(fi XRXR"),        BE C2+a(fi X R X R"),
(4.7) v ' \ h

^ E C1+a(3fi X R)

for some a > 0. Then for any ß E (0, a), there is a solution u G C2+/?(fi) of

(4.8) Qu = 0    in fi,       Nu = 0   on 3fi.    D

Remark. From Lemma 1', it follows that this solution m is in C2+a(fi). Moreover

if all the hypotheses of Theorem 2 are satisfied except that A is only C]+a and B is

only C\ then an approximation argument can be used to show that there is a

solution u G C2+a(fi) to (4.8).

5. The capillarity problem. We consider here the problem

(5.1) div(Tu) = ku   inß,        Tu ■ y = g(x)    on 3fi

where Tu — Du/W, W = (1 + | Du |2)1/2 and k is a positive constant. When « = 2,

a solution u of (5.1) describes the height of liquid in a capillary tube.

To write (5.1) in a form consistent with previous sections, we set

(5.2a) Qu = div(7w) - ku = aiJDiJu + a,       Nu = Tu ■ y - g,
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(5.2b) a'J = (S'JIV2 - DtuDju)/W3;        a = -ku,

where 8,J is the Kronecker 8 and consider solutions of

(5.3) Qu — f   infi,       Nu — (p   on 3fi.

Estimates for solutions of (5.3) are well known; we present them below.

Lemma 9. Ifu E C2(fi) is a solution of (5.3) and

(5.4) sup | <p + g | < 1 — d   where d E (0,1) is constant,
an

then | « |0 < K0(d, F, k, fi) where F = \f\x.

Proof. The corollary on p. 208 of [3].    D

Lemma 10. 7/ m G C2(fi) is a solution of (5.3), and if (5.4) holds, then \Du\0*z

K0(d, F,k, M, $,fi) where F = \f\x, $ =|<p|, and M =\u\0.

Proof. [6, Theorem 1.1], which is a modification of the proof in [14]. Another

proof under somewhat different hypotheses is given in [13].    □

From these lemmata and Remark (1) after Theorem 1, we can prove solvability of

(5.1).

Theorem 3. If |g|0;3o, ^ I — d and g E C1+a(3fi), then there exists a solution

u E C2+a(Q) of (5.1). '

Proof. Suppose first that g E C2+a(3fi). We define X = C2+a(fi), Y = ß1+a(fi),

Y0= ((/,?) G e,+a(fi): sup|v + g|<l-(rf/2)}.

From Remark (3) after Theorem 1, it follows that Pu is surjective. Condition (3.2a) is

easily verified as is (3.2b). To check (3.2c), we note that if P„(^) + Pu = 0 and e is

sufficiently small, then, as in Lemma 4, we have

||P(m + exj,) - (1 - e)Pw|| < erf/2.

The inequalities ||(/, <p)|| > sup3i21 <p | and the triangle inequality then give

sup|A(« + e^) +g|=££(l - d) + e(d/2) + (1- — e)(l - (d/2)) = 1 - (d/2)
da

provided u E P~\Y0). Lemmata 7, 9, 10 and Theorem 1 imply that 0 E P(X) which

means that (5.1) has a solution in C3+a(ß).

Now suppose that g E C1+a(3fi) and let (gj be a sequence in C2+a(3fi)

converging uniformly to g and such that

(5-5) IgJi+a^Clgli+a   for each w

where C is independent of m. By what we have already proved, there exists um in

C3+a(fi) such that Qum = 0 in fi, Tum ■ y - gm on 3fi. Inequality (5.5) in conjunc-

tion with Lemmata 7, 9, and 10 implies that, for some 8 E (0,1), the norms | um |1+Ä

are bounded uniformly with respect to m. The Arzela-Ascoli theorem implies that

some subsequence of (uj converges uniformly to a function u. Applying Lemma 2

to this subsequence, we infer that u E C2+a(fi) and that « is a solution of (5.1).    D
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Remarks. (1) Theorem 3 is well known, but ours is the first proof that does not

rely on the existence of solutions to other nonlinear boundary-value problems (cf.

[6,13,14]).
(2) Theorem 3 can also be proved without using Remark (1) after Theorem 1 by

defining Nu = tanh"'(7w • y) in (5.2).
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