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HOMOMORPHISMS OF COCOMPACT FUCHSIAN GROUPS

ON PSL2(Z„»[x]/(/(*)))
BY

JEFFREY COHEN

Abstract. We obtain conditions under which PSL2(Z.»[*]/(/(■*))) is a factor of

( /, m, n ). Using this, certain results about factors of cocompact Fuchsian groups are

obtained. For example, it is shown that:

(i) T has infinitely many simple nonabelian factors.

(ii) T has factors with nontrivial center.

(iii) For each n, there exists m such that T has at least n factors of order m.

Further, all factored normal subgroups can be taken torsion-free. Also, new

Hurwitz groups and noncongruence subgroups of the modular group are obtained.

1. Introduction. Any cocompact Fuchsian group T may be represented as a

(discrete) subgroup of PSL2(P) where R is an algebraic number ring. The group T,

therefore, has finite factors which are subgroups of PSL2(P), where R is a finite

quotient ring of R. For R = GF(q) this situation has been investigated in [7] with T

restricted to the class of triangle groups. We shall rework [7] for more general R and

obtain generalizations of Theorems 6, 7, and 8 of that paper. Explicitly, new

noncongruence subgroups of the modular group and new Hurwitz groups will be

constructed.

From our results on factors of triangle groups it is not particularly difficult to

obtain results on factors of arbitrary cocompact Fuchsian groups T. For example,

the proof of a folk theorem emerges. This is a demonstration that T always has

simple nonabelian factors, a fact which seems not to be found in the existing

literature and which will enable us to generalize the Bundgaard-Nielsen-Fox theorem

and a result of Leech as was promised in [1]. While investigating Hurwitz groups,

Leech [5] found a miscalculation in [9], an early and otherwise excellent paper

pertaining to Hurwitz groups. This led Leech to ask whether a Hurwitz group could

have a non trivial center—a question he answered affirmatively in [6] and which

could also be resolved by the methods of [1], as noted there. Here, however, it shall

be further established that any cocompact T has a torsion-free normal subgroup N

such that T/N has nontrivial center. Finally, we shall generalize a result of [1] by

proving (see Theorem 8) that no bound exists for the number of factors of T having

fixed order.
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2. Ring theoretic preliminaries. Let q = pm for p a prime number. Then GF(q) (the

field of q elements) is the homomorphic image of Z[cx] where a satisfies a poly-

nomial f(x) E Z[x] of degree m which is irreducible modulo/?. We define Zpn[a] to

be the ring homomorphic image of Z[a] modulo/?", or more explicitly,

with multiplication subject to/(a) = 0.

Proposition 1. | Zpn[a] \= (p")n = q".

As usual, if R is a ring denote its group of in vertible elements by R*.

Proposition 2. | Z*n[a] |= q"~x(q - 1). In fact {pa: a E Z^-ifa]} is the set of

noninvertibles of Zp»[a],

IT

Proof. Let Zpn[a] — Zp[a] be the natural epimorphism. We need only show that

a E Z*n[a] if and only if ir(o) ¥= 0. If tt(o) ^ 0, then as Zp[a] is a field one can

choose t so 7t(t) = (w(a))"1. Thus it(ot) = ir(o) ■ it(t) = 1 so that <jt = 1 + pV

for some V E Zpn-,[a]. Letting a'- r2^(-pVy it follows that oo' - 1 +

(-\)"~x(pV)" — 1 so that o is invertible; since invertibles map to invertibles, the

converse is clear.

3. Matrix groups over Z «[«]• As usual, let SL2(P) denote the group of all 2 X 2

matrices of unit determinant. Bucking tradition, define PSL2(P) = SL2(P)/{±7};

the reason for this definition is that for R — Z2»\ol\, PSL2(P) usually has nontrivial

center.

6
Proposition 3. Let SL2(Z ¡[a]) ->SL2(Z [a]) be the canonical homomorphism.

Then the SL2( Z i[a\)-conjugacy classes o/ker 8 satisfy the following:

(i) If p ¥= 2, each nonidentity class contains a unique representative of the form

I + p(\°l) with a E Z [a], unless o — 0 in which case there is another class whose

representative is obtained by conjugation of I + p(®\\) by a matrix with nonsquare

determinant. In each nonidentity class the number of elements is given by

(a) q(q — 1) if a is not a square and there are precisely {(q — 1) classes,

(b) q(q + 1) if o ¥= 0 is a square with \(q — 1) such classes,

(c) {(q + l)(q - 1) if a = 0 with 2 classes.

(ii) Ifp = 2, there are (2m + 1)(2'" - 1) conjugates of I + 2(°g) with 2m classes of

this type. Further there exist 2m central elements (' o2ti+2t) w'tn T ^ ^2[a]-

Proof. The kernel of 8 consist of those matrices I + pA where the trace of A is

congruent to 0 modulo p. Thus | ker 8 \ — q3 and | SL2(Zpi[a\) \ — q4(q + l)(q — 1)

so that to establish the proposition it suffices to compute the orders of the

centralizers of all elements in question. A simple computation yields that the

centralizer in SL2(Zpia) of 7 + /?(°o) is

{( c     Z+ph) '■ "' C G Z?l[a]' k'kG Z"[a]' °2 ~ ac2+P(ah - c/c) = 4-
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Therefore if o is not a square, choosing a and c so that not both are noninvertible

while choosing h and k arbitrary makes the quadratic polynomial take an invertible

value. Since this polynomial takes all nonzero values modulo p, it is clear it takes all

values in Zp2[a]. By Proposition 2, the centralizer has order

{q*-q2)(q){q)/q(q-\) = q\q+\)-

If a ¥= 0 is a square not both of a and c are noninvertible. Now under this

restriction, however, the quadratic can equal 0 modulo p if a E {±cVa + ip:

c E Z*i[a],  tE Zp[a]}.  This  set has  cardinality (p,2)'x2(q2 - q)q.  Thus  the

centralizer order is given by

[(q* - q2) - 2(q2 - q)q](q)(q) _-—--aj(a-l)    iip ^2,
\q -q)

[(q4-q2)-(q2-q)q](q)(q)      ^4      ;4, ^

(q2-q)

If a = 0 and p = 2, the above argument goes through. If a = 0 and p =£ 2 we have

that a = ± 1 + pt with í E Zp[a], c E Zp2[a] and k E Zp[a] may be chosen arbi-

trary forcing h. Thus the centralizer has order 2q(q2)(q) = 2a4. Since the determi-

nant of any matrix centralizing (°q) has square determinant, one obtains another

class in the prescribed manner. To see that all conjugacy classes have been accounted

for, note that

il SH
and that

1 +{(q- \)q(q- 1) + ±(q - \) q(q + I) + 2\(q + \)(q - 1) = q\

2m(2m + l)(2m - 1) + 2m = 23m.

Both answers are the same number as | ker 8 | .

Corollary 1. Suppose p ¥= 2 and tr(A) = tr(P) = 0 (mod p). Then I + pA is

SL2(Zpz[a])-conjugate to I + pB if and only if det A = det B (mod p), provided

det A z 0. If det yl = 0 then there is one other nonidentity conjugacy class.

Suppose p = 2 and that A and B are not multiples of I with tr(A) = tr(P) = 0

(mod 2). Then I + pA and I + pB are conjugate if and only if det A = det P

(mod 2).

Proposition 4. Leí n > 3,

\ + pa     \ + pc

pb        1 +pd

Then over Z i[a],

A" =
1 + p[na + (¡)b]     n + p[(¡)a + ("3)b + nc + ("2)d]

npb 1 +p[(ï)b + nd]
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In particular if p > 5,

1     P

Proof. (Induction on n.)

Ap =
.0     1

Corollary 2. For p > 5, SL2(Zpi[a]) contains no subgroup isomorphic to

SL2(Zp[a]).

Proof. Since PSL2(Z [a]) is simple, the only nontrivial normal subgroup of

SL2(Zp[a)) is <±1>. Thus any subgroup G of SL^Z^a]) with G - SL2(Zp[a])

must meet Kerf? trivially. Hence 8/G is an isomorphism so that G contains an

element of the form A. Thus 7 =¿ Ap E G n Ker 8.

For n> n' let 0„": SL2( Z^fa]) — SL2(Z/)„ [a]) denote the canonical homomor-

phism. Then the following are clear:

0„" = identity,       8f = 8;

OfW = K"   whenever n>n'>n".

Lemma 1. Ker 0,"_, is an elementary abelian p-group of order q3.

Proof. Since Ker0„"_, = (7 + p"~xA: tr A = 0 (mod /?)}, it follows that

| Ker 8"_x |= q3. To see that Ker 6"_x is elementary abelian, note that since 2n — 2

>n,

(1 +p"-xA)(l +pn~xB) =pn~\A + B) +p2"-2AB + I

= 1 +p"~\A + B)    (mod/?").

Thus (7 + p"~XA)P = I + p"~x(pA) = 7 so that Ker 0„"_, has exponent/?.

A simple induction now yields

Proposition 5.

|SL2(Z,.[a])|= q3"-2(q + l)(a - 1),

,      .  n      ia(a+l)(a-l),
|PSL2(Z„4a]J|     |±93--2^+ i)(^_ i)     0,W«e.

Theorem 1. 5w/?/?oie G < SL2(Z^ta]) and 8(G) = Sl^Z^l«]). If p = 3, /Hrt/W

asii/me /ai G D Ker 0 ^ (1). 77ie« G = SL2(Zpi[a]) when p ¥= 2.

Proof. Let 77 = G n Ker0. Then by Lemma 1, Ker0 is abelian so that 77 <

(Ker0, G) = SL2(Zp2[a]), because 0/G is surjective. By Corollary 2 if p 3= 5, then

77 =£ (1) and, by hypothesis, if p = 3, 77 ¥= (1). Thus 77 is a union of conjugacy

classes so that by Proposition 3 there exist nonnegative integers a, b, c, i with

(*)   /?' =\H\= 1 + aq(q - 1) + ¿?a(<7 + 0 + M<7 + 1)(? - 1),

1</'<3w,   0<c<2,   0<a, 6<i(fl- 1).
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Thus p divides 1 + \c(q + l)(q — 1) = {[cq2 + (2 — c)]. As (p,2) = 1, we have

p | (2 — c) so that by (*) c = 2. Therefore by Proposition 3 and normality of 77, 77

contains all GL2(Z;72[a])-conjugates of 5 = p(?o). Hence for all o E Z*[a], by

Corollary 1,

r=i+p(l ;)«.
By multiplicative closure ST E 77 and

By Proposition 3, 77 contains elements from each SL2(Z/,2[a])-conjugacy class of

Ker 0. This, together with the normality of 77, yields that 77 = Ker 0, proving the

result.

Theorem 2. Suppose G < SL2(Zpn[a]) and8"/G is surjective.

(a)Ifp^5,thenG = SL2(Zp„[a]).

(b)Ifp = 3 and82n(G) D Ker0,2 ¥= (1), then G = SL2(Zr[a}).

(c) Ifp = 2, 83"/G is surjective, and 04"(G) D Ker034 ¥= (1) i/ie« G = SL2(Zr[a]).

Proof. If n = 2 this is just Theorem 1. Suppose « > 2 is minimal for a counterex-

ample. Since by hypothesis

SL2(Z;,[a]) = 0,"(G) = 01"-1e„"-,(G),

it follows by induction that

0;_,(G) = SL2(Z,.-.[a])

and therefore

SL2(Z^[«]) = Gn(Ker0;_,).

Let p be a Sylow /?-subgroup of G and 77 = P • (Ker 0n" , ) so that H is a Sylow

/?-subgroup of SL2(Zp„[o\). Let T E Ker0„"„,; then

.        (l+p"-xa    p"~xc        \T= 1 + p"-xA =

\p"~xb \-p"-xaj

Define

_il + p"-2A iin>4,

~ {(l + {p2(a2 + bc))(\ +pA)     if« = 3.

Then if n > 4,

det5= 1 - p2"-\a2 + be) = 1.

lin = 3,

det S = [l + |y (a2 + 6c)]2[l - p2(a2 + be)]

= [l + p2(a2 + bc)][\ -p2(a2 + bc)] = 1.
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Therefore S E Ker0" a normal /?-subgroup of SL2(Zp„[a\) so that S is a member of

every Sylow /?-subgroup and in particular S E H. Now if n > 4,

S'= (1 +/?"-2yl)p= 1 +p"~xA +/?" 2 (/')/?J<"~2)_"^7
y=2   \J   I

= 1 +/?"_U = T.

If n = 3 a similar calculation shows that Sp = T. Thus Tis in the Frattini subgroup

of 77 so that P = 77 and the result follows.

Theorem 3. Suppose Z3[a] is not GF(3). Then SL2(Z3„[a]) contains no subgroup

isomorphic to SL2(Z3[a]) unless n = 1.

Proof. Suppose n s* 2 and G < SL2(Z3„[a]) with G ~ SL2(Z3[a]) and Z3[a] ¥=

GF(3). Then PSL2(Z3(«)) <j: SL2(Z3[a]) so that 0,"/G is an isomorphism. Let

G = 82(G); then 0,2/G is an isomorphism. Let a E Z32[a] be arbitrary; then since

82/G is an isomorphism, there exists a unique KEG with

1 + 3a    a + 3ft '
K

;)■

As det 7v = 1, we deduce a + d = co (mod 3). Thus remembering we are working

modulo 32,

K3=l]     3(° + c°2)) EKer02nG={l}.

Thus o + co2 =0 (mod3) so that either (i) a — 0 (mod3) or (ii) c — o x (mod3).

Thus for all a E Z*2[a],

1 + 3a a + 3b

(1) K~ \  -3/o      1 -3(a+ I)/"

Let a, t E Z^fa]. Then by multiplicative closure G contains a unique element of the

form

/ 1 + 3a    o + 3b U\+3x    t + 3y

(2) \-3/o       1 -3(a+ 1)/\-3/t        1 - 3(x + 1)

1 + 3(a + x - o/t)     t + a + 3(ar + y - o(x + 1) + b) \

-3(l/a+l/r) 1 -3(r/o + a + x + 2) /'

Now if a"1 + t"1 s 0 (mod 3), then comparing (1) and (2) yields

a + x — a/r = r/o + a + x + 1    (mod 3)

which yields

a = t    (mod 3)

so that Z3[a] = GF(3).

Corollary 3. If Z3[a] =t GF(3), G < SL2(Zr[a\), and 8X"/G is an epimorphism,

then G = SL2(Z3.[cr]).
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Proof.   02"(G) n Ker0,2 i= {1},   else  82(G)   is  mapped   isomorphically  onto

SL2(Z3[a]) contradicting Theorem 3. Thus by Theorem 2(b), G = SL2(Z3„[a])-

The next order of business is the characteristic 2" case.

Theorem 4. Suppose Z2[a] is neither GF(2) nor GF(4), G < SL2(Z4[a\), and 82/G

is an epimorphism. Then G D Ker02 contains some noncentral element.

Proof. Negate. By surjectivity, for G E Z4[a] there exists K in G:

1 + 2a    o + 2ft\

so that

K     \

K2= I 1 +2ca     2a(\ + a + d)

\0 1 + 2ca

From det K — 1 follows a + d = co (mod 2). As K2 E G n Kerf?2, by hypothesis

either (i) a = 0 (mod 2) or (iii) a + d = 1 (mod2). Thus for all o E Z^[a], there

exists KEG with

/ 1 + 2a     a + 2ft

\   2/o       3 + 2a

Moreover any L with 82(L) = (0 °) has the form 7C By multiplicative closure for all

a, T E Z^a], G contains

/l+2a    a + 2ft\M+2x    t + 2y

\ 2/0 3 + 2a)\2/T 3 + 2x,

1 + 2(a + jc + o/t)     t - o + 2(aT + _y + ft + ox) \

2(1/o+1/t) l+2(r/o + a + x) /'

Thus either a"' + t-' =0 (mod2) which gives o = t (mod2) or (by comparison

with 7v) (t — a)'1 = t"1 + a"' (mod2). Hence if o and t are distict invertibles of

Z2[a], then o2 + ot + t2 = 0 (mod 2) so Z2[a] < GF(4) contrary to hypothesis.

Lemma 2. For G < SL2(Z4[a]) a«d Z2[a) ^ G77(4) // 0,2/G is surjective, then

G = SL2(Z4[«]).

Proof. Let 77 = G n Ker02 so that 77 < SL2(Z4[a]) and hence 77 is a union of

conjugacy classes. By Theorem 4, 77 contains some noncentral element so that by

Proposition 3(ii) there exists o E Z2[a] with A„ E H where

Let

/

A' = I + 2
l(\ + a2)a ao

/(I +a2)a
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so that

A„A' =7 + 2
/(l+«2o        (a+l)<

1 1(1 + a2)a

def
1 + 2P.

By normality of 77 and Corollary 1, A'a and AaA'a are elements of 77. Since det B = 0

(mod 2), 77 contains all 7 + 2C where det C = 0 (mod 2). Thus the following belong

to 77 for T E Z2[a\:

0 0
1 0

,|T T2

1 T

7 + 2

7 + 2

0     r\
0     0/

= 7 + 2

= I
0

;)•

By Proposition 3(ii), 77 contains representatives of all conjugacy classes of Ker02.

Since 77 is normal, this implies that 77 = Ker 0,2.

Theorem  5.  If G < SL2(Z2„[a]),  n>3,  and 82/G  is surjective,  then  G =

SL2(Z2„[a]).

Proof. (Induction on n.) We need only show that Ker0n"_, is contained in the

Frattini subgroup cf> of a Sylow 2-subgroup of SL2(Z2,\a\).

Case n = 3. Note first that

Ker0 3 _ 7 + 2^:^4 (: bP -d + 2ftc

2d+ 1
(mod 4)

Squaring a typical element of Ker 83 yields a typical element of <f>:

1 + 2a        2ft
2c        I +2d

I +4(d2 + d+c +be) 4ft

4c 1 +4(d2 + d+bc)

As a — a2 sets up a (2.1) correspondence on Z2[a] we note that these squares form a

subgroup of index 2 in Ker 02. Since some diagonal matrix lies in the nontrivial coset

it merely remains to show that all diagonal matrices are in cf>. Let

S =
1     1
0     1

1      0

4c ?)•   Hi Ï)-
Then STS~XT-XU E <j> and a calculation shows that [S, T]U = (1 + 4c)7. Inductive

step: If n > 4 and tr A = 0, then det(l + 2n~2A) = 1. Thus if 1 + 2n~xA E Ker 0„"_,

then 1 + 2"~ XA = (1 + 2n~2A)2 E <b.

Corollary 4. If G < SL2(Z2„[a]), Z2[a] ^ GF(4), and 6"/G is an epimorphism,

then G = SL2(Z2„[a]).

Proof. This is an immediate consequence of Theorem 5 and Lemma 2.

4. Some more ring theory. For x an indeterminate and f(x) E Z[a][z] let/(;c)

denote the canonical image of f(x) in Z ,-[a][x].
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Lemma 3. Suppose that over Z[a][x], f(x)g(x) = h(x), deg ft = deg ft, and

(/,, gx) = 1 (mod /?). Then for each n, there exist unique /„, gn E Zp„[a\x] with

(i) deg L = de8 fv deg /«- de§ I» = de8 «i-

(ii)/„ =/(mod p),gH = g (mod /?),

(iii)ft„(x)=/„(x)g„(x).

Proof. By induction ft„(x) = /„( *)&,(*) + />n_tfc(x) E Zf[«p], deg/„ = deg/„

deg gn — deS g\>fn—f\ (mod /?), and g„ = g, (mod /?). Thus following Euclid, there

exists S(x), i(x) £ Zf[a][x] with

(a) deg s < deg /,

(b) sg„ + tfn = k (mod /?). Take

/„(*) =fn(x)+p"-iS(x),       g„(x) = gn(x) +p"-xt(x).

Then

înÈ»=f»in+P"-X{Si. + tfn)=hn   (mod/?").

From (a) deg /„ = deg /„ = deg /, so that

deg g„ = deg hn - deg /„ = deg ft - deg / = deg gx.

Uniqueness follows similarly.

Remark 1. Lemma 3 obviously extends to n factors by an easy induction.

Corollary 5. Zpn[a] is isomorphic to Zp*[ß] iff \ Zpn[a\ \ = | Zp„[ß] \ ■

Proof. Suppose g(x) E Z[x] is a monic polynomial with gn(ß) = 0 and such that

gx(x) is irreducible. As all irreducible polynomials of degree m split over Zp[a] =

GF(q), it follows from Remark 1 that gn(x) is a product of linear factors over

Zp„[a]. Taking the constant term ß' of one of these and mapping ß' to ß induces an

isomorphism.

5. Generation theorems for PSL2(Z/)»[o]). In this section certain results that

appear in [7] for n = 1 will be shown to hold for arbitrary n. Just as in [7], denote by

En(oL,ß,y) the set of all (A, B, C) with trace A = a, trace B = ß, trace C = y,

det A = det B = det C = 1, ABC = 1.

Theorem 5. 7/a2 + ß2 + y2 - aßy z 4 (mod p), then En(a, ß, y) ^ <f>. In fact if

ä = a,ß = ß, and y ^ y (mod /?) aria" (¿4,, BX,CX) E £,(«, /Í, y), then there exists

(A„, Bn, C„) E En(a, ß, y) congruent to (Ax, Bx, Cx) (mod /?).

Proof. Let

-(°, i) ^ * = (ï i)

and as in [7] find that (A, B, B~XA~X) E En(a, ß, y) iif(z, w) = 1 + Z2 + w2 + «zw

— y8w — yz = 0 (mod /?") is solvable. In [7] this was proven possible with n — 1

after perhaps permuting (a, ß,y) which we assume done. By induction there exist z,

w, t E Zp«-\[o] with/(z, w) = 77?" (mod p"+x). In an attempt to solve the equation

by perturbing (z, w) let z = z + ip" and vî> = w +jp", so that

/(z,w) = rp" +[i(2z + aw-y) + j(az + 2w - ß)]p".
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If 2z + aw — y E Z*„+i[o], then taking ; = t/(2z + ctw — y) and j = 0 (mod p)

yields the desired solution with a similar statement for az + 2w — ß. This procedure

fails only if

n\ 2z + aw = y
(1) az + 2w = ß        {m0dp)

which we shall show cannot occur.

Case I. /? ¥= 2. Multiplying the first equation in (1) by z, the second by w, and

adding yields

2(z2 + azw + w2) = ßw + yz    (mod /?);

since/(z, w) = 0 (mod /?) this implies that

(3) ßw + yz -2=0    (mod/?).

An immediate consequence of (1) is that (4 — a2)z = 2y — aß and (4 — a2)w = 2ß

— ay so that using (3) one finds

2(4-a2) =(ßw + yz)(4-a2) = ß(2ß - ay) + y(2y - aß)    (mod p)

which simplifies toa2 + y32 + y2 — aßy = 4, contrary to assumption.

Case II. p — 2. The previously mentioned permutation need only be effected if

a = 0. By hypothesis (a, ß, y) z 0 (mod 2). By (1) w = y /a and z = ß/a so that

0 =/(z, w) = 1 + /?2/«2 + y2/a2 + aßy/a2 - yß/a

which implies the same contradiction as obtained in Case I.

Corollary 7. Supposep\lmn and there exists {±A}, {±B} E PSL2(Zp[o]) such

that

(i) (tri)2 + (trB)2 + (trJLP)2 - (tr J)(trP)(trAB) Z 4 (mod /?),
(ii) i7 = Bm = ABC = C = 7 (mod ±1).

Then there exist A, B, C E SL2(Z r[o]) such that

8[(A) = Ä,   8[(B) = B,   8[(C) = C

and

A1 = Bm = C" = ABC = I   (mod ±7).

Proof. Since /? \ \ A \, it follows that A diagonalizes with primitive s th roots of

unity on the diagonal where S E {1,2, l). Thus the trace of A is the homomorphic

image of X = yT + 1/ yT, taken as a member of an algebraic number ring. Exactly

the same holds for B and C where one obtains say u and v. Mapping X, u, v modulo

pr and applying Theorem 5 proves the corollary, since the projective order of a

matrix with characteristic polynomial x2 — Xx + 1 is /.

It is worth noting that the quadratic form condition of Theorem 5 is equivalent to

the statement that the trace of A'XB~XAB is not equal to 2. Another fact of utility is

that a2 + ß2 + y2 — aßy — 4 is -4 times the determinant of the quadratic form

q(L f], f ) = £2 + Tj2 + £2 + aTjf + ßU + y|ij. Thus if p ¥> 2, the Q factors if and

only if this quantity vanishes. That Q also factors in characteristic 2 precisely under
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the same condition is easily checked. In [7] any triple (A, B, C) E Ex(a, ß, y) that

causes Q(a, ß, y) to factor is called singular and it is proven that such triples always

generate solvable groups.

Definition. A finite group is said to be a (/, m, n) '■= (x, y, z: x' = ym = z" =

xyz = 1 ) ; this latter group is called a triangle group.

Corollary 8. Suppose Zp[o] i- GF(q) for q E {2,3,4}. Then PSL2(Zp\o)) is a

(I, m, n)-group iff PSL2(Z [o]) is, provided that p \ Imn.

Proof. Since PSL2(Zp[o]) is not solvable, no generating (/, m, n) triple can be

singular. Thus if PSL2(Z^a]) has a generating (/, m, n) triple, then by Corollary 7,

this triple lifts modulo pr. By Theorem 1 and Corollaries 3 and 4 this new triple must

generate PSL^Z^o]).

Corollary 9. SL2(Zp,) can be generated by two elements of trace 2 whose product

has trace -2, provided that p ¥= 2.

Proof. A matrix realization of (2,2, -2) is

H-°, i).  Hi ?)■  H",2 -,')•
The result follows from parts (a) and (b) of Theorem 2 since over Z9 the relation

I¥=B3 E Ker 02 holds.

This is our analogue of Theorem 7 of [7]. The analogues of Theorems 5, 6, and 8

of [7] follow.

Corollary 10. Suppose Zp[o]¥:GF(q) for q E {2,3,4} and that Zp[o] =

Z [ü, ß, y]. Assume that (ä, ß, y) is neither exceptional, singular, nor irregular (see [7]

for definition), and that (a, ß, y) E (Zpr[o])3 is congruent modulo p to (ä, ß, y). Then

there exist (A, B, C) E En(a, ß, y) such that (A, P>= SL2(Zp\o\).

Next, a result of Newman (see [8]) will be slightly strengthened.

Corollary 11. 7/|Z [a]|s* 13, then PSL2(Z r[a]) is a factor of the modular group

modulo a noncongruence subgroup. In particular if n has a prime divisor > \3, and T

denotes the modular group and Tn the principal congruence subgroup at level n, then

there exists N < T with T/N ^ r/Tn.

Proof. Let |Zp[o]|= q and n = a + 1. As usual let y be the trace of a 2 X 2

matrix over the algebraic integers, whose order is n and let yr denote y 's image in

Zpr[a]. It is how in [7] that any (0, l,y,) triple generates PSL2([o]). Thus by

Corollary 10 such a triple exists and lifts to a (0,1, yr) triple which generates

PSL2(Z/)r[o]). That the normal subgroup is noncongruence follows at once from the

Fricke-Wohlfahrt theorem of [10]. To prove the second part note that if n = IIse2 p"s

then

r/r?* n sl2(z,-)/<(-/,...,-/)>.
SB'S.

A fundamental result of Riemann surface theory appears in 3. This states that for

Riemann surface S of genus g, | Aut S |< 84(g — 1) with equality occurring iff S is
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uniformized by a group whose normalizer in LF(2, R ) is isomorphic to (2,3,7).

Because of this (2,3,7) has been the object of much study and its finite factors are

called Hurwitz groups.

Corollary 12. The group PSL2( Zpr[a]) is a Hurwitz group if and only if

(i)Zp,[o] = GF(l),or

(ii) Zpr[a] = Zpr ifp=±\ (mod 7), or

(iii) | Zp[a] | = p3 otherwise.

Proof. This is a special case of Corollary 10. The reason that PSL2(Z49) fails to

be a Hurwitz group is that by Proposition 4 every element of order 7 lies in Ker 02.

If (i) appears unsatisfactory we refer the interested reader to [2] where all Hurwitz

extensions of an abelian group by PSL2(7) (and hence certain algebraic curves that

cover the famous curve in [4]) are determined. Taking p = 2 in (iii) yields an infinite

family of Hurwitz groups with nontrivial center. If a subgroup of order 2 is factored

out of PSL2([o]) one obtains a factor of (2,3,7; 9) also found by Leech in [6].

Proposition 5. The center of PSL2(Z »[o]) is trivial unlessp — 2 in which case its

order is

\Z2[a]\ifn>3,    {\Z2\o]\ifn = 2,    1 if n = 1.

77ie center is composed of diagonal matrix cosets.

6. Three generalizations of Bundgaard-Nielsen-Fox.

Proposition 6. If (A, B, C) E E(a, ß, y) then the trace of AB2 is ßy - a.

Lemma 4. Each infinite exceptional triangle group has PSL2(/?) among its factors for

infinitely many p.

Proof. (-1,/2,j2). By the results in [7] a matrix realization of this triple

generates either S4, PSL2(/?) or PGL2(/?)—the latter depending on whether/? = ± 1

(mod 8) or not. By Proposition 6 some matrix in the generated group has trace 3.

Now S4 contains elements whose orders are 1,2,3, and 4 and no others so that if S4

is generated then 3 E {0, ± 1, ± y¡2 } which cannot occur/? > 7. (Actually PSL2(7) is

a (3,4,4)-group as well, since the commutator has order 7.) The remaining infinite

exceptional triangle groups are handled as follows where 02 + 0 — 1 =0.

Group Trace Triple

(2,5,5) (0,0,0)

(3,5,5) (1,0,0)

(3,3,5) (1,1,0)

(5,5,5) (0,0,0)

Lemma 5. Suppose (I, m, n) is not one of the following: (2,2, n), (2,3,3), (2,3,4),

(2,3,5), (2,3,6), (2,4,4), or (3,3,3). Then there exist infinitely many prime numbers p

such that PSL2(/?) is a homomorphic image of (l,m,n) where the generator of order I

(resp. m, n) maps to an element of order I (resp. m, n).
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Proof. By Dirichlet's theorem infinitely many primes are congruent to one

modulo 2 Imn. Let p be one of these. Choose a homomorphism (/, m, n) — SL2(/?)

and suppose the associated trace triple is (a, ß, y). By Theorem 5 of [7] if PSL^Z^,)

is not generated, then either (/, m, n) is exceptional, in which case Lemma 4 applies,

or g(a, ß,y)'-= a2 + ß2 + y2 — aßy — 4. If no member of the trace triple is zero,

then replacing a by -a yields a nonsingular triple. Suppose a = 0 so that 1 — 2, fix ß

and note that g is a quadratic in y. Thus for groups in our list there can be at most

two traces associated with an element of order n and by symmetric argument the

same holds for m. Hence m, n E {2,3,4,6}. To see that (2,6,6) and (2,4,6) should

not be included in the above list consider the following triples and note that Q ¥= 0:

(0,fi,fi),(0,fi,j3).
We now consider the following group:

/ s        '

(vx,...,vs; g) = ( x„ yj, zy. x,v, = Ü *« II U> zj\ = *>
\ '■='    7=1

i= \,...,s,j= \,...,g).

If 2g — 2 + 2J=1 (1 — l/t>¡) > 0, then T is called a cocompact Fuchsian group and

is infinite. It is known that a homomorphism of T has torsion-free kernel if and only

if x, maps to an element of order p, for / = l,...,s. We set (p,,.. .,vs) — (vx,...,vs; 0).

Theorem 6. Every cocompact Fuchsian group T has PSL2(Zp) as factor for

infinitely many primes p where the associated normal subgroup is torsion-free.

Proof. Let n — 811 si=x vi and choose /? an odd prime where /? = 1 (mod n). If

s > 3, then setting Zj — 1 shows that the free product (vx,...,vs) with the free group

of rank g is a factor of T. Without loss of generality vx> v2> ■ ■ ■ > vs. Pick

A, E PSL^Z^,) so Xh&tAy = I = (ñUlAi)k where 2 <j <s - 2 andK= \(p + 1).

By the construction in Lemma 5 one may vary the choice of A¡ so that (Ax, A2) or

(Ax, A2, A3) is PSL^Z^) unless s = 3 and (vx, v2, v3) is one of the listed groups or

5 = 4 and v — 2 for each i. In either case if g > 0, then one picks an image c for_y, so

that <^„C)=PSL2(Z/)).

If 5 < 2, then T has as factor (i) (vx; 1) or (ii) (vx, v2; 1). If (i) note that PSL2(/?) is

a (vx,k,k) group and that for some a, ß E GF(p) this is exhibited by the trace

triple (a, ß, ß). Suppose (x, y~x, T) is a matrix realization of this triple. Then since

all matrices of trace ß are conjugate there exists z E PSL2(/?) with z~xyz = Tso that

xy, z = xy~]z~xyz = xy~xT = I.

Case (ii) is handled similarly.

Corollary 13. Every cocompact Fuchsian group T has infinitely many simple

nonabelian factors.
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Theorem 7. Every cocompact Fuchsian group T has a torsion-free normal subgroup

of finite index (in fact infinitely many such subgroups) such that T/N has nontrivial

center.

Proof. If T has a nontrivial factor A, then choose a nonabelian factor T/M of T

where M is torsion-free. By the Jordan-Holder theorem T/M X A is a factor of T. If

T has trivial abelianization, then g = 0 and the v¡ are pairwise coprime so that

PSL2(Z4[o]) is a factor of T for approximate o. Choose a simple nonabelian factor

of T as above and take the direct product

It is worth noting that T has factors with arbitrarily large center. To see this take a

direct product of SL2(Z4[a]) with SL2(/?,) for suitable prime /?, and factor out

((-7,-7,..., -I )>.

Theorem 8. Let Y be a cocompact Fuchsian group. Then for each positive integer n,

there exists m so that there are at least n torsion-free normal subgroups of T of index m

whose factors are pairwise nonisomorphic.

Proof. Use Corollary 13 to obtain a torsion-free N < T with r/7V a simple

nonabelian group. Set n — exp(T/N) and £ = e{2,r'/n). Then T/N acts on N/N' by

conjugating and this action may be extended to N/N' ® C. By a celebrated theorem

of Brauer Q(0 is a splitting field for the irreducible characters of T/N. Thus (see

§1, extension of Theorem 1) N/N' ® C(f ) is the T/N-module theoretic direct sum of

two representations of degree g where N ^ ( ; g). Equivalently, there exists a change

of base matrix C with C~'(Ay)C block diagonal with two g X g blocks for each

y E T. Now each entry of C is of the form 2fio' C(sJt i, j)Çs where C(s; i, j) is

rational and clearly only finitely many primes are factors of the denominators of

these rationals. By Dirichlet's theorem pick a prime number p with the following

properties:

(i)/? = 1 (mod «);

(ii) /? does not divide the denominator of C(s; i, j) for s— \,...,<b(n), i,

j=\,...,2g,

(iii) The Galois-theoretic norm of the determinant of C is not divisible by/?.

By (i) for each i, there is a natural ring homomorphism Z[f ] — Z ,. By (ii) this

homomorphism may be applied to each entry of C. (Surely it may be applied to the

entries of the integral matrices that represent the action of Ay.) By (iii) the image

matrix C is invertible. Thus C~x(Ny)C is the direct sum of two g X g-block diagonal

matrices with entries in Zp,. Equivalen tly there exist Nk < T, k = 1,2, so that

N/N'Np' = Nx/N'Np' 8 N2/N'NP'.

Therefore if/' < i, then T/N'N2pJ is an extension of (Zp,)s + (ZpJ)s by T/N and

N/N'Ng1 is the Fitting subgroup because T/N is simple nonabelian. Hence letting

i + j = 2(n — \) and varying i between 0 and n — 1 gives n nonisomorphic factors

ofr.
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