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ON SOME SUBALGEBRAS

OF A VON NEUMANN ALGEBRA CROSSED PRODUCT

BY

BARUCH SOLEL1

Abstract. We study conditions for a nonselfadjoint subalgebra of a von Neumann

crossed product Ê to be an algebra of analytic operators with respect to a flow on £.

We restrict ourselves to the case where £ is constructed from a finite von Neumann

algebra M with a trace preserving '-automorphism « that acts ergodically on the

center of M.

1. Introduction. In [9] we studied subalgebras of a von Neumann algebra £,

constructed as a crossed product of a finite von Neumann algebra M by a trace

preserving *-automorphism a, that contain the nonselfadjoint crossed product £+ .

With the results of [9, §4] we can prove (see Corollary 3.5) that each such subalgebra

is an algebra of analytic operators with respect to some flow ß; i.e. it has the form

£^[0, oo) (see [2]).

In this paper we study conditions on subalgebras ® of £ (weaker than the

condition % D £+ ) that are sufficient to ensure "35 has the form £^[0, oo) for some

flow ß on £. We do this with the assumption that a acts ergodically on the center Z

ofM.

We deal separately with the cases Z nonatomic and Z atomic (in the latter case we

add the assumption that ak is outer for each ac G Z). The assumptions allow us to

use the results of [6].

In both cases we find (Theorem 3.4 and Corollary 3.5) sufficient conditions for the

algebra to be of the form £^[0, oo). Moreover, we show how the flow ß is derived

from the algebra in question.

For the case where Z is atomic we also find that any subalgebra of £ containing a

subalgebra of the form £^[0, oo) (for a flow ß) has the form £Y[0, oo) (for some

other flow y) (Theorem 4.2).

2. Preliminaries and the definition of <£. Let M be a finite von Neumann algebra

with a faithful and normal finite trace (¡p. We assume M is in standard form and

identify it with the von Neumann algebra of left multiphcations on L2(M, <p) (see

[8]). The algebra M' is its commutant on L2(M, <p). Since M has a generating and
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separating vector, M' is also finite. We write Z for M D M' and identify it with

£°°( A, v) for some locally compact Hausdorff space A" with a probability measure v

such that

(fdv = <p(f),       /G £»(*»•
•'A'

We fix once and for all a normal, *-automorphism a of M which preserves <p; i.e.,

<p ° a = <p. The following proposition appears in [4].

Proposition 2.1. Let L2, = {/: Z -> M; f(n) = 0 for all but finitely many ai}. Tairai

with respect to pointwise addition, scalar multiplication and the operations defined by

equations (l)-(3), L\ is a Hilbert algebra with identity ip defined by \p(0) — IM and

<M«) = 0, ai^O.

(0 (/**)(«) =   2 fikhk(g(n-k)),
k&Z

(2) (/*)(«)=[«"(/(-»))]*,

(3) (/,*> =   2 ifik),gik))L2(M,v).
k<EZ

Note that the Hilbert space completion L2 of L\ is

i/:Z-*£2(M,<p);   2  ¡/(»OIlW*) < °°| •
V llEZ I

For / in L\ we define operators Lf and Rf on £2 by Lyg = f*g and £^g = g*f,

g E L2. Both Lf and £| are well-defined, bounded operators, and we set £ = {Lf.

f E L\)", 61 = {Rf: f E L\)". Also, we define Lx to be the achieved Hilbert algebra

of all bounded elements in £2. For such an/, we write Lf and R¡ for the operators it

determines. It is known that the map /' -» L¡ [resp. / -» Rf] is a *-isomorphism [resp.

*-anti-isomorphism] from L°° onto £ [resp. 61]. Moreover, £ and 6L are finite von

Neumann algebras with 61' = £. We call £°° the self adjoint or üoai Neumann algebra

crossed product determined by Af, <p and a, and refer to £ and 61 as the left and right

regular representations of it.

The original algebra M is identified with the subalgebra {x\f/: x E M) of £°°, and

we write Lx (and Rx) for Lx4, (and £^). We have, for / G £2, (Lxf)(n) = jc/(ai)

and (Rxf)(n) = f(n)a"(x). We write £(M) = (Lx: je G M} and 6l(Af) = {Rx:

x EM).

If we let 8 be defined by ô(ai) = 0 if m === 1, 8(1) = IM, then it is easy to check that

£ is the von Neumann algebra generated by £(M) and Ls and, similarly, 61 is

generated by 61 (A/) and Rs.

The automorphism group {â,},eR of £ dual to a in the sense of Takesaki [10] is

implemented by the unitary representation of R, (IF,}reR, defined by

(WJ)(n) = e2™>f(n),       f E L2;

that is, <*,(£/) = WtLfW*. Similarly, â,(Rf) - WtRfW*. It is easy to see that

àt(Lf) — LWj for / in £°°, and similarly for R¡. One can check that the spectral
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resolution of {W,}ieK is given by

00

Wt =    2   e2"'"'En,
« = -00

where En is the projection on L2 defined by

iEJ)(k)=l^>     * = »•
{(j, AC ¥= AI.

We denote the restriction of En to L00 by e„ and write en(Lf) = £e;(/)- We have

e„= Çe~2,nin'àtdt,

where the integral converges in the o-weak operator topology.

Remark 2.1. If / lies in £°°, then ek(Lf) = Lf{k)Lks (see [9, Remark preceding

Theorem 4.5]) for each Ac G Z. Hence,

Ek\L*)* = £k(Lf*)* — (Lf.(k)Ls)   = (Lak(f(_k))tLsj*

~ \L&Lf(_k).)   = Lf{_k)LB   =e_k(Lf).

Thusek(L*) = (e_k(Lf))*.

We let T72 be (/ G £2: /(ai) = 0, ai < 0}, and T7°° be (/ G £°°: /(ai) = 0, ai < 0}.

More details concerning these algebras can be found in [4 and 5].

We will define an £(Z)-trace following [1, Chapter III, §4]. First we let 2 be the

set of all nonnegative measurable functions, finite or not, on X, and 2/ the set of all

real valued (finite) measurable functions on A" (we identify two functions in %, or %',

if they are different only on a set of measure zero). We identify the bounded

functions in %' with £(Z). Hence £(Z) Ç %' and £(Z)+ Ç %.

Definition. An £(Z)-trace on £(A/)'+ (the positive cone of the commutant of

£( A/)) is a map <p defined on £(M)'+ , with values in % and satisfying:

(1) If T, S G £(M)'+ , then <j>(S + T) = <¡>(S) + <¡>(T);

(2) USE £(Af)'+ , T E £(Z)+ , then 4>(TS) = T<p(S); and

(3) If 5 G £(M)'+ , and 77 G £(M)' is a unitary operator, then <¡>(USU*) = $(S).

(j> is semifinite if for every S ^ 0 in £(Af )'+ , there is an operator T E £(M)'+ ,

T ¥= 0, such that £=£ S and <p(T) E £(Z)+ . <f> is faithful if <¡>(T) = 0 only when

£=0, and <j> is normal if, for each increasing net {Sa} C £(A/)'+ , Supa(p(5'a) =

<MSupaSa).

It is shown in [9] that there is a unique, faithful, normal semifinite £(Z)-trace that

maps £0 into I. Henceforth, we let $ be this £(Z)-trace.

Remark 2.2. Consider a as acting on Z. By a theorem of Mackey [3] there is a

measurable transformation t on X implementing a; i.e. a(f)(x) — f(r(x)). Using

this we can extend the action of a to both 2 and %''. We claim that <i>(£s££|) =

a(4>(T)) for T E £( A/)' with <f»(£) in 2. Indeed, let <f>, be defined on £(A/)'+ by

</>,(£) = a_1(<p(£J£ä££*£s)); then <#>, is a faithful, normal, semifinite £(Z)-trace

that maps £0 into 7 (because </> has these properties and R*SLSE0L$RS = £0). Since

<¡> is unique with these properties, the claim follows.
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Finally, we recall that if {/?r},eR is a group of *-automorphisms on £ such that

t -» ßt(T) is a-weakly continuous for each T E £, then £^[0, oo) is the spectral

subspace associated with [0, oo) C R. Such a group ß will be called a flow and

£"[ 0, oo) is a a-weakly closed subalgebra of £ (see [2] for more details). We also refer

to £^[0, oo) as the algebra of analytic operators with respect to the flow ß.

3. Subalgebras of £ when £(Z) is nonatomic. In the section and the next we

frequently refer to the following four conditions, where 65 is a a-weakly closed

subalgebra of £.

(i) 65 + 65* is a-weakly dense in £.

(ii)£(A/)ç65.
(iii) For/ G £°°,/lies in [65]2 (= the closure of the subspace {T^: T E 65}) if and

only if Lf E 65.

(iv) </>(£ - PLSPL*S) and <t>(LsPL% - ££a££*) are finite a.e., where £ is the

projection on [65]2. (We shall refer to this condition only when it is known that £

and £s££* commute.)

We write £(65) for the projection onto [65]2.

Throughout this section we assume £(Z) is nonatomic and a acts ergodically on

£(Z).

Lemma 3.1. If 65 satisfies conditions (i)-(iii) there is a sequence [ek}k°=_x of

projections in £(Z) such that £(65) = 2^=.^ ekEk and

65 = [TE£:ek(T) E ek£(M)Lks for each k GZ}.

Moreover, for each k, n EX, we have

(1) e„a"iek)<en+k,

(2) I - «"(eH) < e_„,

(3) e„il-akie„_k))<ek.

Proof. Let £ be £(65), then since £(A7) ç 65, £ G {£(A/),6l(A7)}'. Using [6,

Proposition 3.1] there is a sequence {ek}f=_x of projections in £(Z) such that

P = lf=.00ekEk. (iii) now implies 65 = {£ G £: ek(T) E ek£(M)Lks for each ac G Z}

since ek(T) = LE if) where T = Lf,f E Lx.

For each ac, ai G Z, e„L\ and ekL\ lie in 65; hence, e„a"(ek)L"s+k = enL\ekL\ E 65

and (1) follows. For (2) note that, since ek(L*) = (e_k(Lf))* (see Remark 2.1),

ek(T*) E ekt(M)Lks for £ G £ if and only if

e_k(T) E (ek£(M)Lk)* = Lskek£(M) = LskekLsk£(M)Lk = a~k(ek)£(M)Lk.

Hence,

65* = {£: £* G 65} = [TE£:ek(T*) E ek£(M)Lks for each k E Z}.

= {TEt:ek(T) E ak(e_k)£(M)L'sk for each k E Z},

and

65 + 65* Ç {£ G £:e¿(£) G (ek V ak(e_k))£(M)Lk for eachyt G Z}.
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Since 65 + 65* is a-weakly dense in £ and the set on the right-hand side is o-weakly

closed (as ek are a-weakly continuous), ek V ak(e_k) = 1 and (2) follows.

As a consequence we have, for ai, k E Z,

e„(l - ak(en_k)) = ena"(l - «*""(*„_*)) < ena"(en_k) < ek;

hence, (3) holds.    D

Let /lie in 2' and let the sequence {/„ }™=_x of elements of 2' be defined by

2 «*(/).  «>0>
/ = \k=0

0, n = 0,

-a"(f_„),       n<0.

Let t//"' be the unitary operator in £(Z) defined by

(//"> = exp(ii/J,       aiGZ,/GR.

Since £„£m = 0 for ai ¥= m and U,in)En(L2) E En(L2), Ut = 2™=_xV,(n)E„ is a

unitary operator on £2. Moreover, t -» U, is a strongly continuous representation of

R (since r -» £7/n) is strongly continuous for each ai G Z). We let {/7},eR be the

group of *-automorphisms on £ defined by

ß,(T) = Í/, £(/,*,       £G£.

We call {i/,},eR the group of unitary operators and {/7}teR the group of *-automor-

phisms given rise to by / (in 2').

A calculation similar to [4, p. 390] reveals

ß,(Lg) = LUg,       tER,LgE£.

There is an obvious correspondence between projections in £(Z) and measurable

subsets of X (where the projection e that corresponds to ê Ç Xis of the form Lh, and

h is the characteristic function of ê viewed as an element of Z - LX(X, p)).

Lemma 3.2. Let f (in 2') give rise to a group of *-automorphisms {/7,},6B. Then

t -> ßt(T) is a-weakly continuous for each £ G £ and the algebra £^[0, oo) of analytic

operators is the set {T E £: ek(T) E ck£(M)Lg for each k G Z}, where ck is the

projection in £(Z) corresponding to the set ck = {x E X: fk(x) > 0}. Therefore

£^[0, oo) satisfies conditions (i)-(iii).

Proof. For £ G £, t -» ß,(T) = U,TU* is a-weakly continuous since t -> U, is

strongly continuous.

Let £ (£„) be the spectral measure associated with the group (i/,},6R ({t/,(,,,},eR,

ai G Z) by Stone's Theorem.

Since U, = lf=_x U,(n)En and U,{n)En(L2) ç En(L2) for all ai G Z, t G R, we have

00

£[s,oo)=    2   ¿'»[■s. °°)£„   for each í G R.
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Since U,(n) lies in £(Z), Pn[s, oo) G £(Z) and, in fact, Pn[s, oo) is the projection, in

£(Z), corresponding to the subset c(ns) - {x E X: fn(x) > s} oí X (since Ut(n) -

exp(itfn)). Hence, £[0, oo) = 1cnEn, where cn corresponds to cn = {x E X: fn(x)>

0}.

We now wish to show that g, in £°°, lies in £[0, oo)(£2) if and only if Lg lies in

£"[0,00).

Let Lg be in £"[0, oo). Then by [2, Theorem 2.9], LgP[0, oo)(L2) Ç £[0, oo)(£2).

But xp G£[0, oo)(£2) (since £0[0, oo) = 7 and #>) = 7, »//(«) = 0, ai ¥= 0) and

Lgxp = g; hence, g G £[0, oo)(£2).

For the converse note that, since T_'(£) has an approximate identity consisting of

trigonometric polynomials, say {/c„}^°=1, each £ G £ is the a-weak limit of (finite)

linear combinations of [ek(T))f=_o0 (namely ¡vât(T)kn(t)dt). Hence, it suffices to

prove, forg in L00 n £[0, oo)(£2), that ek(Lg) lies in £"[0, oo) for each ac G Z.

As previously noted (Remark 2.1), £k(Lg) — Lg{k)Lks, hence, we now fix ac and

prove that

Lg(k)LkP[s,oo)(L2) CP[s,oo)(L2)    for all 5 G R.

This will imply that ek(Lg) E nß[Q, oo) (by Theorem 2.9 of [2]). Since g G

£[0, oo)(L2), Ek(g) E Pk[0, oo)(L2), and if we let pk be the projection in Z with

Lpi = £J0, oo), then g(k) = pkg(k) and Lg(k) = £J0, co)Lg{k). Fix s E R and h

in P[s, oo)(£2). Then for ai G Z,

E„{ek(Lg)h) = E„Lg{k)Lkh = Lg(k)EnLkh = Lg{k)LkE„_kh

ELg{k)LkPn.k[s,œ)En_k(L2) = Lg(k)ak(Pn_k[s,œ))En(L2)

ÇPk[0,œ)ak(Pn_k[s,œ))En(L2).

But, from the definition of the functions {fk) in 2', iifk(x) > 0 and a"(fn_k)(x) > s,

then f„(x)>s. Hence, ck n a"(c(„slk) C cl„s) and £J0, oo)ak(Pn_k[s, oo)) C

P„[s, oo). It follows that, for each ai G Z,

E,{ek(Lg)h) G £„[0, œ)En(L2) Ç P[s, œ)(L2).

Therefore, ek(Lg)h G P[s, oo)(L2) and this completes the proof that Lg E

£"[0, oo). We conclude that

£'[0,oo)= {£gG£:gG£[0,oo)(£2)}

= {Lg E £: En(g) G c„£„(£2) for each n E Z)

= (LgG£:e„(£g) G cn£(M)L¡ for each ai G Z}.

Now £(Af ) C £ß[0, oo) since c0 = T. Condition (i) is satisfied because of Theo-

rem 3.15 in [2]. Condition (iii) follows from the fact that £"[0, oo) is {L E £:

g G £[0, oo)(£2)}, because [£"[0, oo)]2 Ç £[0, oo)(£2).    D

Lemma 3.3. Let 65 be a subalgebra of £ satisfying (i)-(iv) and let P be £(65). For

k EZlet gx be<t>(P- PLksPL'sk) andg2 be <t>(LkPL~sk - PLksPLrsk). Then:

(1)g, - g2 =/*, wheref= *(£ - ££s££s*) - <l>(£5££* - PL*S) E 2';

(2)g,g2 = 0.
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Proof. First note that £ commutes with LksPLsk (ac G Z) because £ =

2^_xenE„,LkPLsk = 2™=^cxk(en)En+kanden E £(Z) (Lemma 3.1).

We can extend the definition of $ to all operators £ G £(M)' that can be written

as £ = £, - £2, where £„ £2 G £(M)'+ and </>(£,), <¡>(T2) G 2', simply by ¡ji(£) =

<!>(£,) — <i>(£2). Since (iv) is satisfied,

/=*(£- ££«££«*) - <i>(£ä££5* - ££s££|) = *(£ - £s££|).

Remark 2.2 can be seen to hold for </> in place of «#>, thus

a"(/)=*(LSPL;"-L2+,l>Lï"-1),

and, for ac > 0,

/*=  2a"(f) = ^(P-LkPL-sk),
k=0

while for ac < 0,

fk = "«"(/-J = ~«k{*iP - L-skPLk)) = *iP - LkPLsk).

Thus

/* = *(/»- LkPLsk) =<(>{P- PLkPLsk) - 4>(LkPLsk - PLkPL~sk) = gx - g2.

For (2), note that £ - LkPL'sk = 2dnEn, where dn = en(\ - ak(en_k)) < ek (see

Lemma 3.1). Hence,

g, =4>ild„E„) = I<t>(dnEn) = 2¿„   and   g]ek = gx.

On the other hand, L\PL\k - PLksPL~sk = 2c„£„, where

cn = «*(*,-*)(! - O = «*(«„-*(! - «"*(«,))) < «*(«_*) <l-ek;

thus g2 = g2(l - ek) and g,g2 = 0.    D

Theorem 3.4. Let 65 be a a-weakly closed subalgebra of £ satisfying (i)-(iv). Then

65 = £"[0, oo)for some flow ß on t. In fact ß is the group introduced in the discussion

preceding Lemma 3.2 for

/=<>(£- PLSPLI) - <t>(LsPL*s - PLSPL¡) E 2'

(where P = £(65)).

Proof. Keeping the notation of Lemmas 3.T and 3.2, it suffices to show that

ck — ek for each k E Z.

ek *S ck. Let e be the projection ek — ekck E £(Z). Since e < I — ck, fk<0 a.e.

on ê (the subset of X that corresponds to e). Using the notation of Lemma 3.3,

fk = -g2 on ê (since g,g2 = 0, fk = g, — g2). If e ^ 0, we have g2e =£ 0, but we saw,

in the proof of Lemma 3.3, that g2 = g2(l — ek), and from the definition of e,

e < ek. This is a contradiction and it proves that ek < c¿. for all ac G Z.

c¿ < e¿. Let c be the projection ck(\ — ek). Since ck^ ck, fk> 0 a.e. on c and

g2c = 0 (in the notations of Lemma 3.3). But g2 = g2(l — ek) and e < 1 — efc; hence

c = 0 and ck < ev    D
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Corollary 3.5. Let % be a a-weakly closed proper subalgebra of £ satisfying

(i)-(iii). If in addition, 65 contains £g£+ for some ai G Z, it satisfies (iv) aAi<7,

consequently, has the form £"[0, oo) for some flow ß on £.

Proof. Let £ be £(65).

To prove (iv), let {ek)'k=_00 be the sequence of projections introduced in Lemma

3.1. If <i>(£s££| — LsPLgP) is not finite, then it is infinite everywhere on a subset ê

of A with a corresponding projection e E £(Z). Since <|>(LS££* — £s££*£) =

1a(ek_x)(\ — ek), we have

2a(ek_x)(l - ek)e= oo • e

and

lek_x(\ - a\ek))a\e) = oo ■ a\e).

We first show that, for each Ac G Z, a\e) < ek. Suppose a"'(e) ^ ek for some

ac0 G Z. Then c = cr'(e)(i - e^) ¥= 0. Since £££+ Ç 65, em = 1 for each m > n,

and also

**.-«. = e*.-»«*0","(e») < eAv       « > «•

Hence, c < 1 — e,   < 1 — e, _„,, ah > ai. Thus
« 0 « 0     "i

oc oc

oo-c =    S   eA_,(l -a-'(ej)c=        2       ^_,(l -a-'(ej)c.
A = -oo k=k0—n-fl

But, since 1 — a"'(eA.) = 0 for k > n,

A = A0-ii+l

This contradiction shows that a~\e) < eA for each k E Z. Since 65 ¥= £, there is

some m G Z with 1 — em ^ 0. By ergodicity, a"'(e)a_A:(l — em) =?= 0 for some

Ac > ai. Thus af *(1 — em)em_k ¥= 0 (since or'(e) < em_k), and

0 *(1 - ej«*(e*-*) = (1 - em)ekak(em_k) < (1 - eM)eM = 0.

Therefore, <>(£S£L* — PLsPLf) is finite a.e. on A.

We now prove that 4>(P — £s££*) is finite a.e. on A. Assume the converse; i.e.

<¡>(P — £s ££*)<? = oo - e for some projection e E t(Z). As shown in the proof for

(f>(Ls££* — ££*), it will suffice to show that e < ek for each k E Z. We assume

e(\ — ek ) ¥= 0 for some ac0 G Z and

oc

oo ■ e = 4>iP - LsPLt)e =    2   ek(\ - a(ek^x))e.
A = -oc

Hence,
oc

<*> ■ eil - ek0) =    2   e*(l - «(<?*_,))<?(l ~ «*,)
A' = -00

=   2  <7t0 -a(eA_,))e(l -**„)< °°.
k = -«

The contradiction proves that e *£ ek for each ac G Z and completes the proof.    D
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4. £(Z) is atomic. Suppose a acts ergodically on £(Z) and £(Z) is atomic. We

also assume, in this case, that ak is outer for each ac G Z. Since M is finite there is a

family {pn)"n=, of mutually orthogonal minimal projections in £(Z) with 2"= | p„ = I;

a(P„)=Pn+un<N^ and a(pN)=px.

Let 65 be a a-weakly closed subalgebra of £ containing £(M). Then £(65) lies in

{£(A/),6l(A7)}'. But{£(A7),6i(A7)}' = (£(Z), {£„}"=_„}" (by Proposition 4.2 of

[6]), hence there is a sequence {ek}f=_x of projections in £(Z) such that £(65) =

2ekEk.

Under these assumptions the results of the preceding section hold here. In this

case, however, we can say more about the algebras in question.

Lemma 4.1. Let f be in 2' wa/ai fxfdv > 0. Then the algebra 65 = £^[0, oo) of

Lemma 3.2 contains Lg°ñ+ for some integer n0 > 0. Consequently, 65 satisfies condi-

tions (i)-(iv).

Proof. Let c„ G £(Z) be the projections introduced in Lemma 3.2. We can write

f=^=l\„p„ where \„ E R and 2?=,A„ > 0; hence ak(f) = 2?=1A„a*(pJ for

each k E Z, and 2NkI¿ «*(/) = (2?=, \„)I > 0. Let a- be 2Nn=x Xn. Then, using the

notation introduced in the discussion preceding Lemma 3.2, fN = rl > 0; thus

cN = 1. Let A0 be min{A„: 1 < ai < A/}. Then for some m0 G Z+ , N\0 + rm0 > 0.

Let ai0 be aai0N. Then for ai > n0, n = mxN + m2 for some aai, > AHoand0 < m2< N;

we get

fn=LtN + <*"""( fj = mxr + am>Nifm2)

>m0r + a^Nifm2)>m0r + N\0>0.

Hence, for ai > n0, c„ = I. This implies L"s°t+ C 65. Since /„o > 0, f < 0, and it

follows that c_n — 0, hence 65 ¥^ £. Thus we can use Corollary 3.5 to complete the

proof.    D

Theorem 4.2. Let f lie in 2' ua¡¿ let % be a a-weakly closed subalgebra of £

containing tß[0, oo) (where ß arises from f as in Lemma 3.2). Then 65 = £Y[0, oo) for

some flow y on £. Moreover, if jxfdv = 0, aai^ai 65 is a nest subalgebra.

Proof. Since 650 = £"[0, oo) contains t(M), and 650 + 65* is a-weakly dense in

£, 65 satisfies (i) and (ii).

We now distinguish between two cases.

Case 1. jxfdv¥"0. We can assume Jxfdv>0 (the other possibility can be

handled similarly) and apply Lemma 4.1 to find that, for some ai0 G Z, Lg°£+ C 650

Ç 65. From this, using Corollary 3.5, it follows that f=<j>(P-LsPL¡P)-

<Í>(LS£L| - PLSPL¡) lies in 2/ where £ = £(650). By Lemma 3.2, /gives rise to a

flow ß and an algebra 65 = £"[0, oo) = {£ G £: ek(T) E ckt(M)Lks for each k E

Z), where ik = {x G A: /¿(jc) ^ 0}. Let ck be {x E X: fk(x) 3= 0} and ck G £(Z)

the corresponding projections in £(Z) for ac G Z. We now show that c/ < ck and this

implies 65 Ç 650, since 650 = {£ G £: ek(T) E ckt(M)Lks for each k G Z}. In fact,

let c be the projection ck(\ — ck) and assume c ¥= 0. Since c < c¿, fk > 0 a.e. on c.

Lemma 3.3, applied to the algebra 650, shows that for almost every x E A, if
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fk(x) 3= 0 then <p(LsPL$ - £L5££*)(x) = 0; hence,

(*) 4>(LsPL*s-PLsPLï)c = 0.

From the proof of Lemma 3.3, applied to 650, we see that

4>(LsPLt - PLsPLt)(\ - ck) = <i,(Ls££* - ££«££*),

but since 0 ¥= c ^ 1 — ck, this contradicts (*). This proves ck^ck and, hence,

65 C 650 Ç 65. But 65 is a maximal subdiagonal algebra in £. Indeed,

/= </>(£ - £s££|£) - <P(LSPL¡ - PLSPL¡)
00 00

=    2   ek(\ - a(ek_x)) -    2   o(it_,)(l - ek)
A = -oo A = -oo

and

/v

/= 2 miPi
/=i

where

m,= #{AcGZ:e,(l - «(«?*_,))/>,,* 0}

-#{AcGZ:a(^_1)(l-eJpJ#0} G Z.

Hence, /?, = f/7,+2„A for each k E Z, and the map g = ¡^ß,dt (where the integral

converges in thea-weak operator topology) defines a normal faithful expectation

form £ onto £^((0}) = 65 D 65* satisfying ë ■ ß, = e and making 65 a maximal

subdiagonal algebra. (See [2, Theorem 3.15].) Now we can use [7, Theorem 1] to

conclude that 65 satisfies (iii) (with the notation of that theorem £ is L00, 65 is 7700,

and 65 is a a-weakly closed subspace of L00 satisfying T7°°65 Ç 65). Thus we can

apply Corollary 3.5 to 65 to complete the proof in this case.

Case 2. ¡xfdv = 0. We have f=^=l\„p„, where \„ E R and 2^=, \„ = 0. Let

dn be 2£=, r\k for 1 =s n < N; then dn — dn_ x = X„ for ai > 1 and dx — dN = \x. Let

d, in £(Z), be 2,Nn=xdnPn. Then d- a(d) = 1dnpn - ldna(pn) = 2A„p„ =/ and.

similarly, d — ak(d) = fk for each ac G Z. Consequently,

/7,(£v£«) = (exp itfk)LxLks = exp it(d - ak(d))LxLks,       xEM.kEZ.

But

exp(-itak(d))Lks = Lks(exp(-itd));

hence,

/3,(£,£s) = expM)£v£¿exp(-AAúí);

i.e. ßt is inner for each t E R.

By [2, Theorem 4.2.3], 650 is a nest subalgebra of £. We shall show that 65 is also.

As was seen in Lemma 3.2, 650 is determined by the projections {ck} that

correspond to the sets ck — {x E X: fk(x) > 0}. Here,

N N

fk= 2 d„p„-  2 d„ak(pn).
i7=l n=\
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Hence ck = 2neFi p„, where Fk = {ai: d„ > dm where ak(pm) = p,,}. Now, let b„ be

the number of Ac's such that dk < dn; then Fk — (ai: bn > ¿>„ where ak(pm) = p,,};

hence, we can replace dby b = 1bnpn and still get the same algebra 65(). We denote

by ß the new flow and we have /3,+2w„ = ß, for each ai G Z and 0 < t < 1 (since bn

are integers). Thus the map e defined by I = /02,r/8, ¿ft (where the integral converges

in the a-weak operator topology) is a faithful normal expectation onto £"({0})

satisfying I ■ ßt — e for all a G R. It makes 650 a maximal subdiagonal algebra in £

(see [2, Theorem 3.15]). Since £ D 65 D 650, and 650 is a maximal subdiagonal algebra

in £, we can use [7, Theorem 1] to conclude that 65 satisfies (iii). Thus, there is a

sequence {e^}^.^ of projections in £(Z) such that £(65) = 1ekEk (see Lemma

3.1).

Recall that 650 is determined by {ck) where ck = {x G A: fk(x) > 0}. Since

fN = 0, ckN — 1 for each ac in Z. Since 65 D 650, ekN = 1 for each ac G Z. Also, for

ah, Ac G Z.

em + kN ~ e-kNa Vem + kN ) ^ em ~ e kNa      \em)^em + kN'

hence, em = em+kN.

For each 1 < m < TV, let <7m be the projection 2k~ùak( Pm)ek- We shall show that

(*) 65 = £n a\g{qm: 1 <aai<A/};

hence, 65 is a nest subalgebra. Denote the right-hand side of (*) by 65.

65 C 65. Take £in 65, then, for each ac G Z, 1 < m < N, £maps ak(pm)ekEk(L2)

into qmEk(L2). Since £ G £, and 2£=_00a"(pm)£„ is the projection Ä^ in 6l(= £'),

£ maps a*( pje,£,(£2) into 2?=_0Oa"(pJ£M(L2). But

oo aV— 1 00

4m   2   <*niPm)En=   2 ejafipj   2   a"iPm)En
n = -oc j — 0 n = -cK>

OO 00

=    2   «"(pJeTA^    2   <>„£„ = £(65).
i7 = -00 1-OO

Since

oo AV oo

2     2 «*(/>Je*£* =    2   e„£„ = £(65),
A = -oo m=l n-oo

£ maps £(65)(£2) = [65]2 into itself. In particular, £// G [65]2 and, using condition

(iii), £liesin65.

65 C 65. Fix £ G 65 and 0 < k < N - 1. Since £ maps ekEk(L2) into

2°°=.^ *,.£,.(£2), it maps ak(pm)ekEk(L2) into 2«^ <?,-£,( L2) for each 1 < m ^ A.

It also maps it into 2,1°=. œ a"(pm)En(L2) = Rp(.L2) since £ G £. But

(2e,.£,)(2a"(pj£j = lena"iPm)En < qm;

hence, Tmaps ak(pm)ekEk(L2) into <7m(£2).

For ai G Z, «*(/>„)**£„ = ÄS"*«*( £>a¿a and

TR"s-k*k(pm)ekEk(L2) = £r*£«A(pm)e,£,(£2) Ç R^jL2) C qm(L2).
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Hence, £maps ak(pm)ekEn(L2) into qm(L2) for each m, n E Z, 1 < m < N. Since

oc AV-1

2   <xkiPm)ekEn = akiPm)ek   and   <?„, =   2 «*(/>»■)<?*>
» = -oo /V = 0

£ maps <7„(£2) into <7„(L2). Hence £ G 65.

Hence, 65 = 65, and 65 is a nest subalgebra. The fact that 65 is £y[0, oo) for some

flow y on £ follows from [2, Theorem 4.23].
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