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WEIGHTED ITERATES AND VARIANTS
OF THE HARDY-LITTLEWOOD MAXIMAL OPERATOR
BY
M. A. LECKBAND AND C. J. NEUGEBAUER

ABSTRACT. In a recent paper, M. A. Leckband and C. J. Neugebauer obtained a
rearrangement inequality for a generalized maximal operator with respect to two
measures. For an application they studied norm bounds for the iterated Hardy-
Littlewood maximal operator with respect to two measures. In this paper this theory
is further developed and other applications of the rearrangement inequality are
obtained.

1. Let u, » be two measures on R”, and let there be associated with each cube
Q C R" a function ¢, supported in Q. We consider the maximal operator

Mf(x) = sup [ fog dv

where the sup is extended over all Q with center x. If g¥ is the nonincreasing
rearrangement of g with respect to the measure A, i.e., g¥(¢) = inf{y: A{| g |>y} <1},
and if ®(1) = supy{pn(Q)5,(r(Q)1)}, then we have proved, in [6], the following
theorem.

THEOREM 1. (Mf)X(§) < A[5° ®(¢)f¥(¢§) dt.

From this rearrangement inequality it is easy to get general norm inequalities. In
particular, Minkowski’s integral inequality gives

< @ ‘
IIMfIIMSA(fO %dt)llfllw,

and thus, if ® € L(p’, 1) (see [2]) we get a weighted norm inequality. At this point
Muckenhoupt’s 4 ,-condition enters; thus, if (u,v) € 4, i.e., [pu(fpo' 7)<
C| QP [7], and if dp = udx, dv = vdx, ¢pp(x) = (1/] Q) xo(x)/v(x)), then the
above Mf(x) = sup(1/| @)/ f(?) dt, the familiar Hardy-Littlewood maximal func-
tion. We have proved in [6] that if (u,v) € 4,, 1 <p < co, then @, € L(p’, ),
andu =visind,, 1 <p < co,if and only if ®, € L(p’, 1), where

®, (1) = Sgp{ul(le) (%)j(u(Q)t)}

and®, =, .
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The jth iterated Hardy-Littlewood maximal function M, f turns out to be crucial
in the extrapolation problem, ie., when does [MfIl,,<A4,llfl,,  imply the
existence of ¢ >0 so that [ MfIl,_, ,<BIfIl,_. 2 We have shown in [6] that
extrapolation is possible if [| M| = ¢(A4’) as j — oo, where || M, || is the norm of M,
as an operator from Lf to L?.

Using a dense set of functions, namely those which are nowhere constant, we
obtain (Lemma 2)

log’
Ly U2

/+|f( x) < Bffup@ 0 i

where
po(y) = inf{r:y € {x € 0: |f(x)|= (fxo)*(1)} }.

From this we obtain (Theorem 2) that if (u, v) € 4, then for each g > p there is a
constant 0 <A, < oo such that M fIl,, <Alfll,, . This then implies that
extrapolation of ||Mf |, ,<BIlfll,, is possible if and only if || M;|l = €(4/) as
j — oo (Theorem 3).

At a fixed p, iteration may not be possible, i.e., if M fIl, <Al fIl,, for some
J >0, then M, may not be bounded on L7. We will also study conditions under
which iterations in this case are possible by estimating the associated ®(¢) (Theorem
4).

The inequality in Theorem 1 readily lends itself to studying restricted weak type.
In particular, ® € L(p’, 00) shows that Mf is restricted weak type (p, p), i.e,
IMfl, ., <AlfIl,,,. This observation is used to give a simple proof of the weak
type behavior of a generalization of a maximal operator recently studied by Stein [9]
(Theorem 6). For the usual Hardy-Littlewood maximal operator we will see (Theo-
rem 7) that [MfIl, ., < CIlfll,,. 1 <p<oco,if and only if ® € L(p’, 00). We
believe that this characterization is easier to use than the one found by Kerman [5].
The paper concludes with some variants of Theorem 1.

2. We will establish an inequality similar to Theorem 1 for the jth iterated
Hardy-Littlewood maximal operator M, f. It will be convenient to define a “tele-
scoping” maximal operatorM fas follows First, define

Mle(x): sup |Q1|f [f], ,Qf x)= sup |71|f A7j—l,Q,f’

XEQ,CQ XEQ,CQ J J
Le.,
Tof) = s o f wp L
x€EQ,CQ 1170, x,eQ,CQ, 2170,
1 1

e sup
10,110, oo, 101

Let M, f = Mf, and forj = 2, define

/() = swp 150 [ W10 (1)

xXEQ

f |f(e) | dtdx,- - dx,.
Q;
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LEMMA 1. Let f € LP(R") for some p > 1. Then there is C, > 0 such that for a.e. x,
M f(x)<CM f(x), j=12,...

PrOOF. The condition p > 1 assures that for a.e. x, M, f(x) < c0,j = 1,2,..., and
we will show that the lemma holds for all such x’s. Assume the inequality is true for
J — land M, f(x) < co. Then

M,f(x) = M(M,_, f)(x) < C/'M(M,_,f)(x)
<Q”( L L f(w) W+ﬁ

for some Q containing x. We now let

S={u€Q:iM(M_,f)(x) <M _ f(u) <o},

and we note that
M(M_,f)(x) <ﬁLA7jA|f(u)du + 2.
For each u € S choose a cube Q, withu € Q, and
W10 <o W so S0 dite

Since sup,es{| @, |} < o, select u, € S for which /, = jsup,cs/,, where /, is the
sidelength of Q.

There are now two cases: 30 O Q, and 3Q, O Q.Then50 5 Q,and 5Q, D Q,
for u € S, respectively. Thus, in the first case,

— 25" 1 —
M(M,_ f)(x) \ng ,eZ?Ic)sQI—Q—ITfQ.%—Z'Q‘f(y)dydt + 2e

and, hence,

2.5"C) -
M f(x) < f M\ sof +2e < CIM f(x) + 2e.

|5Q] 50

In the second case we get for z € 50,

n

5" — 5 .
e+ sup —_— M. f=Zet—— M. > M X
2€Q,C50,, 1O ‘/‘QI /e | SQuoi fQ,, j=2 Q"of ( lf)( )

and thus,

M(Mj—lf)(x)<2e+ ISQu(,‘/;Q.,O sup W/Q,Mj_z'glf

2€0,C50,,

:ze+|5Q lf M50, f<2e+ GMf(x).

"U

This completes the proof.

For f: R” - [0, o0], let f* be the rearrangement of f relative to Lebesgue measure
on R". We will also assume that f is nowhere constant, ie., | {x: f(x) =a}|=0
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a>0. For a cube Q CR", let E, = {x € Q: f(x) = (f-x,)*(¢)}. Then |E, |=1
and t_lfot(fXQ)* = t_le,fXQ'

LEMMA 2. Let f: R" — [0, 0] be in LP(R") for some p > 1 and nowhere constant.
Then there exists B, > 0 such that for a.e. x,

log { Q|/pQ<y))
j'

M. f(x)<B]
1) < B g 1)

where py(y) = inf{r: y € E,}.
Proor. By Lemma 1, for ae. x, M, f(x) < C,,’+'1l7,+,f(x). By the n-dimen-

sional version of Lemma 1 of [6] we see that

— 1 o1
M < A/ sup —— - d'rdt - dt,
) = agsup o [0 [ 3 [ o)

For the proof of the lemma we assume, for simplicity j = 2. Then

rorh T [ [0 xe) 0 deasa
IQlf’QHf N Iff(x)dxds dt = ﬁf %ff(x)f(‘)—dsdxdt

_ 1 ol C YV eae o a2 121 )
=101/ rf,;f(")“’g(pQ(x))d 4= o1 J,/" )2'°g(pg(x>)"‘

Now let (u, v) be a pair of weights withu = 0in L! (R") and 0 < v < o0, a.e. Set
dp = udx, dv = v dx.

LEMMA 3. With the same hypothesis as in Lemma 2,
(M,Hf):(g)<AB,[/O ® (1) f*(¢8) dr,

where

2(0) ( log’(] @1/pp(x))

Tl R xQ(X))*(#(Q)t)}-

0,(1) = @, (1) —sup{

ProOOF. This is Theorem 1 with

log/ X
() = |é[ g(Lii(/)Cp;g( ))xQ(X)

coupled with Lemma 2.

THEOREM 2. Let (u, v) be a pair of weights as above and assume that | Mf |l , <
Bl fll ;. 1 <p <gq. Then for each q > p there is a constant 0 < A, < oo such that
IMfll,.<AS, .,

PrROOF. We may assume that f is nowhere constant. We will estimate @,(¢) of
Lemma 3 and show that ®; € L(q’, ), ¢ > p. Fix ¢ > p, and let p < p, < q. Since
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IMfIl,, ., <B,Ifll, . thepair(u.v) €EA,.lie.
po—1
s [en] =cior 1

We next note that

log/(|01/pp(x))
jto(x)

([ e liareet), 1y, o
0 U X

o J

rg 1/gCpyu=1
1 . ,
o / log /4" ( M—) a’.\') (/ v'_”“)
jruta\Jo po(X) 0

where r = (p; — 1)/(¢" — 1) > 1. Since the rearrangement of log| Q|/pp(x) is
log| Q|/t. and (1/a)flog’(a/t) di = I'(r + 1). r > -1. the above equals

XQ(X)) (1) <

<

o 1/r'
F(qu’ + 1) e |Q|l/r'q' (/Ul—m,
Q

1/q(pa—1
(79 )

Let ¢, =T(jg'r' +1)"/7¢/j! and observe that from Stirling’s formula one gets
C!/ < C,., where C, is a constant depending on the product ¢'r’ only. All this gives

log/ X *
Oty (J.!Qtfff?)( ))xg(x)) (1(Q)1)

J 1/ 1/q(po—"1)
- C*, . p(0)"4 ( v‘*m’») ap |
1174 |Q|l—l/r’q’ 0

We finally observe that 1 — 1/r'q" = p,/q. (py — 1)(p; — 1) = 1, and thus ®,(1) <
CcCL/ i1,
We now complete the proof and fix s > p. Then from Lemma 3 we get

()

”M+If“\u<ABh/( )”f”\z,

Now choose p < g, < s and s < g, < oo and observe that

e ®(1) | |
f) '/t‘ i -/ ./ /0 l/q.+l/ydt+floot|T£i|_/xdf<Y’,

and the proof of Theorem 2 is complete.

3. In [6] we have shown thatif IM;f [l , , < A/l fIl, , forsome 1 <p,j=1,2,...
and if

®(1) = szp {%(%)j(u(@f)},
then

Ay ()
P2 V)< C—— ( )ZN/"
B’/ \ N/
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From this and 4, = €(A’), one gets that ® € L((p — e), 1) for some ¢ > 0, and
thus [|Mf 1l ,_, , <Al fll,_, . All this was done in the context n = 1, which we
shall also assume for the next theorem.

THEOREM 3. Let (u, v) € A, for some p > 1. Then there is € > 0 with (u, v) € A,
if and only if sup ;  _(IMfIl, = E(A).

ProoF. If (u, v) € 4, _, the result follows from Theorem 2, and the converse was
just mentioned and is Theorem 6 in [6].

There are examples which show that the norm inequality || M || pu SAINSI, .
does not admit an iteration (e.g. Theorem 4 in [6]).

If we let

1) = sup| B2 (%) (uio)

v

the next theorem gives an estimate of ®,(¢) in terms of ®y(7) that may allow an
iteration up to a certain index.

THEOREM 4. Let f: R" — [0, 00] be in LP(R") for some p > 1 and nowhere constant.
Then
2—N

- N/ ' _
<I>j(2 N)<C[7¢O(T)+Nj}, N=12,....

Proor. For a fixed N consider

_ (@) ( log’(101/pp(x))

Lo ="0] To(x)

Let Qy = {x € Q:10g(1Q|/pp(x)) > N/log,e} or Qy = {x € Q: py(x) <
|Q)2""V}. We note that |Q | = |Q|2~" and thus
mQ) [N ¥ 2V
Lo, =t @2 -xQ\QN(x))v(y(Q)T)

log(1Q1/po(x) * N
+“I(QQI)( g(j!v(f}; )XQN(X))V(N(Q)zT).

The first expression on the right is at most (N7/j)®,(2"¥~"). The second term is
zero if »(Qy) < u(Q)2"V~'. Hence we assume that »(Qy) > p(Q)2""¥! and con-
struct a set S, C Q) such that if we let

. ( log/(1Q1/po(x))
N Jjlo(x)

XQ(X)) (.“'(Q)z—N)'

xQN) (w(Q)27¥71),

v

then
(1)
(Q)27M < w(Sy) s u(Q)27V,
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(i)
log’(] Q1/pg(x)) _

jo(x) W

forx € Sy.

From this we get

ayv(Sy) S/Q
N

og/(| QI/pQ(X) leNI log’(l ap

d 1ng(IQI/I ()
k!

=lovl 3 L),

<C'Q”“‘)“;’(lQNI

Thus

= clawlleeiel/10,0)
v V(SN) O]

and the proof is complete.

COROLLARY. Let (u,v) € A, for some 1 <p <oo. If ®,2°N)<(C/N*2N'7,
N=12..., then|Mfll, < ANfll,0j= 12 ...k — 1, and

p{x: M, f(x) >y} <(C/y?)IfII,-

Proor. From Lemma 3 and Minkowski’s integral inequality we get

IIMk__,Ilp‘usc(f <I>A[ ) )Hfll,,o

We write [¢° = [, + /i, and to estimate [; we use Theorem 4 and note that
N IN/p B
o, ,2V)<cC NE .

From this, 3®, _,2™V)/2"? < 0 and ®, , € L(p’,1) on [0, 1].
For the integral [{* we use the proof in Theorem 2, where it was shown that
®,_, € L(q’,),q>p. Thus

1 {\/p Ve V/p ’

The weak type estimate follows again from Lemma 3 by noting that by Holder’s
inequality,

(M &) < Cl@ Il - lIfIl,, - 1787,

, o0 , 1 0
||<I>k_,||g,:f0 d),{’_ldt=f0+fl .

Finally,

Now

[lop ar<cZop @2,
0
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and, from Theorem 4, ®f ,(2°V) < CQ2V/N? + N”*~D). Hence [} < o0. As
before, [° < C[°dt/t?/9 < o0, since g > p.
REMARK. The above corollary can be viewed as the converse of Theorem 5 in [6].

4. In this section we will show how Theorem 5 of [6] can be used to obtain
extrapolation results from the magnitude of || M;[l. We assume n = 1, the setting in
which Theorem 5 of [6] has been proved.

From Theorem 2 we have that if [MfIl,,<B/Ifll,, ¢>p>1, then
Sl'lpllfll,,‘u-: 1 I ijf I q.u = Q(A{])

THEOREM 5. Let 1 <p < co. There is a constant C,> 0 such that the following
holds. If for some ry > p, A, < C,/(ry — p), then I M, f |, , < Bl fll, ../ = 12.....

PROOF. From Theorem § in [6] we have constants C > 0, B > 0 so that for r > p,

@0(2‘N) CA,(BA, )’( )ZN('/” 1/r QNP
BA, -j j~1/2 N(/p—1/r) . AN/p’
< —_r J r.N/p

<CA’( eN )J 2

by Stirling’s formula. Hence, if «, = ¢/2BA,,j = [a,N], we get
Bo(27V) < CA,(3)*" (&, N)/22N/7 1/ N

Hence, from Theorem 4,
-N N* 1)en 1/24N(1/p=1/r) . AN/p’ k
CIJk(Z )<C —IETA,’z‘ (a,N) PANES <2VP + NFL
Now let C, = ep®/2B, and let r, > p, for which (r, — p)4, < C,. Then
o P no—p 1 1
o p* Y4 P n
We claim now that
A, (a, N)I/ZZN(I/p—I/rO) < N—k—22a,ON’ N= NO'

With log to the base 2 this is

1 1 24k 1_1
N log 4, + ~ log(‘/aroNN ) + (p Py <a,.

Since @, > 1/p — 1/r,, this is possible for N = N;. Hence, £ ®,(27")/2"? < o0
and ®, € L(p’,1) on [0,1]. From Theorem 2, ®, € L(q’, ©), ¢ > p, from which
®, € L(p’,1) on [1, c0). Minkowski’s integral inequality applied to Lemma 3 now
completes the proof.

S. We will show in this section how Theorem 1 can be used to study the restricted

weak type behavior of a general maximal operator. From Theorem 1 one obtains
from ® € L( p’, o0) that

)z <5y =1l
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This is the same as | Mf |, , < Bl fll,,,, or Mfis restricted weak type (p, p).
With this observation it will be easy to obtain the weak type behavior of a maximal
operator generalizing the one recently studied by E. M. Stein [9].

THEOREM 6. Let u>0, v =0 be two Borel measures. Let 1 <gq<p, and let
M, f(x) = supll fxoll , 4./ lIXoNl 5 gus Where the sup is extended over all cubes
centered at x. Then

IMyof Voo < AN, o or p{x: M, f(x) >y} <(C/y?)IfIF .,

PrOOF. Note that || x|l = u(Q)/?. It is easy to verify that

p.q.p

M, f(x) =M, f1()]"%, r=p/q,
and thus we need only show that u{x: M, f(x) >y} <(C/y")Il flI},,. Note that
I fxoll s, ~ [ fXodp dv for some g, with [yl ., , = Toryg (r) < 1/t'/". Hence,

if 6 = Xo¥o/i(Q)"/", then u(Q)é5 (1(Q)1) < 1/1/7, from which & € L(r’, o).
For the usual Hardy-Littlewood maximal operator, ® € L( p’, o) actually char-

acterizes the restricted weak type behavior. If (u, v) is a pair of weights,
1 XQ(X)
%) =751 () ¢
then sup| fé, dv = sup| Q[ 'y fdx = Mf(x). Let ®(r) = supp{n(Q)95 ,((Q)1)}.
THEOREM 7. Let 1 <p < oo. Then |Mf |, <CIfll,,, if and only if ® €
L(p’, ).

Proor. We need only show that the norm inequality implies ® € L(p’, ). We
use the technique of [3] and choose f= 0 with || fIl ,, , = 1 and [, f= ff(va")v
= Clixgv ™'l . 0.o- For x € Q we have Mf(x) = (C/| Q])J, f. Our assumption is
p{x: Mf(x) >y} <(C/y")IflI2, , and, hence, we get, with y =| Q |7, ,

1 ” 2C| QP
Clifl ( ) <—.
wQ) = ClIz, lQlfo o 12 s
From this it follows that

MO (%) w0 MG s (B2 () <

and ® € L(p/, ).

dp=wudx, dv=vdx.

6. In this section we will present two generalizations of Theorem 1 to abstract
measure spaces.

(i) Consider (X, 9N, u, ») and a measurable map T: X — R” such that w(T'(Q))
< oo for every cube Q C R". Associate with each cube Q a measurable function
o719y X = [0,00), with supp ¢4y C T-'(Q), and define, for f: X - [0, o0]
measurable, the maximal operator

Mf(x) = supffqu.I(Q)dV,

where the sup is extended over all cubes Q with center T(x).
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THEOREM 8.
(M) )2(8) < A[ @ (0)fr(18) de
where
®(1) = sup {p(T7(Q))(7-10))E(M(T(Q))1)}.

Q

For the proof choose for each x € E. = {x: I f(x) > 7}, a cube Q, centered at
T(x) for which [fér-1, ,dv > 7. The Besicovitch covering theorem gives us a
countable collection {Q} with T(E,) C UQ;, 2 Xo, < C. Now proceed exactly as
in the proof of Theorem 1, replacing u(Q;) there by u(T"(Qj)).

(ii) We will again consider an abstract measure space ( X, 9, A) and a measurable
map T: X - R" with A(T7'(Q)) < o0, Q cube in R". Let » = 0 be a measure on R"
and associate with each cube Q C R" a v-measurable function ¢, with supp ¢, C Q.
For f: R" - [0, co] and x € X we define

M f(x) = sup [ fog dv,

where again the sup is extended over all cubes centered at 7(x). As in Theorem 8§
one can establish

(Mpf)3(8) < A [ ®(0)f(:8)
0
where

o(1) = sup {(MT1(0)) 5. (MT(0))1)}.

As an application we consider (R”, u,») as in Theorem 1 and assume that
Qy(1) = supp{(Q)g (1(Q)1)} is in L(p’, 1) for some 1 <p < oco. Then we have
IMfll,,<Alfll,,, where Mf(y) = sup[fo,dv, Q centered at y.

THEOREM 9. If M(T'(Q)) < Cu(Q), Q CR", then ®(t) € L(p’,1), and hence
IMzfll,x<AflN,,.

PROOF. We simply observe that

NT(@))e3, (MTH(@)) =4 [“a5.(r) ar

! e
- %“(Q)/(;Cq%,v(l‘(Q)T)dTS Ca_/(;cq)o(’r)d'r

=cozr(cr)  [2].

REMARK. The above hypothesis is a type of Carleson measure condition [1].
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