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SIGN-EMBEDDINGS OF l\'
BY

JOHN ELTON

Abstract.  If (e¡)"=x  are  vectors  in  a  real  Banach  space with ||e,|| « 1   and

Average, = ± ilK'=1e,e(|| » 8n, where 8 > 0, then there is a subset A C {1.n) of

cardinality m » en such that (e,),eA is K-equivalent to the standard I"' basis, where

c > 0 and K < oc depend only on 8. As a corollary, if 1 < p < x and /" is

K-isomorphic to a subspace of Lr( X). then l\" (in s» en) is A"-isomorphic to a

subspace of X, where c > 0 and K' < oo depend only on K and p.

We prove the following two theorems.

Theorem 1. Let 0 < 8 < 1. Tne/r ex/sí ß > 0 and c > 0, depending only on 8, such

that if(e¡)'¡= | are vectors in a real Banach space X with \\e¡\\ < 1 /or all i and

Average
f,= ±1

2 *,*,
i=\

8n,

then there is A E {1.n),\A\= m > en, such that (e¡)¡£A£   unit vector basis of I"'.

As 8 Î 1, we may choose ß \ 1 and c — 4, or we may choose c î 1 with /S i0.

The average in the statement of the theorem is over all sequences of signs

e = (e,),"=, in {-1, 1}". The statement ík(e¡)jeAS   unit vector basis of /["" means that

2 a¡e¡ >ß2 Kl    forallscalars(a,),e/4.
/E.t / e a

We denote the cardinality of a set 5 by |5|. Our notation agrees with that in the

books of Lindenstrauss and Tzafriri [5,6].

This problem was suggested to us by Haskeil Rosenthal, in the case that

||2"=ie,e,|| 3* 8n for all choices of signs e. We may interpret this statement to say that

/" sign-embeds into X. Sign-embeddings of Lx are discussed in forthcoming papers of

Rosenthal [11] and Bourgain and Rosenthal [1], where it is proved that a sign-em-

bedding of L' fixes a copy of /,.

The proof of Theorem 1 shows that we may take c = 2 l9ô2/[log(4/ô)]2 and

ß — 2_'3Ô3. We may state the result slightly differently as follows: Let

M Average
f,= = i

2 £iei
i=i
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114 JOHN ELTON

so we may take 8 — M/n. Then

\A\> 2-|9M2/«[log(4n/M)]2.

This shows a connection with results of G. Pisier [9] and V. Milman [8], which are

for very special cases. Pisier shows that if the e¡ are characters for a compact abelian

group, then we may take \A \> kM2/n for some absolute constant k > 0 and with

the equivalence constant an absolute constant. Milman shows that if the e¡ are

real-valued functions on an arbitrary set T such that \e¡(t)\= 1 for all t, then we

may take \A\> kM2/n log n, and the equivalence constant is 1; that is, we have an

isometry with /^'. Our second theorem shows that actually we may obtain \A\>

kM2/n \og(2n/M) in Milman's case. This gives an isometry for a percentage subset

if M is a percentage of n.

Theorem 2. Let (e,)"=1 be real-valued functions on a set T such that \e¡(t)\ = 1 for

all t ET and all i. Let M

bounded function f: T

Averagef = ±,||2"=,£,e,||, where \\f\\ = sup,eT\f(t)\ for a

R. Then there exists A E {1,..., n} with

\A\>kM2/n log(2n/M),

where k > 0 is an absolute constant, such that (e¡)¡e/t~ unit vector basis of /f '.

Related results and questions. W. B. Johnson observed that as a consequence of

Theorem 1 it follows that if /" is AT-isomorphic to a subspace of L2(X), then /¡"

(m > en) is AT'-isomorphic to a subspace of X, where c > 0 and K' < oo depend

only on K. S. Szarek has proved (using Theorem 1) that this is true with Lp(X) in

place of L2( X), for any p > 1.

Corollary. If 1 < p < oo and I" is K-isomorphic to a subspace of Lp(X), then I"'

(m > en) is K'-isomorphic to a subspace of X, where c > 0 and K' < go depend only

on K and p.

S. Szarek has shown that a result analogous to Theorem 1 holds for sign-

embeddings of /£, for all signs, but not for average sign-embeddings.

If the hypothesis in Theorem 1 is strengthened to ||2f=,e,e,|| > 8n for all choices of

signs, we do not know if it is possible to have both c î 1 and ß î 1 as 8 î 1.

We also do not know if the theorems hold for complex Banach spaces.

Our first step in the proof of the Theorem 1 is to observe that if 0 < 8' < 8, there

is a set of sequences of signs S E {-1,1}" such that

2 *&i=\
> 8'n    for all e G S

and

For if 112?=,
have

£,e\

|S|^2"(r3-Ô')/(1 ~S')-

< 8'n for 2"[1 — (5 — S')/(l - 8)] sequences of signs, we would

Average
e,= ± i

e,e <
Ô"

1 -8'
8'n + n

8-8'
-, — 8n,

a contradiction.
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For each t E >, there exists/' in the unit ball of X* such that/e(2"=,£,-£,•) > 8'n.

Letf¡'=fe(e¡). Thus (/f)"=, is in the unit ball of /£.

We need a probabilistic lemma and a combinatorial lemma. First we recall the

following consequence of Kolmogorov's exponential bounds theorem.

Lemma 1 (see Loève [7]). Let -1 < c, < 1, /" = 1.n, and let (£,),"=, be indepen-

dent random variables with P[t¡ = 1] = P[e¡ — -i] — j- If ex > 0,

„2

2  W
;=1

an exp
-na~

A generalization of Kolmogorov's result to uniformly bounded martingale dif-

ferences has been used by Schechtman [13] and Johnson and Schechtman [3] in other

embedding problems.

Lemma 2. If B is the closed ball in /£ of radius r < 8' centered at (c¡)"=], where

-1 < c, < 1, then

| {e G S: (f/) E B) |« 2"exp(-n(ô" - r)2/4).

Proof. If e G S and ( f¡e) E B, then

2 e,/? - 2 e,c,
i=i i=i

< nr.

so

2 e,c, > 2 e,7? - «r > (5' - r)n.
;=i /=i

By Lemma 1, this can happen for at most the stated number of e.

Lemma 3 (Sauer [12] and Shelah [14]). Let S be a set with \S\= n. Ifî E 2s, the

power set of S, and

\s\>mï\l).
1 = 0

then there exists A E S,\A\= m, such that

{G DA: G E@) = 2A.

This result was used by Milman in [8]. The largest m for which 3/1 with \A\= m

and {G n A: G E §) = 2A is called the density of §. Karpovsky and Milman [4]

have proved generalizations of this result.

Our next step in the proof of the theorem will be to discard some of the norming

functionals (/E) so that the remaining ones can be grouped into very many classes

which are separated by a definite amount in /£.

For convenience assume 8' = 2~p where p is an integer. Write [-1,1]= U^ Jk

where the Jk are disjoint ordered intervals of length 8'/2, k— 1,... ,2P+1; and for

1 < k < 2P+2, write Jk = Um Lkm where the Lkm are disjoint ordered intervals of

length (ô')3/64. Note that

length(L,,J=[(S')2/32] length^,).
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Let r>   = ?. We define S' inductively, i = 1.n. Assume S'-' has been defined.

Let

>'k= {tE>'-,:f/ EJk), 1<H2'+2,

Sl,B={t6SM://GLM},       \<k<2p+2.

Thus

S'-'=USi;
A = l

U Si „,    for 1< /c < 2p + 1;

and these are disjoint unions. So for each 1 < k < 2P+2, there is mii, k) such that

l§*.m(/.*)l<[(*')2/32]|§i|,

so

Let

thus

It follows that

2" + 2-l

U      H,m(i
k = 2

S' = S'

(i,*) ;[(5')2/32]|S

2P*2— I

v—'     w*.m(/,*)'

A = 2

/-I

|S>[l-(ô')2/32]|cS'

|S-|>[l-(«f/32]"|S|.

Let /ii4 be the interval between Lkm(ik) and Lk+Xm(ik+X), k = \,...,2P+1 - 1

(for notational convenience, we have let Lkm = {-1} when k — 1 and Lkm = {1}

when Jt = 2P+2). Thus length(7, J < 8'.

Each length n sequence (k¡), where /c, is an integer between 1 and 2P+2 — 1,

defines a neighborhood

N[(kl)] = {(g¡)El"00:glEl¡x,,= l,...,n).

This is a subset of a ball in /£, of radius 8'/2, so by Lemma 2,

| {e e S": (f;) E N[(kt)]}\< 2"exp(-«(.3')2/16).

So by the "pigeonhole principle", the number of distinct (k¡) for which (/e) E

N[(k¡)] for some e E S" is at least

|S"|2-"exp(n(5')2/16)

>[l - (5')2/32]"[(5 - «')/(! - 5')]2"-2-"exp(n(5')2/16)

>[(« - ô')/(l - 8')] exp(n(Ô')2/48) ^ exp(n(5')2/64)
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if n > 192 log[(l - 8')/(8 - ó")]/(o')2- (The second inequality in the above string of

inequalities follows from \ — \x> exp(-x) for 0 < x < \.) Let

91 = {(k,): (f;) E N[(k,)] forsomee E S"}.

The neighborhoods {N[(k¡)]: (k¡) E 91} define the separated classes of norming

functionals that we were after:

|9l|3=exp(n(ó"')2/64)

for sufficiently large n.

Next we will use the combinatorial lemma successively, p + 2 times if necessary,

to produce a "large" (i.e. a percentage independent of n) subset of the coordinates

{1,...,n) such that we can always find a pair of functionals, separated on each of

these coordinates, whose differences may be made to have any given choice of signs

on these coordinates. We present the first iteration in detail, and the argument will

become clear.

For each (A:,) E 91, let

G[(k,)] = {,■: 0<k¡< 2"+2/2} ;       % = {(?[(*,)] : (k¡) E 91}.

Thus each class of norming functionals defines the set of coordinates on which the

functionals of that class have values in the lower half of the possible values.

Different (k¡) may give rise to the same set, so \§\ may be small.

If

\£¡\>\%\x^p+2) > exp[n(8')2/64(p + 2)],

then using Lemma 3, we shall show that 3A Ç {l,...,n} such that

\A\> n(8')2/[m(P + 2)log(64(p + 2)/(ô')2)],

and VB E A, there is a G E § such that B = G n A. Here we use the inequality

Tf ■)<[«"(! -«)("T    far«< 1/2,
/=o

which can be proved using Stirling's formula (or see Chernoff [2]). Using Lemma 3,

we can find A with \A\> an where a < { is chosen as large as possible satisfying

exp[n(Ô')2/64(^ + 2)] >[aa(\ - a)°~a)]~";

i.e.,

(ô')2/64(^ + 2)>-log[aa(l-«)('-a)].

We show that this holds if

a = (8')2/[m(p + 2)Iog(64(/> + 2)/(S')2)],

which will verify our statement above. We want to solve the inequality -a log a —

(1 - a)log(l - a) < y, where y = i8')2/64ip + 2). Note that -(1 - a)log(l - a)

=s a for 0 < a < 1, so it suffices to have -a(log a — 1) < y. Let a = Y/21og(l/y).
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Putting in this value for a, we need only verify that

-[y/21og(lA)][log7-log(21og(l/y))- l] < y,

that is,

log(21og(l/y))+ 1 <log(l/y),

which clearly holds if y < e~\ which is certainly true in our case, so our stated value

of a does indeed satisfy the required inequality.

Now if (a¡)jeA are scalars, let B = [i E A: a, < 0}. Let (k¡) E 91 such that

G[(k¡)] !1A=B, and let (k',) E 91 such that G[(k'¡)] n A = A - B. Let f E

N[(k¡)] and/e' E N[(k'¡)] with e and e' in S". Then

/E-/f'<-(S')3/64,        iGJ,

f;-f;'>(8')3/64, iEA-B,

since the intervals I¡ k have gaps between them of size of (<5')3/64. Thus

2a,e,  ^-^-^  2a,e,>Z\a,\^.
iEA 117 7     II  iSA l<EA

So A satisfies the conclusion of the theorem, with ß = (ô')3/128.

If instead |S |<| 9111/(/,+2), then there is/f C {1,...,«} and 911 E 91 such that {/:

0 <k, < 2^+2/2} = A for each (it,) E 9l\ where

191' |>|9l|('+1)/(*+2) > exp[n(6')2( P + l)/64( p + 2)].

We set /,' =0 if i EA, l] = 2'+2/2 if i € A; u) = 2" + 2/2 if /' G A, u\ = 2P+1 if

/ G A; so /,' < k, < u), i =\,...,n, for each (k¡) E 911, and u) - 1} = 2^+2/2. We

are ready for the second iteration.

For each (Ac,) G 91', let

<?'[(*,)] = {'■://< k,,<(/,' + u\)/2);       @x = {g'[(Ac,)] : (Ac,) G 9l'}.

If

|S,|>|9l1|1/</'+1)>exp[n(8')2/64(p + 2)],

then we get, by Lemma 3, the same conclusion as we did in the first iteration, with

the same constants.

If |g1|<|9l1|,/(/,+ 1), then there is A E (1.n) and 9l2 Ç 9l' such that {/':

I] < k, <(l) + u))/2) = A for each (Ac,) G 912, and

| 9l21>| 9111^/^+1' > exp[n(8')2p/64ip + 2)].

We set I2 = I] if i E A, if = (/,' + u\)/2 if i $ A; uf = (/,' + u})/2 if i E A,

uf = u\ ifi&A; so If < Ac, < uf, i= 1,...,«, for each (Ac,) G 9l2, and uf - if =

2^+2/4.
It is clear how to continue. For the ( p + 2)th iteration, if it is reached, we would

have up+x - lp+x = 2, so (lf+x + uf+x)/2 - lf+x = 1. Since Gp+X[ik,)] = {;:

lf+x < Ac, =s (/f+1 + up+x)/2) for (Ac,) G 9l"+1, we have (k¡) = (Ac,') iff Gp+X[(k¡)]

= Gp+X[(k',)], when (k¡) and (Ac,') are in %p+x. Thus

|g/-+> |=|9L/,+1|>|9lJ'|1/2 >\%p-x p/3)d/2) > ... >|9L|'/^+2>,

so we find /I satisfying the conclusion of the theorem, just as in the first iteration.
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Now choose the integer p such that 8' = 2~p satisfies 8/4 < 8' < 8/2. From

8' > 8/4 we see that (recall ß = (ó")3/128) we may take ß > 2"I3Ô3. A computation

using 8' — 2~p and 8' > 8/4 in the above formula for a shows that we may take

c^2^82/[\og(4/8)]2.

(This c works trivially if n < 192 log[(l - 8')/(8 - r3')]/(r5')2, using 8' =s 8/2, which

settles our earlier restriction.) Of course we made no attempt to get the sharpest

constants from this argument. This completes the proof of the first part of the

theorem.

Remark. In the proof, we have produced a large subset A E {l,...,n} and

numbers a < b¡, j E A, such that if we set Ly = {/E: ff < ay} and U¡ = {/E:

// s« h,}, then (L , Uj),eA is Boolean independent, in the language of the proof of

Rosenthal's /, theorem [10]. In this sense our result may be viewed as a finite version

of Rosenthal's theorem. Here, a ■ and b/ are endpoints of some interval Lk m. We may

find a large subset of A such that (a;, b-) is the same for each/ in the subset.

To prove the second part of the theorem, we use a much simpler argument which,

however, does not work for small 8.

Let 8' = 28- l.Then(r3-S')/(l -8')= 1/2, so|S|= 2"/2 = 2"~1.
— v'l — 8'. For each eëS, there is a A" E (1,.

\Ae\>ßn    and    e,/f > ß

[i:e,f;<ß)\>(\-ß)n.Then

Let ß = 1

. ,n) such that

for each i E A*

For suppose

2e,/f</3(l-/3)n + ^=[l-(l-/3)2]n 8'n,
i- i

a contradiction. Clearly there is no harm in assuming ßn is an integer. Apparently

there is a subset >' Ç > and an A' E {l,...,n} such that A* D A' for all e G S',

\A'\> ßn, and \?>'\>\S!/(/„). Furthermore, there is a subset S" Ç §' such that

|?" \>\$' 1/2" -ß)", and if e and e' are in S" with e * e', then (e,),e/4- ^ (eí)íe><.. This

is because there can be at most 2<l_/3)" sequences of signs e which agree on the ßn

coordinates A '.

An application of Lemma 3 yields a subset A E A' such that for any e E {-1, \}A,

there is t E >" such that e, = t'¡ for all i E A; we can have \A\= m provided m

satisfies

m-l

l§"i> 2
i = 0

ßn

i

We need

'-/[(aM^ît!
Let /n = a/8n, where a < 3. Recall that

aßn-l

2    (*HU[a-(l-a)(1-)]-,,\
i=0   ^   '   '
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and also from Stirling's formula

[j8"(l -ß)°~ß)

(¿)
.    provided 0 < ßn < n.

So it suffices to have

2^(l-y8)wV(l -«)'"T>

This is useless if ß < 3, so our simple argument is of no help for small <5. Let

a = 0/2, where 0 < 1. The requirement is

W-tf->í(2-í)2-,]W>l,

We consider the function/(0) = de(2 - 0)2'e. Now f'(0) < 0 for 0 < 1, so/(0) >

f(\)— 1 when 0 < 1. So for any 0 < 1, the requirement is satisfied if ß is sufficiently

near 1, since ßß(\ - ß)]'ß - 1 as ß î 1. Now if c< 3, let 0 = c + 3, so c < a. If ß

is sufficiently near 1, the above requirement is satisfied and also aß > c. Since

clearly (e,),e// unit vector basis of /f ', and since ß î 1 as 8 î 1, we see that we may

choose ß î 1 and c î 3 as 8 î 1, as was claimed.

To prove the last part of the theorem, we observe that since there are only 2aß"

sequences of signs on A (of the previous paragraph), there is some e° G {-LI}'4 and

%'" E S" such that if e G S'", then e, = e° for all i E A, where \^"'\>\$"\/2aß".

Lemma 3, applied to A' — A, yields Ax E A' — A such that for any e G (-1, \)A\

there is e' G S'" such that e, = t'¡ for all ; G Ax; \AX | may be taken to be as large as

possible satisfying

|S'"I> 2 ((1~a)^

<=o '      '

Let \AX\= y(\ — a)ßn. Estimating as before, we need

2v-°»ßß(i - ß)]-ß[yy(i - yy-yf-a)ß" > 1.

Just as before, if y < 3, this is satisfied for ß sufficiently near 1. We claim that

(e,)iEAUA^~° unit vector basis of /^U/I'l.

To see this, suppose t E {-1, \}AUA* is given. Find e' and e" in §'" such that e,' = e,

and e" = -e, for all / G Ax, and find e'" in S" such that t'¡" = e, for all i E A. If

i EA,t] = e" = tf, and since t'jf > ß and t'/f/" > ß, we have \f/' - ff |< 1 - /?
for all / G y4. If / G y4,, we have

If i G /4, e,/E"' > /3. So we let g = (/f' - /E" + /E'")/3. Then

elgl>[-(\-ß) + ß]/3 = (2ß- l)/3    for/G/I,

and

e,g,. > (2j8 - l)/3    foriez,

also. Since ||g|| < 1, it is clear that the claim is proved. Now \A U Ax \ is nearly |n

since \A \ is nearly \n. We could repeat this argument, if ß is sufficiently near 1, to
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get a subset of (e¡) of cardinality nearly In, with even larger equivalence constant,

and so on. We omit the details.

This completes the proof of Theorem 1.

Example. The following example due to S. Szarek, shows that it is not possible to

have both ß î 1 and c î 1 in the above theorem.

We let S be those length n sequences of signs e for which

(i -e)n<\{i:e,= +\}\<(x2 +6)n,

where 0 > 0 is arbitrary. For a sequence of scalars (a,)"=, define

sup 2 e,a,
i= 1

Let (e¡)'¡=x be the usual unit vectors. Then \\2'¡=xe¡e¡\\ = n if t G S. If we let

8 =|o>|/2", then Average,. = ±,||2"=,£,e,j| > 8n, and clearly 8 î 1 as n -» oo (from the

central limit theorem).

Let A E (!,...,«} with \A\= en > (3 + 0)n. Then

2e,
i&A

+ 0\n + 0\n

so

2 J/mi=
1 + 20-C

(1 +20-c)n,

iGA

Now 0 > 0 is arbitrary, so if ß and c are as in the statement of Theorem 1, then

ß < (1 - c)/c = 1/c - 1, no matter how near S is to 1. For example, if c = f, then

ß < 3. This shows, in fact, that our proof of the last part of Theorem 1 even gives

the right size for ß.

Proof of Theorem 2. As in the proof of Theorem 1, we first find S E {-1,1}"

such that

2 *¡e¡
!=  1

M M
>—    foralle E §,    where |S|> 2"~x —

2 n

For each e G S, find tE E T such that |2"=1e,e,(re)|> M/2. Let f¡' = e,(te). So

f/ = ± 1 for all /', all e G S. Now if/ E {-1,1}", then from Lemma 1, we have

2 «1/
1=1

M -iS
So there exists §' C § such that

|S'|> (M/n)2-2exp(M2/16n),

and if e and e' are in §', then /E7t/E. Lemma 3 therefore gives us a subset

A E (1,... ,n} such that given any/ E {-1, \)A, there exists e E S' such that/E = /

for all 1, where \A\= misas large as possible satisfying

M^2      Í M2 .
T2  exp T^1

m—\
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Since, as before

TI-I   ,
len_ \m

\ m I, = 0 m"'(n - m)"

we require

exp(M2/16n) > 4(en/m)"'n/M,    or    M2/16n > 2m\og(4n/m)

will  do,  if  we  assume  m < M.   It  is  easy   to  see  that  we  may  take  m =

M2/400n \og(2n/M), which proves the theorem.

Proof of Corollary (Szarek). Let e¡ G Lp(X), i = 1,_n, with ||e,||L (X) =£ 1,

such that

2 hei
i=\ LAX)

n

K

for all choices of signs (t,)"=x. Thus

where (r¡) is the sequence of Rademacher functions. We consider the control

function

g(«) = i«-I2lM«)ll') '.

observing that Jag(u)p du < 1. We will show that there exists e = e(p, K) > 0 so

that

\\p

Si 2 rÁs)e¡(u)
i£A,

n  \p
d» *>(£-)

where Au = {/': eg(u) < ||e,(w)|| < e 'g(w)}. Assuming this, we have

JaJo
2 n(s)eÂu)

i^Au

dsdu>{-^)Pjg(u)pdu,

so for some w0,

Thus

/
2   r,{s)e¡{uo)

iBA.„.

/
2   r,(s)e¡(u0)

*>(¿)W

i£A„

ds^
2KCp  '

where  Cp  is  the  constant  from  Kahane's  inequality  [6, p. 74].  We  let  v¡

e,(«o)E/g("o) far ' G AUo, so ||ü,|| < 1, we get

/■>r\
2 '/(*)»,

iGA,

ds
nt

2KCp-

Now an application of Theorem 1 yields the desired result.
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So to finish the proof, it is enough to show that for sufficiently small e,

{'/J  2  r,(s)e,(o:)fdcods<(^y.

But

123

■'o Ja i&A^

If 2  r¡(s)e¡(u)
i<£A„

ds ida<[\   2  \\eM\)   dec

s£ 2P~X /( 2 \\e,(u)\\Y du + f
aV/:||e,(u)||<fg(u,) ' ß

|e,.(W)||     da

i:||e,(u>)ll>if'g(u)

To estimate the second integral, we observe that

2 ||e,(W)|| = (£-1g(«)),~' 2 |e,(co)||(£-'g(w))
p-\

':|k,(«)ll>f   g(") /': ||e,(u)||>e-'g(w)

*£ (e-xg(u)f-pn-x 2 \\e,(o,)\\pn = tp-xg(u)n,

i=i

so

/J 2      î-.
i: ||e,(«)||>e-'g(u)

To estimate the first integral,

(.(tó)||     du < (e'-'nyfgiaYda < (e^'nf.

/J 2 ||e,(W)||     ¿io</(neg(W)f</W<(e/i)1'.
i:||e,(ü))||<Eg(u) ' ß

So it is enough to have

2p-x[(en)p + (ep-xn)p]^(n/2K)p,    or    2p~x[tp + t»~x] < (2K)~P,

which is true for small enough e, provided p > 1.
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Added in proof. Alain Pajor has recently shown that Theorem 1 holds for

complex Banach spaces as well.
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