ON SOME SUBALGEBRAS OF A VON NEUMANN ALGEBRA CROSSED PRODUCT

BY

BARUCH SOLEL

ABSTRACT. We study conditions for a nonselfadjoint subalgebra of a von Neumann crossed product $\mathcal L$ to be an algebra of analytic operators with respect to a flow on $\mathcal L$. We restrict ourselves to the case where $\mathcal L$ is constructed from a finite von Neumann algebra M with a trace preserving *-automorphism α that acts ergodically on the center of M.

1. Introduction. In [9] we studied subalgebras of a von Neumann algebra \mathcal{L} , constructed as a crossed product of a finite von Neumann algebra M by a trace preserving *-automorphism α , that contain the nonselfadjoint crossed product \mathcal{L}_+ . With the results of [9, §4] we can prove (see Corollary 3.5) that each such subalgebra is an algebra of analytic operators with respect to some flow β ; i.e. it has the form $\mathcal{L}^{\beta}[0,\infty)$ (see [2]).

In this paper we study conditions on subalgebras \mathfrak{B} of \mathfrak{L} (weaker than the condition $\mathfrak{B} \supseteq \mathfrak{L}_+$) that are sufficient to ensure \mathfrak{B} has the form $\mathfrak{L}^{\beta}[0,\infty)$ for some flow β on \mathfrak{L} . We do this with the assumption that α acts ergodically on the center Z of M.

We deal separately with the cases Z nonatomic and Z atomic (in the latter case we add the assumption that α^k is outer for each $k \in \mathbb{Z}$). The assumptions allow us to use the results of [6].

In both cases we find (Theorem 3.4 and Corollary 3.5) sufficient conditions for the algebra to be of the form $\mathcal{L}^{\beta}[0,\infty)$. Moreover, we show how the flow β is derived from the algebra in question.

For the case where Z is atomic we also find that any subalgebra of \mathcal{L} containing a subalgebra of the form $\mathcal{L}^{\beta}[0,\infty)$ (for a flow β) has the form $\mathcal{L}^{\gamma}[0,\infty)$ (for some other flow γ) (Theorem 4.2).

2. Preliminaries and the definition of ϕ . Let M be a finite von Neumann algebra with a faithful and normal finite trace φ . We assume M is in standard form and identify it with the von Neumann algebra of left multiplications on $L^2(M, \varphi)$ (see [8]). The algebra M' is its commutant on $L^2(M, \varphi)$. Since M has a generating and

Received by the editors January 24, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L10; Secondary 46L40, 47L25.

Key words and phrases. Crossed product, nonselfadjoint subalgebra, analyticity, flow, spectral subspaces for groups of automorphisms.

¹Supported by the Fund for Basic Research, administered by the Israeli Academy of Sciences and Humanities.

separating vector, M' is also finite. We write Z for $M \cap M'$ and identify it with $L^{\infty}(X, \nu)$ for some locally compact Hausdorff space X with a probability measure ν such that

$$\int_{X} f d\nu = \varphi(f), \qquad f \in L^{\infty}(X, \nu).$$

We fix once and for all a normal, *-automorphism α of M which preserves φ ; i.e., $\varphi \circ \alpha = \varphi$. The following proposition appears in [4].

PROPOSITION 2.1. Let $L_0^2 = \{f: \mathbb{Z} \to M; f(n) = 0 \text{ for all but finitely many } n\}$. Then with respect to pointwise addition, scalar multiplication and the operations defined by equations (1)–(3), L_0^2 is a Hilbert algebra with identity ψ defined by $\psi(0) = I_M$ and $\psi(n) = 0$, $n \neq 0$.

(1)
$$(f*g)(n) = \sum_{k \in \mathcal{I}} f(k)\alpha^k (g(n-k)),$$

(2)
$$(f^*)(n) = [\alpha^n(f(-n))]^*,$$

(3)
$$\langle f, g \rangle = \sum_{k \in \mathbb{Z}} (f(k), g(k))_{L^2(M, \varphi)}.$$

Note that the Hilbert space completion L^2 of L_0^2 is

$$\left\{f\colon \mathbf{Z}\to L^2(M,\varphi); \sum_{n\in\mathbf{Z}} \|f(n)\|_{L^2(M,\varphi)}^2 < \infty\right\}.$$

For f in L_0^2 we define operators L_f and R_f on L^2 by $L_f g = f*g$ and $R_f g = g*f$, $g \in L^2$. Both L_f and R_f are well-defined, bounded operators, and we set $\mathcal{E} = \{L_f: f \in L_0^2\}''$, $\mathfrak{R} = \{R_f: f \in L_0^2\}''$. Also, we define L^∞ to be the achieved Hilbert algebra of all bounded elements in L^2 . For such an f, we write L_f and R_f for the operators it determines. It is known that the map $f \to L_f$ [resp. $f \to R_f$] is a *-isomorphism [resp. *-anti-isomorphism] from L^∞ onto \mathcal{E} [resp. \mathcal{R}]. Moreover, \mathcal{E} and \mathcal{R} are finite von Neumann algebras with $\mathcal{R}' = \mathcal{E}$. We call L^∞ the selfadjoint or von Neumann algebra crossed product determined by M, φ and α , and refer to \mathcal{E} and \mathcal{R} as the left and right regular representations of it.

The original algebra M is identified with the subalgebra $\{x\psi\colon x\in M\}$ of L^∞ , and we write L_x (and R_x) for $L_{x\psi}$ (and $R_{x\psi}$). We have, for $f\in L^2$, $(L_xf)(n)=xf(n)$ and $(R_xf)(n)=f(n)\alpha^n(x)$. We write $\mathcal{L}(M)=\{L_x\colon x\in M\}$ and $\Re(M)=\{R_x\colon x\in M\}$.

If we let δ be defined by $\delta(n) = 0$ if $n \neq 1$, $\delta(1) = I_M$, then it is easy to check that \mathcal{E} is the von Neumann algebra generated by $\mathcal{E}(M)$ and L_{δ} and, similarly, \mathcal{R} is generated by $\mathcal{R}(M)$ and R_{δ} .

The automorphism group $\{\hat{\alpha}_t\}_{t\in\mathbf{R}}$ of \mathcal{L} dual to α in the sense of Takesaki [10] is implemented by the unitary representation of \mathbf{R} , $\{W_t\}_{t\in\mathbf{R}}$, defined by

$$(W_t f)(n) = e^{2\pi i n t} f(n), \quad f \in L^2;$$

that is, $\hat{\alpha}_t(L_f) = W_t L_f W_t^*$. Similarly, $\hat{\alpha}_t(R_f) = W_t R_f W_t^*$. It is easy to see that $\hat{\alpha}_t(L_f) = L_{W,f}$ for f in L^{∞} , and similarly for R_f . One can check that the spectral

resolution of $\{W_t\}_{t\in\mathbb{R}}$ is given by

$$W_t = \sum_{n=-\infty}^{\infty} e^{2\pi i n t} E_n,$$

where E_n is the projection on L^2 defined by

$$(E_n f)(k) = \begin{cases} f(n), & k = n, \\ 0, & k \neq n. \end{cases}$$

We denote the restriction of E_n to L^{∞} by ε_n and write $\varepsilon_n(L_f) = L_{\varepsilon_n(f)}$. We have

$$\varepsilon_n = \int_0^1 e^{-2\pi i n t} \hat{\alpha}_t \, dt,$$

where the integral converges in the σ -weak operator topology.

REMARK 2.1. If f lies in L^{∞} , then $\varepsilon_k(L_f) = L_{f(k)} L_{\delta}^k$ (see [9, Remark preceding Theorem 4.5]) for each $k \in \mathbb{Z}$. Hence,

$$\varepsilon_k(L_f^*)^* = \varepsilon_k(L_{f^*})^* = (L_{f^*(k)}L_\delta^k)^* = (L_{\alpha^k(f(-k))^*}L_\delta^k)^*$$
$$= (L_\delta^k L_{f(-k)^*})^* = L_{f(-k)}L_\delta^{-k} = \varepsilon_{-k}(L_f).$$

Thus $\varepsilon_k(L_f^*) = (\varepsilon_{-k}(L_f))^*$.

We let H^2 be $\{f \in L^2: f(n) = 0, n < 0\}$, and H^{∞} be $\{f \in L^{\infty}: f(n) = 0, n < 0\}$. More details concerning these algebras can be found in [4 and 5].

We will define an $\mathcal{L}(Z)$ -trace following [1, Chapter III, §4]. First we let \mathfrak{Z} be the set of all nonnegative measurable functions, finite or not, on X, and \mathfrak{Z}' the set of all real valued (finite) measurable functions on X (we identify two functions in \mathfrak{Z} , or \mathfrak{Z}' , if they are different only on a set of measure zero). We identify the bounded functions in \mathfrak{Z}' with $\mathcal{L}(Z)$. Hence $\mathcal{L}(Z) \subseteq \mathfrak{Z}'$ and $\mathcal{L}(Z)_+ \subseteq \mathfrak{Z}$.

DEFINITION. An $\mathcal{L}(Z)$ -trace on $\mathcal{L}(M)'_+$ (the positive cone of the commutant of $\mathcal{L}(M)$) is a map ϕ defined on $\mathcal{L}(M)'_+$, with values in \mathcal{Z} and satisfying:

- (1) If $T, S \in \mathcal{C}(M)'_+$, then $\phi(S + T) = \phi(S) + \phi(T)$;
- (2) If $S \in \mathcal{L}(M)'_+$, $T \in \mathcal{L}(Z)_+$, then $\phi(TS) = T\phi(S)$; and
- (3) If $S \in \mathcal{L}(M)'_+$, and $U \in \mathcal{L}(M)'$ is a unitary operator, then $\phi(USU^*) = \phi(S)$.

 ϕ is semifinite if for every $S \neq 0$ in $\mathcal{E}(M)'_+$, there is an operator $T \in \mathcal{E}(M)'_+$, $T \neq 0$, such that $T \leq S$ and $\phi(T) \in \mathcal{E}(Z)_+$. ϕ is faithful if $\phi(T) = 0$ only when T = 0, and ϕ is normal if, for each increasing net $\{S_\alpha\} \subseteq \mathcal{E}(M)'_+$, $\sup_\alpha \phi(S_\alpha) = \phi(S_\alpha)$.

It is shown in [9] that there is a unique, faithful, normal semifinite $\mathcal{L}(Z)$ -trace that maps E_0 into I. Henceforth, we let ϕ be this $\mathcal{L}(Z)$ -trace.

REMARK 2.2. Consider α as acting on Z. By a theorem of Mackey [3] there is a measurable transformation τ on X implementing α ; i.e. $\alpha(f)(x) = f(\tau(x))$. Using this we can extend the action of α to both $\mathfrak Z$ and $\mathfrak Z'$. We claim that $\phi(L_{\delta}TL_{\delta}^*) = \alpha(\phi(T))$ for $T \in \mathcal L(M)'$ with $\phi(T)$ in $\mathfrak Z$. Indeed, let ϕ_1 be defined on $\mathcal L(M)'_+$ by $\phi_1(T) = \alpha^{-1}(\phi(R_{\delta}^*L_{\delta}TL^*R_{\delta}))$; then ϕ_1 is a faithful, normal, semifinite $\mathcal L(Z)$ -trace that maps E_0 into I (because ϕ has these properties and $R_{\delta}^*L_{\delta}E_0L_{\delta}^*R_{\delta} = E_0$). Since ϕ is unique with these properties, the claim follows.

Finally, we recall that if $\{\beta_t\}_{t\in\mathbb{R}}$ is a group of *-automorphisms on \mathcal{L} such that $t\to\beta_t(T)$ is σ -weakly continuous for each $T\in\mathcal{L}$, then $\mathcal{L}^{\beta}[0,\infty)$ is the spectral subspace associated with $[0,\infty)\subseteq\mathbb{R}$. Such a group β will be called a *flow* and $\mathcal{L}^{\beta}[0,\infty)$ is a σ -weakly closed subalgebra of \mathcal{L} (see [2] for more details). We also refer to $\mathcal{L}^{\beta}[0,\infty)$ as the algebra of analytic operators with respect to the flow β .

- 3. Subalgebras of \mathcal{E} when $\mathcal{E}(Z)$ is nonatomic. In the section and the next we frequently refer to the following four conditions, where \mathfrak{B} is a σ -weakly closed subalgebra of \mathcal{E} .
 - (i) $\mathfrak{B} + \mathfrak{B}^*$ is σ -weakly dense in \mathfrak{L} .
 - (ii) $\mathcal{L}(M) \subset \mathcal{B}$.
- (iii) For $f \in L^{\infty}$, f lies in $[\mathfrak{B}]_2$ (= the closure of the subspace $\{T\psi: T \in \mathfrak{B}\}$) if and only if $L_f \in \mathfrak{B}$.
- (iv) $\phi(P PL_{\delta}PL_{\delta}^*)$ and $\phi(L_{\delta}PL_{\delta}^* PL_{\delta}PL_{\delta}^*)$ are finite a.e., where P is the projection on $[\mathfrak{B}]_2$. (We shall refer to this condition only when it is known that P and $L_{\delta}PL_{\delta}^*$ commute.)

We write $P(\mathfrak{B})$ for the projection onto $[\mathfrak{B}]_2$.

Throughout this section we assume $\mathcal{L}(Z)$ is nonatomic and α acts ergodically on $\mathcal{L}(Z)$.

LEMMA 3.1. If \mathfrak{B} satisfies conditions (i)–(iii) there is a sequence $\{e_k\}_{k=-\infty}^{\infty}$ of projections in $\mathfrak{L}(Z)$ such that $P(\mathfrak{B}) = \sum_{k=-\infty}^{\infty} e_k E_k$ and

$$\mathfrak{B} = \left\{ T \in \mathfrak{L} : \varepsilon_k(T) \in e_k \mathfrak{L}(M) L_{\delta}^k \text{ for each } k \in \mathbf{Z} \right\}.$$

Moreover, for each $k, n \in \mathbb{Z}$, we have

$$(1) e_n \alpha^n(e_k) \leq e_{n+k},$$

$$(2) 1 - \alpha^{-n}(e_n) \leq e_{-n},$$

$$(3) e_n(1-\alpha^k(e_{n-k})) \leq e_k.$$

PROOF. Let P be $P(\mathfrak{B})$, then since $\mathfrak{L}(M) \subseteq \mathfrak{B}$, $P \in \{\mathfrak{L}(M), \mathfrak{R}(M)\}'$. Using [6, Proposition 3.1] there is a sequence $\{e_k\}_{k=-\infty}^{\infty}$ of projections in $\mathfrak{L}(Z)$ such that $P = \sum_{k=-\infty}^{\infty} e_k E_k$. (iii) now implies $\mathfrak{B} = \{T \in \mathfrak{L} : \varepsilon_k(T) \in e_k \mathfrak{L}(M) L_\delta^k \text{ for each } k \in \mathbf{Z}\}$ since $\varepsilon_k(T) = L_{E_k(f)}$ where $T = L_f$, $f \in L^\infty$.

For each k, $n \in \mathbb{Z}$, $e_n L_{\delta}^n$ and $e_k L_{\delta}^k$ lie in \mathfrak{B} ; hence, $e_n \alpha^n (e_k) L_{\delta}^{n+k} = e_n L_{\delta}^n e_k L_{\delta}^k \in \mathfrak{B}$ and (1) follows. For (2) note that, since $\varepsilon_k (L^*) = (\varepsilon_{-k} (L_f))^*$ (see Remark 2.1), $\varepsilon_k (T^*) \in e_k \mathfrak{L}(M) L_{\delta}^k$ for $T \in \mathfrak{L}$ if and only if

$$\varepsilon_{-k}(T) \in \left(e_k \mathfrak{L}(M) L_\delta^k\right)^* = L_\delta^{-k} e_k \mathfrak{L}(M) = L_\delta^{-k} e_k L_\delta^{-k} \mathfrak{L}(M) L_\delta^k = \alpha^{-k} (e_k) \mathfrak{L}(M) L_\delta^k.$$
 Hence,

$$\mathfrak{B}^* = \{ T \colon T^* \in \mathfrak{B} \} = \{ T \in \mathfrak{L} \colon \varepsilon_k(T^*) \in e_k \mathfrak{L}(M) L_\delta^k \text{ for each } k \in \mathbf{Z} \}.$$

$$= \{ T \in \mathfrak{L} \colon \varepsilon_k(T) \in \alpha^k(e_{-k}) \mathfrak{L}(M) L_\delta^{-k} \text{ for each } k \in \mathbf{Z} \},$$

and

$$\mathfrak{B}+\mathfrak{B}^*\subseteq\big\{T\in\mathfrak{L}\colon\varepsilon_k(T)\in\big(e_k\vee\alpha^k(e_{-k})\big)\mathfrak{L}(M)L_\delta^k\text{ for each }k\in\mathbf{Z}\big\}.$$

Since $\mathfrak{B} + \mathfrak{B}^*$ is σ -weakly dense in \mathfrak{L} and the set on the right-hand side is σ -weakly closed (as ε_k are σ -weakly continuous), $e_k \vee \alpha^k(e_{-k}) = 1$ and (2) follows.

As a consequence we have, for $n, k \in \mathbb{Z}$,

$$e_n(1-\alpha^k(e_{n-k}))=e_n\alpha^n(1-\alpha^{k-n}(e_{n-k})) \le e_n\alpha^n(e_{n-k}) \le e_k;$$

hence, (3) holds. \Box

Let f lie in \mathfrak{T}' and let the sequence $\{f_n\}_{n=-\infty}^{\infty}$ of elements of \mathfrak{T}' be defined by

$$f_n = \begin{cases} \sum_{k=0}^{n-1} \alpha^k(f), & n > 0, \\ 0, & n = 0, \\ -\alpha^n(f_{-n}), & n < 0. \end{cases}$$

Let $U_t^{(n)}$ be the unitary operator in $\mathcal{L}(Z)$ defined by

$$U_t^{(n)} = \exp(itf_n), \quad n \in \mathbb{Z}, t \in \mathbb{R}.$$

Since $E_n E_m = 0$ for $n \neq m$ and $U_t^{(n)} E_n(L^2) \subseteq E_n(L^2)$, $U_t = \sum_{n=-\infty}^{\infty} U_t^{(n)} E_n$ is a unitary operator on L^2 . Moreover, $t \to U_t$ is a strongly continuous representation of **R** (since $t \to U_t^{(n)}$ is strongly continuous for each $n \in \mathbf{Z}$). We let $\{\beta_t\}_{t \in \mathbf{R}}$ be the group of *-automorphisms on \mathcal{L} defined by

$$\beta_t(T) = U_t T U_t^*, \qquad T \in \mathcal{C}.$$

We call $\{U_t\}_{t\in\mathbb{R}}$ the group of unitary operators and $\{\beta_t\}_{t\in\mathbb{R}}$ the group of *-automorphisms given rise to by f (in \mathcal{Z}').

A calculation similar to [4, p. 390] reveals

$$\beta_t(L_g) = L_{U,g}, \quad t \in \mathbf{R}, L_g \in \mathcal{L}.$$

There is an obvious correspondence between projections in $\mathcal{L}(Z)$ and measurable subsets of X (where the projection e that corresponds to $\hat{e} \subseteq X$ is of the form L_h , and h is the characteristic function of \hat{e} viewed as an element of $Z \simeq L^{\infty}(X, \nu)$).

LEMMA 3.2. Let f (in \mathfrak{Z}') give rise to a group of *-automorphisms $\{\beta_i\}_{i\in\mathbb{R}}$. Then $t\to\beta_i(T)$ is σ -weakly continuous for each $T\in\mathbb{C}$ and the algebra $\mathbb{C}^{\beta}[0,\infty)$ of analytic operators is the set $\{T\in\mathbb{C}\colon \varepsilon_k(T)\in c_k\mathbb{C}(M)L_{\delta}^k \text{ for each }k\in\mathbb{Z}\}$, where c_k is the projection in $\mathbb{C}(Z)$ corresponding to the set $\hat{c}_k=\{x\in X\colon f_k(x)\geqslant 0\}$. Therefore $\mathbb{C}^{\beta}[0,\infty)$ satisfies conditions (i)–(iii).

PROOF. For $T \in \mathcal{L}$, $t \to \beta_t(T) = U_t T U_t^*$ is σ -weakly continuous since $t \to U_t$ is strongly continuous.

Let $P(P_n)$ be the spectral measure associated with the group $\{U_t\}_{t\in\mathbb{R}}$ $(\{U_t^{(n)}\}_{t\in\mathbb{R}}, n\in\mathbb{Z})$ by Stone's Theorem.

Since $U_t = \sum_{n=-\infty}^{\infty} U_t^{(n)} E_n$ and $U_t^{(n)} E_n(L^2) \subseteq E_n(L^2)$ for all $n \in \mathbb{Z}$, $t \in \mathbb{R}$, we have

$$P[s,\infty) = \sum_{n=-\infty}^{\infty} P_n[s,\infty) E_n$$
 for each $s \in \mathbb{R}$.

Since $U_t^{(n)}$ lies in $\mathcal{L}(Z)$, $P_n[s,\infty) \in \mathcal{L}(Z)$ and, in fact, $P_n[s,\infty)$ is the projection, in $\mathcal{L}(Z)$, corresponding to the subset $\hat{c}_n^{(s)} = \{x \in X: f_n(x) \ge s\}$ of X (since $U_t^{(n)} = \exp(itf_n)$). Hence, $P[0,\infty) = \sum c_n E_n$, where c_n corresponds to $\hat{c}_n = \{x \in X: f_n(x) \ge 0\}$.

We now wish to show that g, in L^{∞} , lies in $P[0,\infty)(L^2)$ if and only if L_g lies in $\mathcal{L}^{\beta}[0,\infty)$.

Let L_g be in $\mathbb{C}^{\beta}[0,\infty)$. Then by [2, Theorem 2.9], $L_gP[0,\infty)(L^2)\subseteq P[0,\infty)(L^2)$. But $\psi\in P[0,\infty)(L^2)$ (since $P_0[0,\infty)=I$ and $\psi(0)=I$, $\psi(n)=0$, $n\neq 0$) and $L_g\psi=g$; hence, $g\in P[0,\infty)(L^2)$.

For the converse note that, since $L^1(T)$ has an approximate identity consisting of trigonometric polynomials, say $\{k_n\}_{n=1}^{\infty}$, each $T \in \mathcal{L}$ is the σ -weak limit of (finite) linear combinations of $\{\varepsilon_k(T)\}_{k=-\infty}^{\infty}$ (namely $\int_{\pi} \hat{\alpha}_t(T) k_n(t) dt$). Hence, it suffices to prove, for g in $L^{\infty} \cap P[0,\infty)(L^2)$, that $\varepsilon_k(L_g)$ lies in $\mathcal{L}^{\beta}[0,\infty)$ for each $k \in \mathbb{Z}$.

As previously noted (Remark 2.1), $\varepsilon_k(L_g) = L_{g(k)}L_\delta^k$, hence, we now fix k and prove that

$$L_{g(k)}L_{\delta}^{k}P[s,\infty)(L^{2})\subseteq P[s,\infty)(L^{2})$$
 for all $s\in\mathbf{R}$.

This will imply that $\varepsilon_k(L_g) \in \mathcal{L}^{\beta}[0,\infty)$ (by Theorem 2.9 of [2]). Since $g \in P[0,\infty)(L^2)$, $E_k(g) \in P_k[0,\infty)(L^2)$, and if we let p_k be the projection in Z with $L_{p_k} = P_k[0,\infty)$, then $g(k) = p_k g(k)$ and $L_{g(k)} = P_k[0,\infty)L_{g(k)}$. Fix $s \in \mathbf{R}$ and h in $P[s,\infty)(L^2)$. Then for $n \in \mathbf{Z}$,

$$E_{n}(\varepsilon_{k}(L_{g})h) = E_{n}L_{g(k)}L_{\delta}^{k}h = L_{g(k)}E_{n}L_{\delta}^{k}h = L_{g(k)}L^{k}E_{n-k}h$$

$$\in L_{g(k)}L_{\delta}^{k}P_{n-k}[s,\infty)E_{n-k}(L^{2}) = L_{g(k)}\alpha^{k}(P_{n-k}[s,\infty))E_{n}(L^{2})$$

$$\subseteq P_{k}[0,\infty)\alpha^{k}(P_{n-k}[s,\infty))E_{n}(L^{2}).$$

But, from the definition of the functions $\{f_k\}$ in \mathfrak{Z}' , if $f_k(x) \ge 0$ and $\alpha^n(f_{n-k})(x) \ge s$, then $f_n(x) \ge s$. Hence, $\hat{c}_k \cap \alpha^n(\hat{c}_{n-k}^{(s)}) \subseteq \hat{c}_n^{(s)}$ and $P_k[0, \infty)\alpha^k(P_{n-k}[s, \infty)) \subseteq P_n[s, \infty)$. It follows that, for each $n \in \mathbb{Z}$,

$$E_n(\varepsilon_k(L_g)h) \in P_n[0,\infty)E_n(L^2) \subseteq P[s,\infty)(L^2).$$

Therefore, $\varepsilon_k(L_g)h \in P[s,\infty)(L^2)$ and this completes the proof that $L_g \in \mathbb{C}^{\beta}[0,\infty)$. We conclude that

$$\mathcal{L}^{\beta}[0,\infty) = \left\{ L_{g} \in \mathcal{L} : g \in P[0,\infty)(L^{2}) \right\}$$

$$= \left\{ L_{g} \in \mathcal{L} : E_{n}(g) \in c_{n}E_{n}(L^{2}) \text{ for each } n \in \mathbf{Z} \right\}$$

$$= \left\{ L_{g} \in \mathcal{L} : \epsilon_{n}(L_{g}) \in c_{n}\mathcal{L}(M)L_{\delta}^{n} \text{ for each } n \in \mathbf{Z} \right\}.$$

Now $\mathcal{L}(M) \subseteq \mathcal{L}^{\beta}[0, \infty)$ since $c_0 = I$. Condition (i) is satisfied because of Theorem 3.15 in [2]. Condition (iii) follows from the fact that $\mathcal{L}^{\beta}[0, \infty)$ is $\{L_g \in \mathcal{L}: g \in P[0, \infty)(L^2)\}$, because $[\mathcal{L}^{\beta}[0, \infty)]_2 \subseteq P[0, \infty)(L^2)$. \square

LEMMA 3.3. Let \mathfrak{B} be a subalgebra of \mathfrak{L} satisfying (i)-(iv) and let P be $P(\mathfrak{B})$. For $k \in \mathbb{Z}$ let g_1 be $\phi(P - PL_{\delta}^k PL_{\delta}^{-k})$ and g_2 be $\phi(L_{\delta}^k PL_{\delta}^{-k} - PL_{\delta}^k PL_{\delta}^{-k})$. Then:

(1)
$$g_1 - g_2 = f_k$$
, where $f = \phi(P - PL_{\delta}PL_{\delta}^*) - \phi(L_{\delta}PL_{\delta}^* - PL_{\delta}^*) \in \mathcal{Z}'$; (2) $g_1g_2 = 0$.

PROOF. First note that P commutes with $L_{\delta}^k P L_{\delta}^{-k}$ $(k \in \mathbb{Z})$ because $P = \sum_{n=-\infty}^{\infty} e_n E_n$, $L_{\delta}^k P L_{\delta}^{-k} = \sum_{n=-\infty}^{\infty} \alpha^k(e_n) E_{n+k}$ and $e_n \in \mathcal{C}(Z)$ (Lemma 3.1).

We can extend the definition of ϕ to all operators $T \in \mathcal{L}(M)'$ that can be written as $T = T_1 - T_2$, where $T_1, T_2 \in \mathcal{L}(M)'_+$ and $\phi(T_i), \phi(T_2) \in \mathcal{L}'$, simply by $\overline{\phi}(T) = \phi(T_1) - \phi(T_2)$. Since (iv) is satisfied,

$$f = \phi(P - PL_{\delta}PL_{\delta}^*) - \phi(L_{\delta}PL_{\delta}^* - PL_{\delta}PL_{\delta}^*) = \overline{\phi}(P - L_{\delta}PL_{\delta}^*).$$

Remark 2.2 can be seen to hold for $\overline{\phi}$ in place of ϕ , thus

$$\alpha^{n}(f) = \overline{\phi} \left(L_{\delta}^{n} P L_{\delta}^{-n} - L_{\delta}^{n+1} P L_{\delta}^{-n-1} \right),$$

and, for k > 0,

$$f_k = \sum_{k=0}^{n-1} \alpha^n(f) = \overline{\phi}(P - L_{\delta}^k P L_{\delta}^{-k}),$$

while for k < 0,

$$f_k = -\alpha^k (f_{-k}) = -\alpha^k (\phi (P - L_\delta^{-k} P L_\delta^k)) = \overline{\phi} (P - L_\delta^k P L_\delta^{-k}).$$

Thus

$$f_k = \overline{\phi}(P - L_{\delta}^k P L_{\delta}^{-k}) = \phi(P - P L_{\delta}^k P L_{\delta}^{-k}) - \phi(L_{\delta}^k P L_{\delta}^{-k} - P L_{\delta}^k P L_{\delta}^{-k}) = g_1 - g_2.$$

For (2), note that $P - L_{\delta}^k P L_{\delta}^{-k} = \sum d_n E_n$, where $d_n = e_n (1 - \alpha^k (e_{n-k})) \le e_k$ (see Lemma 3.1). Hence,

$$g_1 = \phi(\Sigma d_n E_n) = \Sigma \phi(d_n E_n) = \Sigma d_n$$
 and $g_1 e_k = g_1$.

On the other hand, $L_{\delta}^{k}PL_{\delta}^{-k} - PL_{\delta}^{k}PL_{\delta}^{-k} = \sum c_{n}E_{n}$, where

$$c_n = \alpha^k(e_{n-k})(1-e_n) = \alpha^k(e_{n-k}(1-\alpha^{-k}(e_n))) \le \alpha^k(e_{-k}) \le 1-e_k;$$

thus $g_2 = g_2(1 - e_k)$ and $g_1g_2 = 0$. \Box

THEOREM 3.4. Let \mathfrak{B} be a σ -weakly closed subalgebra of \mathfrak{L} satisfying (i)–(iv). Then $\mathfrak{B} = \mathfrak{L}^{\beta}[0,\infty)$ for some flow β on \mathfrak{L} . In fact β is the group introduced in the discussion preceding Lemma 3.2 for

$$f = \phi(P - PL_{\delta}PL_{\delta}^*) - \phi(L_{\delta}PL_{\delta}^* - PL_{\delta}PL_{\delta}^*) \in \mathcal{Z}'$$

(where $P = P(\mathfrak{B})$).

PROOF. Keeping the notation of Lemmas 3.7 and 3.2, it suffices to show that $c_k = e_k$ for each $k \in \mathbb{Z}$.

 $e_k \le c_k$. Let e be the projection $e_k - e_k c_k \in \mathcal{L}(Z)$. Since $e \le 1 - c_k$, $f_k < 0$ a.e. on \hat{e} (the subset of X that corresponds to e). Using the notation of Lemma 3.3, $f_k = -g_2$ on \hat{e} (since $g_1g_2 = 0$, $f_k = g_1 - g_2$). If $e \ne 0$, we have $g_2e \ne 0$, but we saw, in the proof of Lemma 3.3, that $g_2 = g_2(1 - e_k)$, and from the definition of e, $e \le e_k$. This is a contradiction and it proves that $e_k \le c_k$ for all $k \in \mathbb{Z}$.

 $c_k \le e_k$. Let c be the projection $c_k(1-e_k)$. Since $c_k \le c_k$, $f_k \ge 0$ a.e. on \hat{c} and $g_2c=0$ (in the notations of Lemma 3.3). But $g_2=g_2(1-e_k)$ and $e \le 1-e_k$; hence c=0 and $c_k \le e_k$. \square

COROLLARY 3.5. Let \mathfrak{B} be a σ -weakly closed proper subalgebra of \mathfrak{L} satisfying (i)-(iii). If in addition, \mathfrak{B} contains $L_{\delta}^{n}\mathfrak{L}_{+}$ for some $n \in \mathbb{Z}$, it satisfies (iv) and, consequently, has the form $\mathfrak{L}^{\beta}[0,\infty)$ for some flow β on \mathfrak{L} .

PROOF. Let P be $P(\mathfrak{B})$.

To prove (iv), let $\{e_k\}_{k=-\infty}^{\infty}$ be the sequence of projections introduced in Lemma 3.1. If $\phi(L_{\delta}PL_{\delta}^*-L_{\delta}PL_{\delta}^*P)$ is not finite, then it is infinite everywhere on a subset \hat{e} of X with a corresponding projection $e \in \mathcal{L}(Z)$. Since $\phi(L_{\delta}PL_{\delta}^*-L_{\delta}PL_{\delta}^*P) = \sum \alpha(e_{k-1})(1-e_k)$, we have

$$\sum \alpha(e_{k-1})(1-e_k)e = \infty \cdot e$$

and

$$\sum e_{k-1}(1-\alpha^{-1}(e_k))\alpha^{-1}(e) = \infty \cdot \alpha^{-1}(e).$$

We first show that, for each $k \in \mathbb{Z}$, $\alpha^{-1}(e) \le e_k$. Suppose $\alpha^{-1}(e) \le e_{k_0}$ for some $k_0 \in \mathbb{Z}$. Then $c = \alpha^{-1}(e)(1 - e_{k_0}) \ne 0$. Since $L_{\delta}^n \mathcal{L}_+ \subseteq \mathcal{B}$, $e_m = 1$ for each $m \ge n$, and also

$$e_{k_0-m} = e_{k_0-m} \alpha^{k_0-m} (e_m) \le e_{k_0}, \quad m \ge n.$$

Hence, $c \le 1 - e_{k_0} \le 1 - e_{k_0 - m}$, $m \ge n$. Thus

$$\infty \cdot c = \sum_{k=-\infty}^{\infty} e_{k-1} (1 - \alpha^{-1}(e_k)) c = \sum_{k=k_0-n+1}^{\infty} e_{k-1} (1 - \alpha^{-1}(e_k)) c.$$

But, since $1 - \alpha^{-1}(e_k) = 0$ for $k \ge n$,

$$\infty \cdot c = \sum_{k=k_0-n+1}^{n-1} e_{k-1} (1 - \alpha^{-1}(e_k)) c < \infty.$$

This contradiction shows that $\alpha^{-1}(e) \le e_k$ for each $k \in \mathbb{Z}$. Since $\mathfrak{B} \ne \mathfrak{L}$, there is some $m \in \mathbb{Z}$ with $1 - e_m \ne 0$. By ergodicity, $\alpha^{-1}(e)\alpha^{-k}(1 - e_m) \ne 0$ for some k > n. Thus $\alpha^{-k}(1 - e_m)e_{m-k} \ne 0$ (since $\alpha^{-1}(e) \le e_{m-k}$), and

$$0 \neq (1 - e_m)\alpha^k(e_{m-k}) = (1 - e_m)e_k\alpha^k(e_{m-k}) \leq (1 - e_m)e_m = 0.$$

Therefore, $\phi(L_{\delta}PL_{\delta}^* - PL_{\delta}PL_{\delta}^*)$ is finite a.e. on X.

We now prove that $\phi(P - L_{\delta}PL_{\delta}^*)$ is finite a.e. on X. Assume the converse; i.e. $\phi(P - L_{\delta}PL_{\delta}^*)e = \infty \cdot e$ for some projection $e \in \mathcal{L}(Z)$. As shown in the proof for $\phi(L_{\delta}PL_{\delta}^* - PL_{\delta}^*)$, it will suffice to show that $e \leq e_k$ for each $k \in \mathbb{Z}$. We assume $e(1 - e_{k_0}) \neq 0$ for some $k_0 \in \mathbb{Z}$ and

$$\infty \cdot e = \phi(P - L_{\delta}PL_{\delta}^*)e = \sum_{k=-\infty}^{\infty} e_k(1 - \alpha(e_{k-1}))e.$$

Hence,

$$\infty \cdot e(1 - e_{k_0}) = \sum_{k = -\infty}^{\infty} e_k (1 - \alpha(e_{k-1})) e(1 - e_{k_0})$$
$$= \sum_{k = -n}^{n} e_k (1 - \alpha(e_{k-1})) e(1 - e_{k_0}) < \infty.$$

The contradiction proves that $e \le e_k$ for each $k \in \mathbb{Z}$ and completes the proof. \square

4. $\mathcal{L}(Z)$ is atomic. Suppose α acts ergodically on $\mathcal{L}(Z)$ and $\mathcal{L}(Z)$ is atomic. We also assume, in this case, that α^k is outer for each $k \in \mathbb{Z}$. Since M is finite there is a family $\{p_n\}_{n=1}^n$ of mutually orthogonal minimal projections in $\mathcal{L}(Z)$ with $\sum_{n=1}^n p_n = I$; $\alpha(p_n) = p_{n+1}$, n < N; and $\alpha(p_N) = p_1$.

Let $\mathfrak B$ be a σ -weakly closed subalgebra of $\mathfrak L$ containing $\mathfrak L(M)$. Then $P(\mathfrak B)$ lies in $\{\mathfrak L(M),\mathfrak R(M)\}'$. But $\{\mathfrak L(M),\mathfrak R(M)\}'=\{\mathfrak L(Z),\{E_n\}_{n=-\infty}^\infty\}''$ (by Proposition 4.2 of [6]), hence there is a sequence $\{e_k\}_{k=-\infty}^\infty$ of projections in $\mathfrak L(Z)$ such that $P(\mathfrak B)=\Sigma e_k E_k$.

Under these assumptions the results of the preceding section hold here. In this case, however, we can say more about the algebras in question.

LEMMA 4.1. Let f be in \mathfrak{Z}' with $\int_X f d\nu > 0$. Then the algebra $\mathfrak{B} = \mathfrak{L}^{\beta}[0, \infty)$ of Lemma 3.2 contains $L_{\delta}^{n_0}\mathfrak{L}_+$ for some integer $n_0 \ge 0$. Consequently, \mathfrak{B} satisfies conditions (i)–(iv).

PROOF. Let $c_n \in \mathcal{C}(Z)$ be the projections introduced in Lemma 3.2. We can write $f = \sum_{n=1}^N \lambda_n p_n$ where $\lambda_n \in \mathbf{R}$ and $\sum_{n=1}^N \lambda_n > 0$; hence $\alpha^k(f) = \sum_{n=1}^N \lambda_n \alpha^k(p_n)$ for each $k \in \mathbf{Z}$, and $\sum_{k=0}^{N-1} \alpha^k(f) = (\sum_{n=1}^N \lambda_n)I > 0$. Let r be $\sum_{n=1}^N \lambda_n$. Then, using the notation introduced in the discussion preceding Lemma 3.2, $f_N = rI > 0$; thus $c_N = 1$. Let λ_0 be $\min\{\lambda_n \colon 1 \le n \le N\}$. Then for some $m_0 \in \mathbf{Z}_+$, $N\lambda_0 + rm_0 > 0$. Let n_0 be m_0N . Then for $n \ge n_0$, $n = m_1N + m_2$ for some $m_1 \ge m_0$ and $0 \le m_2 < N$; we get

$$f_{n} = f_{m_{1}N} + \alpha^{m_{1}N}(f_{m_{2}}) = m_{1}r + \alpha^{m_{1}N}(f_{m_{2}})$$

$$\geq m_{0}r + \alpha^{m_{1}N}(f_{m_{2}}) \geq m_{0}r + N\lambda_{0} > 0.$$

Hence, for $n \ge n_0$, $c_n = I$. This implies $L_{\delta}^{n_0} \mathcal{L}_+ \subseteq \mathfrak{B}$. Since $f_{n_0} > 0$, $f_{-n_0} < 0$, and it follows that $c_{-n_0} = 0$, hence $\mathfrak{B} \ne \mathfrak{L}$. Thus we can use Corollary 3.5 to complete the proof. \square

THEOREM 4.2. Let f lie in \mathfrak{Z}' and let \mathfrak{B} be a σ -weakly closed subalgebra of \mathfrak{L} containing $\mathfrak{L}^{\beta}[0,\infty)$ (where β arises from f as in Lemma 3.2). Then $\mathfrak{B}=\mathfrak{L}^{\gamma}[0,\infty)$ for some flow γ on \mathfrak{L} . Moreover, if $\int_{X} f d\nu = 0$, then \mathfrak{B} is a nest subalgebra.

PROOF. Since $\mathfrak{B}_0 = \mathfrak{L}^{\beta}[0, \infty)$ contains $\mathfrak{L}(M)$, and $\mathfrak{B}_0 + \mathfrak{B}_0^*$ is σ -weakly dense in \mathfrak{L} , \mathfrak{B} satisfies (i) and (ii).

We now distinguish between two cases.

Case 1. $\int_X f d\nu \neq 0$. We can assume $\int_X f d\nu > 0$ (the other possibility can be handled similarly) and apply Lemma 4.1 to find that, for some $n_0 \in \mathbb{Z}$, $L_\delta^{n_0} \mathcal{E}_+ \subseteq \mathfrak{B}_0 \subseteq \mathfrak{B}$. From this, using Corollary 3.5, it follows that $\tilde{f} = \phi(P - L_\delta P L_\delta^* P) - \phi(L_\delta P L_\delta^* - P L_\delta P L_\delta^*)$ lies in \mathfrak{Z}' where $P = P(\mathfrak{B}_0)$. By Lemma 3.2, \tilde{f} gives rise to a flow $\tilde{\beta}$ and an algebra $\tilde{\mathfrak{B}} = \mathcal{E}^{\tilde{\beta}}[0, \infty) = \{T \in \mathcal{E}: \varepsilon_k(T) \in \tilde{c}_k \mathcal{E}(M) L_\delta^k \text{ for each } k \in \mathbb{Z}\}$, where $\hat{c}_k = \{x \in X: \tilde{f}_k(x) \geq 0\}$. Let \hat{c}_k be $\{x \in X: f_k(x) \geq 0\}$ and $c_k \in \mathcal{E}(Z)$ the corresponding projections in $\mathcal{E}(Z)$ for $k \in \mathbb{Z}$. We now show that $\tilde{c}_k \leq c_k$ and this implies $\tilde{\mathfrak{B}} \subseteq \mathfrak{B}_0$, since $\mathfrak{B}_0 = \{T \in \mathcal{E}: \varepsilon_k(T) \in c_k \mathcal{E}(M) L_\delta^k \text{ for each } k \in \mathbb{Z}\}$. In fact, let c be the projection $\tilde{c}_k(1 - c_k)$ and assume $c \neq 0$. Since $c \leq \tilde{c}_k$, $\tilde{f}_k \geq 0$ a.e. on c. Lemma 3.3, applied to the algebra \mathfrak{B}_0 , shows that for almost every $x \in X$, if

 $\tilde{f}_k(x) \ge 0$ then $\phi(L_{\delta}PL_{\delta}^* - PL_{\delta}PL_{\delta}^*)(x) = 0$; hence,

$$\phi(L_{\delta}PL_{\delta}^* - PL_{\delta}PL_{\delta}^*)c = 0.$$

From the proof of Lemma 3.3, applied to \mathfrak{B}_0 , we see that

$$\phi(L_{\delta}PL_{\delta}^* - PL_{\delta}PL_{\delta}^*)(1 - c_k) = \phi(L_{\delta}PL_{\delta}^* - PL_{\delta}PL_{\delta}^*),$$

but since $0 \neq c \leq 1 - c_k$, this contradicts (*). This proves $\tilde{c}_k \leq c_k$ and, hence, $\tilde{\mathfrak{B}} \subseteq \mathfrak{B}_0 \subseteq \mathfrak{B}$. But $\tilde{\mathfrak{B}}$ is a maximal subdiagonal algebra in \mathfrak{L} . Indeed,

$$\tilde{f} = \phi(P - L_{\delta}PL_{\delta}^*P) - \phi(L_{\delta}PL_{\delta}^* - PL_{\delta}PL_{\delta}^*)$$

$$= \sum_{k=-\infty}^{\infty} e_k(1 - \alpha(e_{k-1})) - \sum_{k=-\infty}^{\infty} \alpha(e_{k-1})(1 - e_k)$$

and

$$\tilde{f} = \sum_{i=1}^{N} m_i p_i$$

where

$$m_i = \# \{ k \in \mathbf{Z} : e_k (1 - \alpha(e_{k-1})) p_i \neq 0 \}$$
$$- \# \{ k \in \mathbf{Z} : \alpha(e_{k-1}) (1 - e_k) p_i \neq 0 \} \in \mathbf{Z}.$$

Hence, $\tilde{\beta}_t = \tilde{\beta}_{t+2\pi k}$ for each $k \in \mathbb{Z}$, and the map $\tilde{\epsilon} = \int_0^{2\pi} \tilde{\beta}_t dt$ (where the integral converges in the σ -weak operator topology) defines a normal faithful expectation form \mathcal{L} onto $\mathcal{L}^{\tilde{\beta}}(\{0\}) = \tilde{\mathcal{B}} \cap \tilde{\mathcal{B}}^*$ satisfying $\tilde{\epsilon} \cdot \tilde{\beta}_t = \tilde{\epsilon}$ and making $\tilde{\mathcal{B}}$ a maximal subdiagonal algebra. (See [2, Theorem 3.15].) Now we can use [7, Theorem 1] to conclude that \mathcal{B} satisfies (iii) (with the notation of that theorem \mathcal{L} is L^{∞} , $\tilde{\mathcal{B}}$ is H^{∞} , and \mathcal{B} is a σ -weakly closed subspace of L^{∞} satisfying $H^{\infty}\mathcal{B} \subseteq \mathcal{B}$). Thus we can apply Corollary 3.5 to \mathcal{B} to complete the proof in this case.

Case 2. $\int_X f d\nu = 0$. We have $f = \sum_{n=1}^N \lambda_n p_n$, where $\lambda_n \in \mathbb{R}$ and $\sum_{n=1}^N \lambda_n = 0$. Let d_n be $\sum_{k=1}^n \lambda_k$ for $1 \le n \le N$; then $d_n - d_{n-1} = \lambda_n$ for n > 1 and $d_1 - d_N = \lambda_1$. Let d_n in $\mathcal{L}(Z)$, be $\sum_{n=1}^N d_n p_n$. Then $d - \alpha(d) = \sum d_n p_n - \sum d_n \alpha(p_n) = \sum \lambda_n p_n = f$ and, similarly, $d - \alpha^k(d) = f_k$ for each $k \in \mathbb{Z}$. Consequently,

$$\beta_t(L_x L_{\delta}^k) = (\exp itf_k) L_x L_{\delta}^k = \exp it(d - \alpha^k(d)) L_x L_{\delta}^k, \quad x \in M, k \in \mathbb{Z}.$$

But

$$\exp(-it\alpha^k(d))L_\delta^k = L_\delta^k(\exp(-itd));$$

hence,

$$\beta_t(L_x L_\delta^k) = \exp(itd) L_x L_\delta^k \exp(-itd);$$

i.e. β , is inner for each $t \in \mathbf{R}$.

By [2, Theorem 4.2.3], \mathfrak{B}_0 is a nest subalgebra of \mathfrak{L} . We shall show that \mathfrak{B} is also.

As was seen in Lemma 3.2, \mathfrak{B}_0 is determined by the projections $\{c_k\}$ that correspond to the sets $\hat{c}_k = \{x \in X: f_k(x) \ge 0\}$. Here,

$$f_k = \sum_{n=1}^{N} d_n p_n - \sum_{n=1}^{N} d_n \alpha^k (p_n).$$

Hence $c_k = \sum_{n \in F_k} p_n$, where $F_k = \{n: d_n \ge d_m \text{ where } \alpha^k(p_m) = p_n\}$. Now, let b_n be the number of k's such that $d_k \le d_n$; then $F_k = \{n: b_n \ge b_n \text{ where } \alpha^k(p_m) = p_n\}$; hence, we can replace d by $b = \sum b_n p_n$ and still get the same algebra \mathfrak{B}_0 . We denote by $\tilde{\beta}$ the new flow and we have $\tilde{\beta}_{t+2\pi n} = \tilde{\beta}_t$ for each $n \in \mathbb{Z}$ and $0 \le t \le 1$ (since b_n are integers). Thus the map $\tilde{\epsilon}$ defined by $\tilde{\epsilon} = \int_0^{2\pi} \tilde{\beta}_t dt$ (where the integral converges in the σ -weak operator topology) is a faithful normal expectation onto $\mathfrak{L}^{\beta}(\{0\})$ satisfying $\tilde{\epsilon} \cdot \tilde{\beta}_t = \tilde{\epsilon}$ for all $t \in \mathbb{R}$. It makes \mathfrak{B}_0 a maximal subdiagonal algebra in \mathfrak{L} (see [2, Theorem 3.15]). Since $\mathfrak{L} \supseteq \mathfrak{B} \supseteq \mathfrak{B}_0$, and \mathfrak{B}_0 is a maximal subdiagonal algebra in \mathfrak{L} , we can use [7, Theorem 1] to conclude that \mathfrak{B} satisfies (iii). Thus, there is a sequence $\{e_k\}_{k=-\infty}^{\infty}$ of projections in $\mathfrak{L}(Z)$ such that $P(\mathfrak{B}) = \Sigma e_k E_k$ (see Lemma 3.1).

Recall that \mathfrak{B}_0 is determined by $\{c_k\}$ where $\hat{c}_k = \{x \in X: f_k(x) \ge 0\}$. Since $f_N \equiv 0$, $c_{kN} = 1$ for each k in \mathbb{Z} . Since $\mathfrak{B} \supseteq \mathfrak{B}_0$, $e_{kN} = 1$ for each $k \in \mathbb{Z}$. Also, for $m, k \in \mathbb{Z}$.

$$e_{m+kN} = e_{-kN} \alpha^{-kN} (e_{m+kN}) \le e_m = e_{kN} \alpha^{kN} (e_m) \le e_{m+kN};$$

hence, $e_m = e_{m+kN}$.

For each $1 \le m \le N$, let q_m be the projection $\sum_{k=0}^{N-1} \alpha^k (p_m) e_k$. We shall show that (*) $\mathfrak{B} = \mathfrak{L} \cap \operatorname{alg} \{q_m : 1 \le m \le N\};$

hence, \mathfrak{B} is a nest subalgebra. Denote the right-hand side of (*) by $\tilde{\mathfrak{B}}$.

 $\tilde{\mathfrak{B}}\subseteq \mathfrak{B}$. Take T in $\tilde{\mathfrak{B}}$, then, for each $k\in \mathbb{Z}$, $1\leq m\leq N$, T maps $\alpha^k(p_m)e_kE_k(L^2)$ into $q_mE_k(L^2)$. Since $T\in \mathcal{E}$, and $\sum_{n=-\infty}^{\infty}\alpha^n(p_m)E_n$ is the projection R_{p_m} in \mathfrak{R} (= \mathcal{E}'), T maps $\alpha^k(p_m)e_kE_k(L^2)$ into $\sum_{n=-\infty}^{\infty}\alpha^n(p_m)E_n(L^2)$. But

$$q_{m} \sum_{n=-\infty}^{\infty} \alpha^{n}(p_{m}) E_{n} = \sum_{j=0}^{N-1} e_{j} \alpha^{j}(p_{m}) \sum_{n=-\infty}^{\infty} \alpha^{n}(p_{m}) E_{n}$$

$$= \sum_{n=-\infty}^{\infty} \alpha^{n}(p_{m}) e_{n} E_{n} \leq \sum_{n=-\infty}^{\infty} e_{n} E_{n} = P(\mathfrak{B}).$$

Since

$$\sum_{k=-\infty}^{\infty} \sum_{m=1}^{N} \alpha^{k}(p_{m}) e_{k} E_{k} = \sum_{n=-\infty}^{\infty} e_{n} E_{n} = P(\mathfrak{B}),$$

T maps $P(\mathfrak{B})(L^2) = [\mathfrak{B}]_2$ into itself. In particular, $T\psi \in [\mathfrak{B}]_2$ and, using condition (iii), T lies in \mathfrak{B} .

 $\mathfrak{B}\subseteq \tilde{\mathfrak{B}}$. Fix $T\in \mathfrak{B}$ and $0\leq k\leq N-1$. Since T maps $e_kE_k(L^2)$ into $\sum_{j=-\infty}^{\infty}e_jE_j(L^2)$, it maps $\alpha^k(p_m)e_kE_k(L^2)$ into $\sum_{j=-\infty}^{\infty}e_jE_j(L^2)$ for each $1\leq m\leq N$. It also maps it into $\sum_{n=-\infty}^{\infty}\alpha^n(p_m)E_n(L^2)=R_{p_m}(L^2)$ since $T\in \mathfrak{L}$. But

$$(\sum e_i E_i)(\sum \alpha^n (p_m) E_n) = \sum e_n \alpha^n (p_m) E_n \leq q_m;$$

hence, T maps $\alpha^k(p_m)e_kE_k(L^2)$ into $q_m(L^2)$.

For $n \in \mathbb{Z}$, $\alpha^k(p_m)e_k E_n = R_{\delta}^{n-k}\alpha^k(p_m)e_k E_k$ and

$$TR_{\delta}^{n-k}\alpha^{k}(p_{m})e_{k}E_{k}(L^{2}) = R_{\delta}^{n-k}T\alpha^{k}(p_{m})e_{k}E_{k}(L^{2}) \subseteq R_{\delta}^{n-k}q_{m}(L^{2}) \subseteq q_{m}(L^{2}).$$

Hence, T maps $\alpha^k(p_m)e_k E_n(L^2)$ into $q_m(L^2)$ for each $m, n \in \mathbb{Z}$, $1 \le m \le N$. Since

$$\sum_{m=-\infty}^{\infty} \alpha^k(p_m) e_k E_n = \alpha^k(p_m) e_k \quad \text{and} \quad q_m = \sum_{k=0}^{N-1} \alpha^k(p_m) e_k,$$

T maps $q_n(L^2)$ into $q_n(L^2)$. Hence $T \in \mathfrak{B}$.

Hence, $\mathfrak{B} = \tilde{\mathfrak{B}}$, and \mathfrak{B} is a nest subalgebra. The fact that \mathfrak{B} is $\mathfrak{L}^{\gamma}[0, \infty)$ for some flow γ on \mathfrak{L} follows from [2, Theorem 4.23].

BIBLIOGRAPHY

- 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
- 2. R. I. Loebl and P. S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978), 214-252.
 - 3. G. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327-335.
- 4. M. McAsey, P. S. Muhly and K.-S. Saito, Nonselfadjoint crossed products (invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1978), 381-409.
 - 5. _____, Nonselfadjoint crossed products. II, J. Math. Soc. Japan. 33 (1981), 485–495.
 - 6. K.-S. Saito, Automorphisms and nonselfadjoint crossed products, preprint.
- 7. _____, Invariant subspaces for finite maximal subdiagonal algebras, Pacific. J. Math. 93 (1981), 431-434.
- 8. I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401-457.
- 9. B. Solel, *The invariant subspace structure of nonselfadjoint crossed product*, Trans. Amer. Math. Soc. (to appear).
- 10. M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310.

SCHOOL OF MATHEMATICAL SCIENCES, TEL-AVIV UNIVERSITY, TEL-AVIV, ISRAEL

Current address: Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada