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INJECTTVITY IN BANACH SPACES AND

THE MAZUR-ULAM THEOREM ON ISOMETRIES

BY

JULIAN GEVIRTZ

Abstract. A mapping / of an open subset U of a Banach space X into another

Banach space Y is said to be (m, M)-isometric if it is a local homeomorphism for

which M > D + f(x) and m « D-f(x) for all x G U, where D+f(x) and D~f(x) are,

respectively, the upper and lower limits of \f(y) — f(x)\/\y — x\ as y -» x. For

0 < p =c 1 we find a number u.(p) > 1 which has the following property: Let X and

Y be Banach spaces and let U be an open convex subset of X containing a ball of

radius r and contained in the concentric ball of radius R. Then all (m, A/)-isometric

mappings of U into Y are injective if M/m < fi(r/R). We also derive similar

injectivity criteria for a more general class of connected open sets U. The basic tool

used is an approximate version of the Mazur-Ulam theorem on the linearity of

distance preserving transformations between normed linear spaces.

Throughout, X and Y denote real Banach spaces. The theorem mentioned in the

title was proved in [9] and states that a distance preserving mapping / of X onto Y

for which/(0) = 0 is a linear transformation. A proof may also be found in [1].

If U C X and /: U -> Y, then at each point x of U one defines D+f{x) and

D~f{x), respectively, as the upper and lower limits of \f{y) — f{x) \/\y — x \ as y

tends to x. Following John [4], a mapping / of an open subset U of X into Y is said

to be {m, M)-isometric if it is a local homeomorphism (i.e., continuous, open and

locally one-to-one) and, furthermore, 0 < m < D'f{x) and D+f{x) < M for all x in

U. Less precisely, /is called ß-isometric if it is (m, M)-isometric for some m, M with

M/m = ¡i, or simply quasi-isometric if it is /i-isometric for some ¡i.

We are concerned here with injectivity criteria for quasi-isometric mappings. For a

given connected open subset U of X we define fi0{U) to be the infimum of all jti for

which there exists a noninjective ju-isometric mapping of U into some Banach space

Y. In other words, fi0{U) is the largest number t for which p. < t implies that all

ft-isometric mappings of U are injective. John [4,7] established that there is a

universal constant C with the property that if X is a Hubert space and U C X is an

open convex set containing a ball of radius r and contained in the concentric ball of

radius R, then p.0{U)** 1 + Cr/R. John's proof of this result relies in essential ways

on the hypothesis that the norm of X arises from an inner product. We shall derive

an analogous lower bound for ¡i0{U) for convex U without the assumption that X is

a Hubert space (see Theorem 2 and its corollary). More generally, we shall show how
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one may derive lower bounds for /t0((7) for a much wider class of domains. The

domains that we deal with are the uniform domains introduced by Martio and

Sarvas [8] in the context of Euclidean spaces. The bounds we obtain are independent

of the Banach space in which U lies and only depend on two parameters whose

values give rough limitations on the shape of U (see Theorem 4 and Remark 4). The

main tool used in the proofs of these injectivity criteria is an approximate version of

the Mazur-Ulam theorem given in Proposition 2.

If one applies John's result to the case in which U is a ball, the lower bound one

obtains for n0{U) is close to 1, since the constant C is a small number. A similar

situation prevails when our results are specialized to balls (see Remark 2). However,

there is another kind of argument that can be used to derive injectivity criteria for

quasi-isometric mappings when the domain is a ball. Using such an argument John

[4] showed that if u < ((1 + \f5)/2)x/2 = 1.272..., then all ju-isometric mappings of

a ball in a Hubert space are injective and in [4,6] he showed that the same

conclusion follows under the additional assumption that the image space is also a

Hubert space ifju<^2=1.414_Here again it is possible to get by without the

hypothesis that X is a Hilbert space, as is shown in [3] where it is proved that if U is

a ball in a Banach space, then n0{U) > 1.114_

Before proceeding we fix our notation and terminology. X and Y shall always

denote real Banach spaces. The r-neighborhood of a set A is denoted by B{A, r) and

we abbreviate B{{x), r) and B{{0}, r) by B{x, r) and B{r), respectively. The

corresponding closed balls are denoted by B{x, r) and B{r). As usual, [x, y] denotes

the closed segment determined by x and y. A bounded subset A of X is said to be

symmetric with respect to a point a if x in A implies that 2a — x is also in A. The

center a of a bounded symmetric set is, of course, unique. If A is bounded and

symmetric with respect to a, we define rad A to be inf{r > 0: A C B{a, r)}.

We denote the Blaschke distance function on sets by D; that is, for Ax, A2 C X,

D{AX, A2) = inf{r > 0: Ax C B{A2, r) and A2 C B{AX, r)}. We point out that if/

satisfies |/(jc) - f{y) [< M \x - y | for all x, y E Ax U A2, then D{f{Ax)^_ f{A2)) <

MD{AX, A2). For A C X and a > 0 we define T{A, a) - {x E X: A C B{x, a)} =

C\{B{y, a): y_E A). For x, y E X we define S{x, y, a) = T{[x, y], a) =

T{{x, y), a) = B{x, a) n B{y, a). We also define C{A, a) = A n T{A, a). The fol-

lowing simple properties are used in the sequel: S{x, y, a) =?*= 0 if a > | x — y |/2. If

A is convex, then so is C(^l, a) and if A is symmetric with respect to a, then so is

C{A, a).

Let U C A'and/: U -> Y. Then/is said to be {m, M )-rigid on i/if

™\x -.y | <|/(*) -f(y)\<M\x - y\

for all x, y EU. Although as a global condition this is much stronger than

{m, M)-isometry, a fundamental result of John [4,5] (see Lemma 9 below) says that

if/is {m, M)-isometric in B{a, r), then/is {m, M )-rigid in B{a,{m/M)r).

We now motivate what is to follow. The basis of the proof of the Mazur-Ulam

theorem is the fact that the affine structure of a Banach space can be defined

exclusively in terms of the metric. More precisely, it is possible to characterize the

midpoint a — {x + y)/2 of [x, y] without reference to the underlying algebraic
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structure. This is done as follows: One defines sets Sn recursively by

Sx = S(x,y,\x-y\/2)    and    S„+x = C(Sn,\x -y \/2")

for n > 1. It is not difficult to show that for all n, a E Sn and that rad Sn -» 0. This

then yields the purely metric characterization of a as the unique point belonging to

all of the Sn. Using the relationship between {m, M)-isometric and {m, M)-rigid

mappings mentioned in the preceding paragraph together with the indicated proof of

the Mazur-Ulam theorem, John [4,5] showed that if /is (1, l)-isometric in a suitable

neighborhood of [x, y], thenf{{x + y)/2) = {f{x) + f{y))/2. (He then used this to

conclude that a (1, l)-isometric mapping of a connected open subset U of X

coincides on U with an affine distance preserving mapping of all of X.) This leads

one to believe that if / is {m, M)-isometric in a neighborhood of [x, y], then

f{{x + y)/2) will be very close to (/(x) + f{y))/2 for M/m sufficiently close to 1

(see Proposition 2). This approximate linearity is the basis of the proofs of our

injectivity criteria. To actually put this idea into effect we need certain intuitively

clear continuity properties of S{x, y, a) and C{A, a) which are stated in Lemmas 2,

3 and 4. The important point is that the moduli of continuity do not depend on the

Banach space containing the sets in question. We now give the details.

Lemma 1. Let a E X, p > 0. Let W C X be star-shaped wth respect to a. For every

subset A ofB{a, p)for which a E A and for all ß, y > p there holds

(1) D{WC\T(A,ß),W^T(A,y))^\ß-y\j^-p.

Proof. It obviously suffices to prove the assertion for a = 0. Assume first that

ß > y. Then if x E T{A, ß) and y E A, we have

P

ß-p
x -y

":U - y) - ¥^y
££♦&:*\ß-pK   "   fi

which   saysthat   {{y - p)/{ß - p))T{A, ß) C T{A, y).   Since  0 E A,   we   have

T{A, ß) C B{ß) and since Wis star-shaped with respect to a, we have

wr\ T(A,y) cwn T(A,ß) c |^(ifn T(A,ß))

ß-y

+ f=1p{W^T(A,ß))

c(wnj^T(A,ß)) + ^lB(ß)

c(WnT(A,y)) + B[^j).

This gives (1) in the case that ß > y. If y > ß, then the same argument gives

D(W n T(A, ß), W n T(A, y)) <| ß - y \ y/ {y - p) <] ß - y \ ß/ (ß - p).

Lemma 2. Let x, y E X and let ß, y > I x — y 1/2. Then

D(S(x, y, ß), S(x, y, y)) < { J^Z^ß ■
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Proof. This follows immediately upon application of Lemma 1 with A = [x, y],

W — X and p = | x — y \/2, since S{x, y, a) = T{[x, y], a).

The condition B{a,8) C C{A, ß) appearing in the hypotheses of the next two

lemmas is easily shown to be equivalent to B{a, 8) C A C B{a, ß — 8).

Lemma 3. Let 8 > 0. For every bounded convex symmetric subset A ¥= 0 of X with

center a and all ß, y for which B{a, 8) C C{A, ß) and y > rad A there holds

D(C(A, ß),C(A,y)) ^[\ + V-^-)\ß - y\ .

Proof. We apply Lemma 1 with p = rad A and W = A. Since B{a, 8) C C{A, ß)

implies that ß — 8 > Tad A, we conclude that

D(C(A,ß),C(A,y))<\ß-y\j^-p^\ß-y\^ = (l + l)\ß-y\.

Lemma 4. Let 8 > 0. For every bounded convex symmetric subset A ¥= 0 of X with

center a and all F C X and ß for which C{F, ß) ¥= 0 and B{a, 8) C C{A, ß) there

holds

D(C(A,ß),C(F,ß))^(\ + ^f^-)JD(A,F).

Proof. For any sets R and S and any numbers y, tj > 0 the following relations are

easily verified:

(2) T{R,y)CT(B(R,V),y + r,),

(3) B(S, tj) n T(S, y + tj) C B{C(S, y + 2t,), t,).

Let D{R, S)<tj. By (2),

c(Zv,v) = Zvn T(R,y) czj(s,T,)n r(zi(Zv,T)),Y + T))

czi(5,Tj) n r(5,Y + Tj).

Applying (3) to this we conclude that

(4) C(R,y)cB(C{S,y + 2v),71).

Let e = D{A, F) < tj < 8/2 and r = rad A. Then ß — 2tj > r and thus

C(A,ß-2-ri) # 0.

Applying (4) with R = A, S = F and y = ß — 2tj we obtain

(5) C(A,ß-2r1)cB(C(F,ß),r1).

Another application of (4) with R = F, S = A and y = ß yields

(6) C(F,ß)CB(C(A,ß + 2r1),71).

Since by Lemma 3 we have that D{C{A, ß), C{A, ß ± 2t/)) < 2t/(1 + {r/8)), (5)

and (6) give D{C{A, ß), C{F, ß)) *£ 2tj(1 + {r/8)) + tj. Since tj is arbitrarily close

to e, we conclude that

D(C(A, ß), C(F, ß)) < (3 + 2(r/8))e « (1 + 4(r/8))e.
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If, on the contrary, e = D{A, F) > 8/2 and C(F, ß) ¥= 0, we also have

D(C(A, ß), C(F, ß)) < D(C(A, ß), {a}) + D({a},C(F, /?))

/ 4r\

Lemma 5. Let A C U C X and let f: U -* Y be {m, M)-rigid. Then for all a > 0

f(Un T(A,a)) Cf(U) n T(f(A),Ma) Cf(U n T(A,(M/m)a)).

Proof. We have

f(UC\T(A,a))=f{ D {UnB(x,a):xEA})

C   Pi {/(t/)nzJ(/(x),M«):xG^}

= /(£/) nr(/(¿), Ma).

Since/"1 is {\/M, l/m)-rigid on/((7) we have

/"'(/(U) n T(f(A),Ma)) CUn T(A,{M/m)a),

from which the second inclusion follows.

We now introduce a sequence of sets which generalizes the one used in the proof

of the Mazur-Ulam theorem. Let x, y E X and let 8 > \ x — y \ . For «>lwe define

Sn = S„{x, y, 8, a) recursively as follows: 5, = S{x, y, a8/2) and for n > 1, Sn+, =

C{Sn,a"+x8/2"). We have

Lemma 6. Let x ¥= y be points in X, a = {x + y)/2 and 1 < a < 2. Then for

n S* 1 Sn is convex and symmetric with respect to a, rad Sn < (a/2)"8 and Sn D

B{a,{a- ])a"-l8/2").

Proof. It is easy to verify that the assertion is true for n = 1. Assume inductively

that it is true for a given n > 1. By definition Sn+X = C{S„,an+i8/2"). The

inductive hypothesis implies that Sn+X is convex and symmetric with respect to a. If

u E Sn+X, then | u — z |< a"+l8/2" for all z E S„. In particular, for the point

z = 2a — u of S„ this implies that | u — a |< (a/2)"+15, so that rad5'n+1<

{a/2)n+l8. Finally, let

uEB(a,(a- l)a"8/2n+]) CB(a,(a - l)«""'ô/2") c Sn-

If   z e Sn,   then   | u - z |<| u - a | +| a - z \< {a - l)a"8/2"+] + {a/2)"8 <

a"+i8/2", which means that u E Sn + X.

We state as lemmas three basic facts proved by John.

Lemma 7 [5, Fundamental Lemma]. Let A be a convex subset of X and let f:

A - Y satisfy D+f{x) < M for all x in A. Then \f{x) - f{y) | < M\x - y\ for all

x, y in A.

Lemma 8 [5,Theorem II]. Let B{a, r) C X and let f: B{a, r) -< Y be a local

homeomorphism which satisfies D~f{x) > m for all x E B{a, r). Then f{B{a, r)) D

B{f{a),mr).
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Lemma 9 [5, Theorem III]. Let B{a, r) C X and let f: B{a, r) -» Y be {m, M)-

isometric. Then f is {m, M)-rigid in B{a,{m/M)r).

The following two propositions together represent an approximate form of the

Mazur-Ulam theorem, or to be more precise, of its proof.

Proposition 1. Let x, y E X and \ x — y \ — d. Let l<a<2, 0 < m >£ M

and n = M/m. Let f: B{{x + y)/2, p) -» Y be {m, M)-isometric, where p>

iti(l + an)d/2. Writing Sn and S¿ for Sn{x,y,d,a) and S„{f{x), f{y), Md,a),

respectively, there holds

Proof. Lemma 9 implies that / is {m, Af)-rigid in B{{x + y)/2, p/n). Since

p/H > (1 4- a¡i)d/2, this ball contains B{x, and/2) U B{y, ap.d/2), and so by

Lemma 8 its image contains B{f{x), aMd/2) U B{f{y), aMd/2). Upon application

of Lemma 5 with U — B{{x + y)/2, p/n) and A = {x, y) we obtain

(7) f(Sx)CS'xCf(S(x,y,a^d/2)).

Since Sn+X = Snn T{S„, a"+id/2") and S„ C Sx C B{{x + y)/2, p/n), Lemma 5

with U = A = Sn implies that

(8) f(Sn+x) C C(f(Sn),a" + 'Md/2") Gf(c(Sn,a»+^d/2")).

We abbreviate Dn = D{f{Sn), S'n). Formula (7) implies

Dx < D(f(S(x, y, ad/2)), f(S(x, y, apd/2)))

< MD(S(x, y, ad/2), S(x, y, apd/2)),

and upon application of Lemma 2 we conclude that Dx < Ma2d{p. — l)/(2(a — 1)).

Now let n 3= 1. Writing W = C( f{Sn), a"+ lMd/2") ¥-- 0, we have

(9) Dn+x^D(f(S„+x),W) + D{S^x,W).

Formula (8) gives

D(f(Sn+x),W) < D{f(Sn+x), f{c(Sn,a"+ind/2")))

= D{f{c(Sn,a"+'d/2")), /(c(S„,a"+W/2")))

< MD(c(Sn, an+[d/2"), C(Sn, a"^^d/2n)).

We may apply Lemma 3 with a = {x + y)/2, A = S„,ß = a"+ ld/2", y = an+ind/2"

and 8 = {a- \)a"d/2"+ ', since by Lemma 6 rad A < {a/2)"d < y and C(A, ß) =

Sn+XD B{a,8), and conclude that

00) D(f(Sn+x),W) <MÜ- l)^(l + af±) <$(»- 1),

where K = Mad{a + \)/{a — 1). Similarly, we may apply Lemma 4 with a —

(f(x) +f{y))/2, A = 5;, F = f{S„), ß = an+,Md/2" and 8 = (a - \)a"Md/2"+]
to obtain

(11)       D(S^x,W) = D(C(A,ß),C(F,ß))<(\ + ^f^-)Dn^LDn,
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where L — {a + l)/{a — 1), since in this case Lemma 6 implies that rad A <

{a/2)"Md and C{A, ß) = S^+XD B{a, 8). Formulas (9), (10) and (11) imply that

Dn+, < K{n — 1) + LD„. By induction we then get

^<^(iT=T1)('1~1) + JDlL",<(L^T('í"1) + JD-)L',",

Mda I a2 + 4a- 1 \1 a + 7\" ,.

<-8~(       a + 7       )(^t)  ^-^

as desired.

Proposition 2. Lei x, y E X, 0 < m < M, n — M/m < 2 and 1 < a < 2. Let f:

B{{x + y)/2, p) -» Tee (w, M)-isometric, where p > ju(l + a/x) | x — _y |/2. 77¡ew

<íáí^..'-/(áTZ)|'<«*r,>*J'l*->f':

c, = a(a2 + 4a- 1)/ (8(a - 1)) + 1

where

c2 = (log(2/a))(log((a + 7)/ (a - 1)) + log(2/a))-\

a«d

(12)

Proof. By Proposition 1 and Lemma 6 we have for all n > 1

f(^)

2 \

«(a   +4a- 1) \)c" + En\M\x-y\ ,
8(a + 7)       VP       ; J     '        " '

where C = (a + 7)/(a — 1) and £ = a/2. For given a and ju we use an integer

n which is chosen in such a way that this last expression takes the form

cx{n — \)ClM | x — y | , apart from negligible differences. Explicitly, we write n in the

form n = -ß{log{n ~ l))/log C + £, where 0 < y8 < 1 and 0 =s £ < 1. Since ft < 2,

we have that n s* 1. Also, (ju - 1)C" = (/* - 1)''^C£ < (ju - l)1 ^C and £" =

(fi - i)-«iog£)/(i°8C)£i < (ju _ !)-/i(iog£)/(iogC)_ If ß is determined so that 1 - ß =

-/3(log£)/(logC),then

1 - ß = (log \/E)/ (log C + log \/E) = c2

and the desired conclusion follows from (12).

Remark 1. It is a simple matter to verify numerically that c2 attains its maximum

for a in (1,2) at a — a0 = 1.1572... and that for this value of a, c, and c2 have

values Kx = 5.5704... and K2 = 0.1216..., respectively. Henceforth a0, Kx and K2

will denote these numbers.

Lemma 10. Let x, y E X and let f: B{[x, y], e) -> Y be {m, M)-isometric, where

n = M/m < 2. Let N > /t(l + a0n) \x — y\/e be an integer. Then

\f(y)-f(x) - N(f(x + {y- x)/N) -f{x))\

< 2{N - \)Kx{n - \)KlM\y - x\.
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Proof. Let x,, = x + {i/N){y - x) for 0 < i *£ N. We have xi = {xi+x + x¡_x)/2

and \x¡+x — x¡_x \—2\y — x\/N. Since / is {m, M)-isometric in B{x¡, e) and

e > /x(l + a0ju) | xi+x — xt_x 1/2, we have by Proposition 2 that

|(/U+,) + /U_,))/2 -/(x,)| ^ 2Kx(n - lf2M\y - x \/N.

Summing this from i = 1 to i = j — 1 we deduce that

\f(Xj) -/(*,_,) - (f(xx) -f(x0)) \^4(j - \)Kx(n - \f2M\y - x \/N.

Finally, summing from j = 1 to / = N we obtain the desired bound.

Theorem 1. Let x, y E X and let f: B{[x, y], e) -» Y be {m, M)-isometric. If

n = M/m < 2, then

\f(y) -f(x)\ >m{\- 2Kx(n - 1) V(l + <*0n) \y-.x |/e) \y - x | .

Proof. Using the smallest N that satisfies the requirement of the preceding

lemma, we have N — 1 < /x(l + a0n) \y — x |/e. Also, / is {m, Ai)-isometric in

B{x, e) D B{x, ju(l + a0n) \y — x \/N) and so by Lemma 9 / is {m, Af)-rigid in

B{x,{\ + a0n) \y — x \/N) which contains x and x + {y — x)/N. Thus,

\f(x + {y- x)/N) -f(x)\>m \y - x \/N.

The desired conclusion now follows from Lemma 10.

We now use this theorem to obtain lower bounds for ju0(t/) for convex U. For

short we say that U C X is {r, R)-convex if it is open and convex and B{a, r) C U

C B{a, R) for some a E X.

Theorem 2. Let U EX be an {r, R)-convex set and let f: U -+ Y be an {m, M)-

isometric mapping. Then f is injective if n — M/m satisfies

(13) ÍM - DfVO + «oM) < 16/í, R

Proof. Let U and / be as in the statement and assume that jtt < 2. Obviously we

may assume that B{r) EUE B{R). Let x, y E U and let d -\y - x |> 0. Let

x' = (1 — t)x and y' = (1 - t)y, where 0 < t < 1. We have \y' — x'\= (I - f)¿,

| x - x' | , \y - y' |< iZv. By the convexity of t/we have that (1 - t)U + B{tr) E U,

so that B{[x', y'], tr) E U. Let G stand for the expression 2Kx{n — l)*2¡u,2(l + a0n)

appearing in Theorem 1. Suppose that there is a / E (0,1) for which 1 —

G{\ - t)d/{tr) > {, or equivalently,

t*A\ 2Gd

We would then have by Theorem 1 and Lemma 7 that

\f(y)-f(x)\ >\f(y') -f(x')\ -\f(x) -f(x')\ -\f(y) -f(y')\

^md{\ - 0/2 - 2MiZv.

Thus,/^) ?*= f{x) provided that this last expression is positive; that is, provided that

/, <- \ ntd
(15) t < —■-.
v    ' md + 4MR
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Hence/will be one-to-one on U provided that for any x, y E U there is a / in (0,1)

which satisfies (14) and (15). Since this is true if fiG < \{r/R), which is equivalent

to (13), and (13) implies that /j. < 2, we are done.

Remark 2. In the special case that U is a ball we may take r — R. In this case we

have that fi0(t/) > r0, where t0 is the solution of the equation (/ — l)*2i3(l + a0t)

= (16ZC,)"1. Simple calculations show that t0 is approximately 1 + 1.7(10)"19.

Theorem 2 immediately gives

Corollary. If U is {r, R)-convex, then ju0(i/) > 1 + yx{r/RY2, where yx =

(16*,$1 + a0/0))-'/*2 = t0 - 1 and y2 = \/K2 ~ 8.22.

Remark 3. John [4,7] proved that there is a universal constant y with the property

that if X and Y are Hilbert spaces, then any ju-isometric mapping of an {r, R)-

convex subset of X into Y is one-to-one provided that /i < 1 + y{r/R). The

hypothesis that A' is a Hilbert space is essential to the proof given there, although the

assumption that Y is also a Hilbert space can be dispensed with, basically because

the existence of a fi-isometric mapping of an open subset of a Hilbert space into Y

implies that Y cannot be too different from a Hilbert space. (Formally: If/: U -> Y

is /x-isometric, then /"' is well defined and ti-isometric in some ball of Y. Since

mappings of the form g{y) —f'\ty + b) are also fi-isometric, we see that if U is

{r, Z?)-convex and /: U -» Y is noninjective, then for some g of the indicated form

g ° f is a noninjective /i2-isometric mapping of U into X. Thus, if X is a Hilbert

space, ft 3= (1 + y{r/R))x/2 3= 1 + y'{r/R) for a suitable y'.) Simple examples in the

Euclidean plane show that 1 is the smallest exponent of r/R that will work in such a

theorem. Our only purpose here has been to show how injectivity criteria similar to

John's can be deduced for general Banach spaces and we have made no attempt to

derive the smallest value of y2 obtainable by arguments based on the proof of the

Mazur-Ulam theorem, preferring simplicity instead. Indeed, it is fairly clear that a

more careful treatment would result in a value of y2 smaller than 8.22. It would be of

interest to determine if the corollary is even true for y2 — 1 with a suitable value of

Yi-
We now show how arguments of the same kind may be used to derive lower

bounds for f¿0(t/) for a more general class of connected open sets U. We need

Lemma 11. Let u, a, b E X and let f: B{u, p) -> Y be (m, M)-isometric, where

n = M/m < 2 and p > (1 + ft + a0fi2)max{| a\ , \ b \). Then

\f(u + a + b) +/(«) -/(« + a)-f(u + b)\<4Kx(n - \flM(\a\ +\b\).

Proof. We may apply Proposition 2 with x — u + a + b and y = u since in this

case we have

B((x +y)/2, P-\a + b |/2) C B(u, p)

and

p - | a + b 1/2 > fi(l + a0n) | a + b |/2 = ft(l + a0n) \x-y |/2.
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Thus we conclude that \f{u + a + b) + f{u) — 2f{u + {a + b)/2) | is bounded

above by 2Kx{n — \)KlM{\a\+\b\). Similarly, we may apply Proposition 2

with x = u + a and y — u + b to conclude that \f{u + a) + f{u + b) —

2f{u + {a + b)/2) | is also bounded above by 2/C,(ju - 1)*2M(| a \ +\ b |). From

these two bounds the desired result follows immediately.

If C is a curve in X parametrized by <p: [a, ß] -* X, the length of C is, as usual, the

supremum of 2 | <p(',) — <P('i-i) I over aH partitions a — t0 < tx • • ■ < tk = ß of

[a, /?]. In what follows we use the same symbol to denote a curve and the set of

points lying on it.

Theorem 3. Let x, y E X and let C be a curve of length L joining x to y. Let f:

B{C, e) -* Y be {m, M)-isometric. If n = M/m < 2, then

\f(y) -f(x)\>m(\y -x\- \2Kxn2(n - lf2(2 + a0n)L2/e).

Proof. Let tp: [0, L] -» X be the arc length parametrization of C, where tp(0) = x

and <p{L) = y. Let N be the integer defined by TV — 1 =^(1 +/x + a0ft2)L/e < N

and let x, = <p{i/N) for 0 < i < N. Let z, = x, - x¡_x. Obviously, | z, |< L/N. We

have (1 + ft + a0n2)L/N < e. Since B{xj_x, e) C B{C, e) we may apply Lemma 11

with u = Xj_x, a — z, and b = zy to conclude

\f(Xj + z,) -/(*,) - (/(*,_, + zj)-/(xy.,))|< 8JT.0 - lf*ML/N.

Summing this from/ = 1 to/ = / — 1 we obtain

!/(*,) -f{x,-x) - {f{x + z,) -f('x))\< 8(i - lK.du - l)**ML/N

for 1 < ¡ < A/, since x0 = x. If we now sum this from i = 1 to / = N we obtain

(16) /(>>)-/(*)- £(/(* + *,)-/(*)) 4(7V- l)*,(/i- \)**ML.

In order to apply Lemma 10 to B{[x, x + z,], e — L/N) we need

N>n(\+a0n)\zi\/(e-L/N).

But since e - L/N > fi(l + a0n)L/N, we have that ft(l + a0ft)|z,|/(e —L/N) <

1, so that the only condition on N is that it be greater than 0. Thus, since

B{[x, x + z,], e — L/N) C B{C, e) we may apply Lemma 10 to conclude

(17)

\f(x + z,) -f(x) - N(f(x + zJN) -f(x))\ < 2(N - l)Kx(n - \)KlM\z,\.

Now let w¡ = (z, + z2 + • ■ • +Zj)/N. Obviously, | w,. |< iL/N2. We may apply

Lemma 11 with u = x, a = w¡ and b — zi+x/N to conclude

\f(x + w, + 1) -f{x + w,) - {f{x + zl+x/N) -f{x))\

< 4Kx{n - \f2M(i + \)L/N2.
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Summing this from i = 1 to / = N — 1 and adding and subtracting f{x + wx)

f{x) = f{x + zx/N) — f{x) we obtain

(18)
f(x + wN) - f(x) - ^{f(x + z,/N)-f{x))

i=i

< 2Kx(n - \)KlM(N - \)(N + 2)L/N2.

The bounds (16), (17) and (18) together imply

\f{y) -fix) - N{f{x + wN) -/(x))|< \2{N - \)Kx{n - \f2ML.

But \wN\^L/N and fiL/N < e. Thus, by Lemma 9, \f{x + wN) - f{x) \>

m | wN | = m |y — x \/N. Taking into account that ft 3= 1 and the definition of TV we

arrive at the desired conclusion.

The following concept was introduced by Martio and Sarvas [8]. The formulation

given here is essentially taken from Gehring and Osgood [2]. We say that an open

subset U of X is an {a, b)-uniform domain if any two points x and y of U may be

joined by a curve E E U with the following properties:

(i) E has finite length L < a \ x — y \ .

(ii) If qp: [0, L] -> X is the arc length parametrization of E, then

B{<p{t), bmin{t, L - t}) E U for all t E [0, L).

Theorem 4. Let U E X be an {a, b)-uniform domain. If

(19) ft < 2(l - 108ZC,fi2(ft - 1)*2(2 + a0n)a2/b),

then all n-isometric mappings of U are injective.

Proof. Let i/be an {a, ¿>)-uniform domain and let/: U -» Y be {m, AZ)-isometric,

where ft = M/m < 2. Let x, y E U be distinct points and let E be the curve of the

preceding definition. Let <p: [0, L] -> X be the arc length parametrization of E with

tp(0) = x and <p{L) = y. Let x' = <p(L/(6a)) and y' = <p{5L/{6a)). Lemma 7 to-

gether with simple properties of arc length implies that \f{x) — f{x') | and

\f{y) - fiy') I bounded above by ML/{6a). Since \x- x'\, \y - y' |< L/{6a)

and L<a\y - x\ , we have that \y' - x' \>\y - x\ -2L/{6a) 3= 2L/(3a) > 0.

Let C denote the portion of E between x' andy'; that is C = <p{[L/{6a), 5L/(6a)]).

The second condition of the preceding definition implies that B{C, bL/{6a)) C U.

Taking into account that the length of C is less than L which is in turn at most

3a\x' — y' 1/2, we conclude from Theorem 3 that

\f{y') -f{x')\ > m\y' - x'\{l - \0%Kxn2{n - i)*2(2 + a0n)a2/b).

Since |/(jc) - f{x') | +\f{y) - f{y') \^ ML/{3a) <M\y' - x' \/2, we see that

\/{y)-f{x)\ >\y' - x'\(m(\ - mKxn2in - i)*2(2 + <*0n)a2/b) - m/2).

Since \y' — x' |> 0, we have that f{y) ¥^f{x) provided that (19) holds and since

(19) obviously implies that ft < 2, we are done.

Remark 4. Theorem 4 says that if U is {a, ¿>)-uniform, then noiU) ** ta,b^ where

tab > 1 satisfies the equation t + 2\6Kxt2{t - 1)*2(2 + aQt)a2/b = 2. For the case
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that X— R", the Euclidean space of dimension n, Martio and Sarvas [8, Theorem

3.8] obtained a lower bound for ft0(c7) for such domains. However, their bound

depends on the dimension n in addition to a and b.

Reasoning similar to that of the proof of Theorem 2 can be used to show that an

{r, Zv)-convex set is (2, /•/(2Zv))-uniform so that Theorem 4 yields a result similar to

the corollary to Theorem 2 but with a much smaller value of y,.

Acknowledgment. The author wishes to thank the referee for his valuable

criticisms of the original version of this paper. The statements and proofs of Lemmas

1, 2 and 3 are also due to him. The author is also indebted to Professor F. W.

Gehring for telling him about the paper of O. Martio and J. Sarvas to which

reference has been made.

References

1. S. Banach, Theorie des opérations linéaires, PWN, Warsaw, 1932.

2. F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse Math.

36 (1979), 50-74.
3. J. Gevirtz, Injectivity of quasi-isometric mappings of balls, Proc. Amer. Math. Soc. 85 (1982), 345-349.

4. F. John, Quasi-isometric mappings in Hilbert space. New York Univ., Courant Inst. Math. Sei., Res.

Rep. No. IMM-NYU 336, 1965.
5._, On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77-110.

6. _, On quasi-isometric mappings. II, Comm. Pure Appl. Math. 22 (1969), 265-278.

7. _, Distance changes in deformations with small strain, (Studies and essays presented to Yu-Why

Chen), Math. Research Center, National Taiwan Univ., Taipei, 1970, pp. 1-15.

8. O. Marito and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sei. Fenn. Ser. AI Math.

4(1978/1979), 383-401.
9. S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normes, C. R. Acad.

Sei. Paris Sér. 194 (1932), 946-948.

Instituto de Matemática, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago,

Chile


