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WEIGHTED ITERATES AND VARIANTS

OF THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

BY

M. A. LECKBAND AND C. J. NEUGEBAUER

Abstract. In a recent paper, M. A. Leckband and C. J. Neugebauer obtained a

rearrangement inequality for a generalized maximal operator with respect to two

measures. For an application they studied norm bounds for the iterated Hardy-

Littlewood maximal operator with respect to two measures. In this paper this theory

is further developed and other applications of the rearrangement inequality are

obtained.

1. Let ¡u, v be two measures on R", and let there be associated with each cube

Q E R" a function 4>q supported in Q. We consider the maximal operator

Mf(x) = sup j f4>Q dp

where the sup is extended over all Q with center x. If gl is the nonincreasing

rearrangement of g with respect to the measure X, i.e., g*(t) = inf{y: X{\ g\>y) < t),

and if <S>(t) = supe{jit((2)<i>ç,t,(iU.((2)0}' tnen we nave proved, in [6], the following

theorem.

Theorem 1. (Mf);U) < Atf $(/)/;*(r|) dt.

From this rearrangement inequality it is easy to get general norm inequalities. In

particular, Minkowski's integral inequality gives

and thus, if $ £ L(p', 1) (see [2]) we get a weighted norm inequality. At this point

Muckenhoupt's ^-condition enters; thus, if (u, v) E Ap, i.e., Jqu(JqVx~p')p~x =s

C\Q\P [7], and if dp = u dx, dv = v dx, <¡>Q(x) = (1/| Q \)(xQ(x)/v(x)), then the

above Mf(x) = sup(l/| Q |)/ß f(t) dt, the familiar Hardy-Littlewood maximal func-

tion. We have proved in [6] that if (u, v) E A , 1 < p < oo, then $u „ £ L(p', oo),

and u = v is in Ap, 1 < p < oo, if and only if <S?U E L(p', 1), where

and $ = <E>    .u u.u
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The/th iterated Hardy-Littlewood maximal function A/-/ turns out to be crucial

in the extrapolation problem, i.e., when does \\Mf || < Ap\\f\\p c imply the

existence of e > 0 so that IIMf \\p_cu < B\\ f\\p_€Vl We have shown in [6] that

extrapolation is possible if Il A/. || = &(AJ) as/ — oo, where || A/-H is the norm of A7

as an operator from Lf to Lp.

Using a dense set of functions, namely those which are nowhere constant, we

obtain (Lemma 2)

Mt     ft   ^<RJ          '    tut   „Mlgl/P^y)) ,
f,+ 1/(x)<7^sup -r—     \f(y)\-dy,

..^r,     C    Jn I ■q\U\jQ 7!

where

pQ(y) = inf{r:y £ {x £ Q: \f(x) \> (/xe)*(0}}-

From this we obtain (Theorem 2) that if (u, v) E A , then for each q >p there is a

constant 0 < Aq< oo such that IIA^/H^ „ <y4^||/|l90. This then implies that

extrapolation of \\Mf\\pu <B\\f\\pv is possible if and only if \\Mj\\ = 6(AJ) as

/ — oo (Theorem 3).

At a fixed p, iteration may not be possible, i.e., if I! A/./ II < /I II / II for some

/ > 0, then A/-+| may not be bounded on Lp. We will also study conditions under

which iterations in this case are possible by estimating the associated $(/) (Theorem

4).

The inequality in Theorem 1 readily lends itself to studying restricted weak type.

In particular, 0 £ L(p', oo) shows that A7/ is restricted weak type (p,p), i.e.,

II Mf W p ^ ^^ A\\ f \\ p x v. This observation is used to give a simple proof of the weak

type behavior of a generalization of a maximal operator recently studied by Stein [9]

(Theorem 6). For the usual Hardy-Littlewood maximal operator we will see (Theo-

rem 7) that ||Mf ||,,«,,„< C\\f\\pXv, 1 <p< oo, if and only if $ £ L(p',oo). We

believe that this characterization is easier to use than the one found by Kerman [5].

The paper concludes with some variants of Theorem 1.

2. We will establish an inequality similar to Theorem 1 for the jth iterated

Hardy-Littlewood maximal operator A/-/. It will be convenient to define a "tele-

scoping" maximal operator M¡f as follows. First, define

— 1     /" — 1     /"  —
MlQf(x)=      SUp      T-—: (/I  ,     MjQf(x)=      SUp      -z—r       Mj_XQf,

xEQtCQ I U\ I JQ\ x<EQ]<ZQ\Uj\JQ]

i.e.,

MjQf(x) =      SUp      ——r f SUp        -r-p—r fJ_
.ïG0|C(2 I ̂ 1 I JQX ,v2G(22c(2, I Ö2 I JQi

1 r
' ' ' Tñ-1 Í SUP      T7TT Í 1/(0 I ̂ ^,■■•dx2

\üj-\\JQj-xxJeQJc:Qj-x \(¿j\JQJ

Let A7, / = A//, and for/ 3= 2, define

Mjf(x)= sopjjrrÍMj^QjXOdt.
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Lemma 1. Let f E Lp(R")for some p > 1. Then there is C„ > 0 such that for a.e. x,

MJf(x)^Cr¡MJf(x),       y =1,2,....

Proof. The conditionp > 1 assures that for a.e. x, Mjf(x) < oo,/ = 1,2,..., and

we will show that the lemma holds for all such x 's. Assume the inequality is true for

j — 1 and Mjf(x) < oo. Then

Mjf(x) = M(Mj_xf)(x) < Cr'M{MJ_]f)(x)

<Cri[y^fMJ_xf(u)du + e]j

for some Q containing x. We now let

S= [uEQ: {-M{Mj_xf)(x) < Mj_xf(u) < oo},

and we note that

M(Mj_lf)(x)^T7rvfMj_xf(u)du + 2e.
I ii I Js

For each u E S choose a cube Qu with u E Qu and

^-i/(")<T7rri Mj-2,eJ(t)dt + e.
I vi« I JQu

Since sup„eS{| Qu \) < oo, select u0£S for which lu > jsupueslu, where /„ is the

sidelength of Qu.

There are now two cases: 3Q D <2„ and 3gH D 0. Then 5(2 D £)„ and 5<2„o D ßu

for u E S, respectively. Thus, in the first case,

M(Mj_j)(x)<j^rf     sup     -r-\-f MJ_2^f(y)dydt + 2e
PÖI ■'s,eô1c5e I Will JQx

and, hence,

Mjf{x)<2'^      (  MJ-h5Qf+ 2e < C#fy/(*) + 2e.
I ■'Si I       J5Q

In the second case we get for z £ 5Ô„ ,

£+  sup w-\L^-2^f>e+TwiL ^-w^W-i/Joo.
zee,c5e„0 iSiil-'ßi py„0i-'euo ¿

and thus,

Af(Á^._,/)(x)<2£ + T|^|/ sup      t^iÍM^.qJ

C,
2e + —f-1f    Mj_h5Q  f<2e+CnMjf(x).

This completes the proof.

For/: R" -» [0, oo], let/* be the rearrangement of/relative to Lebesgue measure

on R". We will also assume that / is nowhere constant, i.e., | [x: f(x) = a) |= 0,
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a>0. For a cube Q C R". let E, = {x E Q: f(x)>(f- Xq)*('))- Then \E,\= t

and rxf¿(fxQ)* = rxfE¡fxQ-

Lemma 2. Let f: R" -» [0, oo] be in Lp(Rn) for some p > 1 and nowhere constant.

Then there exists Bn > 0 such that for a.e. x,

A4    f< \<R,        l   (ft  MJ(\Q\/PQ(y)) ,M + ]f(x)^B,{sup —r 1 f(y)-dy,
xeQ  \(J\JQ J-

where pQ(y) = inf{t: y E Et).

Proof. By Lemma 1, for a.e. x, M/ + Xf(x) < Cj+XMJ+Xf(x). By the «-dimen-

sional version of Lemma 1 of [6] we see that

Mj+Xf(x) <i4/,sup jjrr jmy /" ■ • • y fJ(f ■ XQ)*(r) drdty ■ ■ dtx.
X(EQ   |  \l |   J() «1   J() tj J0

For the proof of the lemma we assume, for simplicity/ = 2. Then

T7üfQlyflf^-^*{u^dudsdt
i y i •'o   ' •'o5 Jo

=ïhrif'jhf*x)***=\hrifMf \dsdxdtI Q I •'O       t J0  I hs I JE, \Q\J0       t JE, JpQ(x) S

=ïhrifMM^dxdt=îhfM\MAj\)dx-I Q I •'O       t JE, \Pq{x) j \Q\JQ \ Pq(x) j

Now let (u, v) be a pair of weights with u > 0 in L'Iot(R") and 0 < v < oo, a.e. Set

dp — u dx, dv ~ v dx.

Lemma 3. With the same hypothesis as in Lemma 2,

( MJ+. / );(0 < A B,', r^(t )/„*(/£ ) dt,

where

fí(Q)¡\og'{\Q\/pQ(x))

A
Proof. This is Theorem 1 with

*,(0 = *,./(0 = sup   ^   -MJ      'Xq(x)    (p(Q)t)

^{x) = W\—Mx)—Xq(x)

coupled with Lemma 2.

Theorem 2. Let (u,v) be a pair of weights as above and assume that \\ Mf II     <

Bq\\f\\qv, 1 < P < <?• Then for each q > p there is a constant 0 < Aq < oo such that

Proof. We may assume that / is nowhere constant. We will estimate $>j(t) of

Lemma 3 and show that $y £ L(<7', oo), q > p. Fix q > p, and let p <p0< q- Since
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Mf\\Ptt,u < B,0II/II,0.„. the pair (u. v) E Apo, i.e..

Pa~

MÍO)  /«'"'"j ^C\Q\P«        [7].

We next note that

]og'{\Q\/pQ(x))      ,.]*.. 1    / f log'"'(|f2|/p0(.Y))

y!t>(x) y      / tl/i \Ji

1/9'

'0 ./!"'
■C1"" (7.Y

r/rY/r ,v/^'~n

M&H.(4-/!/'/"' \^
where r — (p'Q — \)/(q' — 1) > 1. Since the rearrangement of log | ß |/pç(x) is

log | Q \/t, and (l/a)/0£,logr(a/0 dt = T(r + 1). r > -1, the above equals

n.   ,   ,   .    , \\/r'q' I \ \/q(p{\-1)
^r   + 0_I o i.AV     /■„1-rtl

Let c, = T(jq'r' + l)'7' ''//! and observe that from Stirling's formula one gets

r.'/J < c+, where Ct is a constant depending on the product q'r' only. All this gives

p(Q) I \og'{\Q\/pQ(x)) \*

c*     Mc?)11/9   / \ l/«/(/>í>-l)
1 -p«

,Wq'       I nl,-,A'<    \JqMb
We finally observe that 1 - \/r'q' = pQ/q, (p0 - \)(p'0 - 1) = 1, and thus $•(/)

cci/tx/«\
We now complete the proof and fix s > p. Then from Lemma 3 we get

■//•«*/(0     \
'ma./II.<^ /0   -^T*  II/»...-

Now choose p < q{ < s and 5 < g2 < oo and observe that

«MO

and the proof of Theorem 2 is complete.

/•"> 'MO ,       z-i      /■<*     /-i      a> /-oo      ß/
/o ~7^dt=zí+l <Í7^^dt+l 7^dt^yJ-

3. In [6] we have shown that if || A/,/1^ u <^||/||pitJ for some 1 <p,j= 1,2,...,

and if

*<'>-« (?)>>')}•

then

$(2-^)<C_i±i(iLl:
7^   \Aá'
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From this and A} = B(AJ), one gets that <I> £ L((p — e)', 1) for some e > 0, and

thus II A//11 M < A\\f\\ v. All this was done in the context n = 1, which we

shall also assume for the next theorem.

Theorem 3. Let (u,v) E Apfor somep > 1. Then there is e > 0 with (u, v) E Ap_e

if and only ifsapn/]X^=l\\Mjf\\PtU = Q(AJ).

Proof. If (w, v) £ A , the result follows from Theorem 2, and the converse was

just mentioned and is Theorem 6 in [6].

There are examples which show that the norm inequality II Mf\\p u =£ A\\ f\\ t,

does not admit an iteration (e.g. Theorem 4 in [6]).

If we let

*<>=-" {W)><H
the next theorem gives an estimate of 4>-(i) in terms of <SfQ(t) that may allow an

iteration up to a certain index.

Theorem 4. Let f: R" — [0, oo] be in Lp(R") for some p > 1 and nowhere constant.

Then

$j(2-N) < C

Proof. For a fixed N consider

%*.(Ç N= 1,2,

.     _ p(Q) I W(\Q\/pq{x)) V

Lq'j-\W\       jlv(x)-X*W    WÔ)2    }-

Let QN = {x £ Q: \og(\Q\/pQ(x)) > N/\og2e) or QN = {x E Q: pQ(x) <

1012-"}. We note that |ßw| = \Q\2~N and thus

+^r(   mx)   xe»|jM(ß)^-j.

The first expression on the right is at most (NJ/j\)<S>0(2~N~x). The second term is

zero if v(QN) ** iu(ß)2"A'~1. Hence we assume that v(QN) > fi(0)2_JV_l and con-

struct a set 5W C QN such that if we let

psg^jw«,
then

(i)

^(ß)2^-1<,(5iV)<M(ß)2-'v-1,
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(Ü)

Mlßl/PeOO)
p.v(x) >ö»    fOT^eS-

From this we get

,„ w/  M|g|/P0(*)) ,      fiQviiogy'(|QI/O .
«NnsN)'si    -j]-dx<      —n—d/

_,„   ,   7    log*(|g|/|gy|)^r,n   ,,     ,/   |g|   \
— I Givl 1  -Ti-^C\QN\logJ\j----r\.

/t=0

Thus

nSN) \Q\

and the proof is complete.

Corollary. Let (u, v) £ Ap for some 1 <p < oo. 7/ *0(2_Ar) < (C/Nk)2N/p\

N=\,2,...,then\\MJf\\p¡u<Aj\\f\\p¡v,j= 1,2,..., * - 1, and

p{x:MJ(x) >y)<(C/yp)||/||£,0.

Proof. From Lemma 3 and Minkowski's integral inequality we get

roo $      (t)

"ÄC(/.   ̂ iT*""«-

We write /0°° = /J + fx°°, and to estimate /0' we use Theorem 4 and note that

2Af/p'

*t_2(2-")<C| —+ JV
r*-2

From this, 2 ^_2(2-yv)/2A'/'p' < oo and $>k  2 E L(p', 1) on [0,1].

For the integral /j30 we use the proof in Theorem 2, where it was shown that

<¡>k_2 E L(q', oo), q > p. Thus

-°°**-2(0 -.^„i-"    *
J,  —^rdt<cf  7Î/7TT/7<C0-

The weak type estimate follows again from Lemma 3 by noting that by Holder's

inequality,

(Mj);(è)<c\\^k_x\\p.-\\f\\p^i/e t\/p
\*'~kJ   /)l\** 1 ^ "  * £— 1 " ^'       n J   n p ,v       */ *

Finally,

,00 , f\ ,00

i**-iii^=/ n~\dt=  +f .
j0 j0  jx

Now

•i

'o
(]H->dt^c2H-A2-N)2-N,

•>Cl
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and, from Theorem 4, ^pk_x(2'N) < C(2N/NP' + Np,<-k~X)).  Hence /J < oo.  As

before, /,°° < Cfx°° dt/tp'/q' < oo, since q > p.

Remark. The above corollary can be viewed as the converse of Theorem 5 in [6].

4. In this section we will show how Theorem 5 of [6] can be used to obtain

extrapolation results from the magnitude of II A/II. We assume n = 1, the setting in

which Theorem 5 of [6] has been proved.

From  Theorem   2   we  have   that   if   || Mf\\q u < Bq\\f\\q v,   q>p>\,   then

^Pii/ii,.= iII^/II^ = (5(^)-

Theorem 5. Let 1 < p < oo. There is a constant Cp > 0 such that the following

holds. If for some r0 > p, Ar<¡ *£ Cp/(r0 - p), then || Mjf II ,,„ < Bj II / II ,,„,/ =1,2.

Proof. From Theorem 5 in [6] we have constants C > 0, B > 0 so that for r > p,

%(2~N) < CAr(BAryi±L]2N0/p-x/r) ■ 2"/»'

^ Q4   / BAr 'J V -1/22W1/P-1A) . 2N/p'

by Stirling's formula. Hence, if ar = e/2BAr,j = [arN], we get

%(2-N) ^ CAr(l)a'N(arN)v22N^p-x^ ■ 2N".

Hence, from Theorem 4,

<Pk(2~N) ̂ cí^Ar(-¿YrN(arNy/22N«/p-x^ ■ 2N" + Nk\.

Now let Cp = ep2/2B, and let r0 > p, for which (r0 — p)Aro < Cp. Then

^rQ-P  ^   rQ- P  _   1 1
otr >-:— >-—-.

p2 rQp        p      r0

We claim now that

Aro(arNy/22N^p-1^ < A"*-22a<       N > N0.

With log to the base 2 this is

j-loèAro + j-loë(f^N2-k) + [-l--]-)<ar,

Since aro > \/p - l/r0, this is possible for N ^ N0. Hence, I$k(2-N)/2N/p' < oo

and $k E L(p', 1) on [0,1]. From Theorem 2, <i>k £ L(q', oo), t? >/?, from which

$k E L(p', 1) on [1, oo). Minkowski's integral inequality applied to Lemma 3 now

completes the proof.

5. We will show in this section how Theorem 1 can be used to study the restricted

weak type behavior of a general maximal operator. From Theorem 1 one obtains

from $ £ L(p', oo) that

r°° f*(t£) B
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This is the same as II A//H^ < B\\f\\p]p, or Mf is restricted weak type (p, p).

With this observation it will be easy to obtain the weak type behavior of a maximal

operator generalizing the one recently studied by E. M. Stein [9].

Theorem 6. Let p > 0, v > 0 be two Borel measures. Let 1 < q < p, and let

Mpqf(x) = suP\\fXQ\\p,q,p/\\Xç>\\p,q,^ where the sup is extended over all cubes

centered at x. Then

\\MMf\\,,^*A\\fWPt„   or   p{x:Mpqf(x)>y)^(C/yp)\\f\\p^v.

Proof. Note that Hxe IIp%q^ = f-(Q)l/p- It is easy to verify that

Mpqf(x)=[MrJf"(x)]W\       r=p/q,

and thus we need only show that p{x: MrXf(x) > y) < (C/yr)\\ f\\rrXv. Note that

11/XoHr.i,, ~ //xe<M"for someiPQ with II^Hr',«,,, = I or»f£,(/) « l/i1/r'. Hence,
if 4>q = XQ4>QMQ)l/r, then p(QWQ,v(p(Q)t) < \/tx/r', from which <D £ L(r', oo).

For the usual Hardy-Littlewood maximal operator, $ £ L(p', oo) actually char-

acterizes the restricted weak type behavior. If (u, v) is a pair of weights,

/ \      i   XfiW     j
<í>0(x) = t-—r—;——,   dp — udx,   dv = vdx.

|ß|   ü(x)

then sup//<í>e tf> = sup | ß |-'/ß f dx = Mf(x). Let $(r) = supQ{p(Q)<t>^v(p(Q)t)}.

Theorem 7. Le? 1 <p < oo. T/zen IIAf/H,,^ < Cll/I^ , „ // a«û? on/y if 0 £

L(/>', oo).

Proof. We need only show that the norm inequality implies O £ L(p', oo). We

use the technique of [3] and choosef> 0 with || / 11^ ,^ = 1 and fQ /= / f(xQV~x)v

> CWxqV^ \\p',œ,v Tor x EQ we have Mf(x) > (C/\ Q \)jQ f. Our assumption is

p{x: Mf(x)>y) < (C/y»)\\ f \\ppXv and, hence, we get, withy =| g \~xjQ f,

1    f x\~p 2C\Q\P
M(g)<cii/n;,1,u(T^T/e/)

Ixo»-1!^,

From this it follows that

^(?)>)')^^{»rw(v)>)}<^
and $ £ L(p', oo).

6. In this section we will present two generalizations of Theorem 1 to abstract

measure spaces.

(i) Consider (X, 911, p., v) and a measurable map T: X -> R" such that /x(r"'(g))

< oo for every cube ß C R". Associate with each cube ß a measurable function

<i>r-i(ß): AT-»[0, oo), with supp 0r-i(ô) C T"'(ß), and define, for/: A'^fO, oo]

measurable, the maximal operator

91L/(x) = sup ff<t>T-i(Q)dv,

where the sup is extended over all cubes ß with center T(x).
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Theorem 8.

mf);U)^A(x<t>(t)f*(tt)dt

where

<S>(t) = sup{p(T\Q))(<t>r-l(Q)):{p(T-x(Q))t)}.
Q

For the proof choose for each x E ET = {x: ^Lf(x) > t), a cube Qx centered at

T(x) for which jf<t>T-i(0 , dv > t. The Besicovitch covering theorem gives us a

countable collection {ß.} with T(ET) C Uß-, 2xq < C. Now proceed exactly as

in the proof of Theorem 1, replacing \i(Qj) there by (i(T~x(QJ)).

(ii) We will again consider an abstract measure space (X, 91L, X) and a measurable

map T: X -» R" with X(T~X(Q)) < oo, ß cube in R". Let p > 0 be a measure on R"

and associate with each cube ß C R" a ^-measurable function $Q with supp (¡>Q E Q.

For/: R" -» [0, oo] and x E X we define

MTf(x) = sup j f<t>Qdv,

where again the sup is extended over all cubes centered at T(x). As in Theorem 8

one can establish

J,00
*(t)j?(ti)dt

0

where

4»(0 = sup{A(r-'(ß))^(A(r-'(ß))/)}.
Q

As an application we consider (R", p, v) as in Theorem  1  and assume that

<I>0(r) = supö{/i(g)<f>,2 p(p(Q)t)} is in L(p', 1) for some 1 < p < oo. Then we have

II Mf Wp.p^AWf Wp.v where A//(y) = supjf<pQdv, g centered aty.

Theorem 9. If X(T~X(Q)) ^ Cp(Q), Q C R", then $(/) £ L(p', 1), and hence

WMTf\\p*<Ap\\f\\„.

Proof. We simply observe that

X(T-x(Q))rQMT-x(Q))t)^lfC,li%*Q^)dr

= -tÁQ)¡y*QÁÁQ)r) dr *£ C-^ f%(r) dr

= c$0**(a)     [2].

Remark. The above hypothesis is a type of Carleson measure condition [1].
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