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A SHARP FORM OF THE AHLFORS' DISTORTION THEOREM,

WITH APPLICATIONS

BY

D. H. HAMILTON

Abstract. The constant appearing in the asymptotic version of the Ahlfors' distor-

tion theorem is 1. Also it is shown that for mean 1-valent functions/= z + a2z2 ■ ■ ■

|k+l|-k,||«l (or n»N(f).

1. Introduction. The Ahlfors' distortion theorem [2] and its refinements are

important in the theory of conformai mapping and its many applications. In this

paper we obtain sharp bounds for the constants which arise in the theory of

simultaneous growth and give some applications. First we state some definitions and

indicate earlier work on these problems.

Let « be a nonconstant harmonic function on a domain Œ in the complex sphere.

Define the level set 1(c) = {z G ß | u(z) = c}, -oo < c < oo, of u, and the quantity

8(c) = f   \*du\,
He)

where 8(c) = 0 if 1(c) — <i>. For -oo < a < b < oo, T(a, b) denotes the family

{1(c) \ a < c < b}, which will have module p(a, b) that satisfies

^b) = Cw)
provided (a, b) E u(ü). For subsets ñ ■ C fi we similarly define 8j(c), Pj(a, b) etc.

Now let S be an infinite horizontal strip of thickness it and S,-, k disjoint infinite

horizontal substrip of thickness equal to tr/k. Then Jenkins and Oikawa [8, p. 60]

define the maximum simultaneous growth of u in k directions to mean there are

sequences {bn} and {£„ + it\„ ¡) E Sj such that

k

[a,oo)c  Pi u(Sj),       £„-oo,   a < b„ <«(£„ + ir,nJ),

Ä^V-rt1(**(*.*»)
They prove that as £ + /tj approaches oo in any compact substrip of S¡, there is a

uniform limit

-jq.(fl,t/(£ + /'T)))       |
MTH-r — V = <Xj, -00<a<00.
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These results of Jenkins and Oikawa elegantly generalize earlier results of Eke [4]

for functions f(z) which are areally mean p-valent on the unit disk. In this case

u = log|/(z)| and #(log R) = p(R) measures the meanp-valence of f(z). Eke [4, p.

149] finds that/(z) has maximal growth at k distinct points e'*1,... ,e">t if and only

if z are points "near" the rays arg(z) = <J> which satisfy R — \f(zj)\ so that as

R -* oo,

tends to a nonzero finite limit a.

This result is not unlike a distortion theorem of Aharanov and Srebro [1]. Suppose

that D is locally k connected at oo, i.e., D fl {|w| > R} has exactly k components for

large R. The canonical example is the domain ñ where 9fi is k equally separated rays

(not necessarily of equal length). In both cases assume that 0 is an interior point of

D and fi, and there is a function f(z) = z + • • • which maps fi onto D such that

lim|.Hoo |/(z)|= oo. Now let Zj be points in the jth segment of D such that

\f(zj) |= R; then Aharanov and Srebro prove

ñr7<l6.
7=1 \zj\

The constant 16 is best possible, i.e., for every e > 0 there are/and R such that the

product is more than 16 — e. However 16 is never attained, furthermore as R -* oo it

is found that the bound is substantially smaller than 16.

We shall give precise bounds for the constants arising in the above results. For

n = 1 this has already been done. Jenkins and Oikawa introduce normalization

(1) M(£ + /tj) = Mo + a£ + 0(1)

as £ -» -oo, and the reduced module

(2) ß(b) = a/6(a)+p(a,b)

under the assumption (-oo, oo) C i/(ß) and prove

Un
(3) lim(/ï(«U + /ti))-^)

2tr\

uniformly as £ + /'tj -» + oo in a substrip of S. Hayman [7] and Eke [4] had shown

that if/(z) = zp + ■ ■ ■ is mean /^-valent in the unit disk then as |z| -» oo

(1 -Izl) p
(4) ftnU  ,7    |/(z)|=«<l.

\z\

2. Statement of results. For functions u harmonic on the strip 5 we say that u has

maximal growth in k directions if in each substrip S¡ thickness tt/k

(5) pj(a,b)< oo,       -oo <a<b< oo,

(6) (-co,co)Cu(Sj),

(7) hmM(£ + /Tj)= +00,
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as £ + /tj -* + oo in some proper substrip of S,. Then we prove

Theorem 1. Suppose that w(£ + /tj) has maximal simultaneous growth in k direc-

tions. Also suppose that u(£ + it]) = u0 + X£ + o(l) (X > 0) uniformly as £ -» -oo.

Then //£y + z'tj7 — oo uniformly in each proper substrip of Sj, b = w(£, + ¿tj A we have

_/ 1    * \
lim \ß(b)--j- 2 £,(*>)   =«,

\ *w;=i /

w/zere -oo *s a < h0/27TA with equality only for u = u0 + a£. Furthermore if a > -oo

zTzevz, for each j, ¡ij(b)/k — ij(b)/tr -» ay, w/zere -oo < a- awd 2*=1 a, < u0/(2tt\).

Corollary 1. Suppose that f(z) — zp + ■ ■ ■ is areally mean p-valent in {|z| < 1}

and satisfies

lim \f(z)\ = oo,

in some Stoltz angle at e'*'\ e'*1,... ,e'** distinct points. Then ifz, are points such that

R = |/( Zj ) | -» oo we have

(8) M IIäO-Iz,!)2"*-«
7=1

uniformly for Zj -» e'^ /'« a S/o/rz a«g/e\ Furthermore,

(9) a < nn i«*' - ^rw*
7*9

vwi/z equality only for

/(*) =
2p/k(I - ze-*<)2p/k ■ ■ ■ (l-ze-'^)

Remark. If/(z) is univalent then the Golusin inequality shows that the product is

bounded (see Pommerenke [10]). For general/»-valent functions, Lucas [9] shows that

the product is uniformly bounded.

Corollary 2. Suppose that f(z) — z + ■ ■ ■ maps a k-star ñ onto a domain D

which is locally k-connected at oo. Then if Zj is a point in the jth segment ofQ, such that

as \f(Zj)\ = R -» oo as Zj -» oo,

lim ] [ — = a < 1

with equality only for f(z) = z.

i=\ \z,\

Remark. There is no Stoltz angle conditions in the above theorem.

The case n — 2, p = 1 in Corollary 1 is particularly interesting. The work of

Hayman [6], Eke [4] and Hamilton [5] show that if

f(z) = z + a2z2 + ---
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is univalent in {|z| < 1} then

limlk+iHaJ ^ !-
It was conjectured that 1 is attained only for/(z) = z(l — ze""f>l)"'(l — ze~"t'1)~x,

the problem being to find which univalent functions / in the Eke class with maximal

growth at e'*', e^1- satisfy

hm    min «-'|/((1 - n~x)ei'l'>)\ = \ei<<'> - e^-\~\
n-oo  7=1.2

Corollary 1 immediately gives this. In fact, we prove

Theorem 2. Suppose that f(z) = z + a2z2 + ■ ■ ■ is areally mean l-valent in

{\z\ < 1}. Then for n > N(f), ||a„+i| — |a„|| < I. Equality is attained if and only if

f(z) = z/(l - ze-'*'Xl - ze-'*2), and (<f>, - <¡>2)/tr is rational.

3. Proof of Theorem 1. The following result is similar to results of Eke [3, p. 108]

and Jenkins and Oikawa [8, p. 44].

Lemma 1. //«(£ + z'tj) harmonic on {£0 < £, |tj| < tt/2} satisfies

(10) p(a, b) < oo(-oo <a <b < oo),

and

(11) limw(£ + z'tj) = oo

as £ + z'tj -> oo for |tj| < tt/2 — SQ (some S0 > 0) then as £ -» oo, |tj| < tt/2 — S

(8 > 0), the uniform limit

(12) lim(/x(a, w(£ +/tj)) - £/77) = a,        -oo*Sa<oo,

exists.

We note that (11) implies lim w(£ + ztj0) = oo for some tj0. Furthermore, we may

assume p(a, oo) = oo, otherwise (12) is obvious, with a = -oo. These two comments

are almost the hypothesis of Theorem 2 [8, p. 44] and the proof is essentially the

same. For every c, let o(c) be the component of

{£ + z'tj G S: m(£ + z'tj) < c)

containing £0. Similar to Lemma 2 [8, p. 45], we prove that there is an a0 such that,

for every c > a0, a(c) is bounded above, and thus the unbounded component t(c) of

S — a(c) is determined uniquely. Then set

r(c) = sn o-(c) n t(c)

which is ari arc in 1(c) which joins the upper and lower edges of the strip. Also

define

£'(c) = inf{£:£ + /T,Gr(c)}

and

£"(c) = sup{£:£ + z'T,Gr(c)},

then it is known that lim^^ £'(c) = oo.
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ss   u(z) < c

^   o(c)

...  P(c)

Define a function p(t) = t3/9(l + t¿/3), then [8, p. 46]

(13) p(a, b) < r(fc);r(fl) - p(£"(c) - £'(c))

for a < c < b, 1(a), 1(b), 1(c) joining the upper and lower edge of S.

One should note that a depends on a. It is shown that if lim(p(a0, b) — £'(b)/m)

— aQ then« = a0 + p(a, a0). In the case a0 > -oo, lim(_DC£"(c) — £'(c) = 0.

We now apply these results to the strips Sj of Theorem 1. Let S¡(8) be an infinite

horizontal strip of thickness tt/k — 8 such that S¡(8) E Sj. Finally we need the

inequality

1    k

(14) p(a,b)^—^pJ(a,b),
k   7=1

[8, p. 40]. Now we may assume

k \

Ttk
(15) lim \p(a0,bn) - -f- 2 £„, I > -oo

7=1       /

for some sequence £,„ + z'tt,,, G Sj(8), bn = u(£jn + it)jn) tends to oo. By (14) we

obtain

¡=(í(^(«„.«-^)) >     00

as n -> oo. Now each summand, by Lemma 1, tends to a number a- < oo and, in

particular, is bounded above. Thus we see that (15) implies that each a¡ > -oo.

Now choose a < c near -oo, b > a0 so that 1(a), 1(c), 1(b) join the upper and

lower edges of each substrip Sj. Then as a; > -oo, by Lemma 1,

(16) \pj(a, b) + o(l) > a} +^{b)> aj + f (c) + ^^

by (13). Also if c -* -oo more slowly than a we find, that as w(£ + ztj) = u0 + A£ +

o(l), £- -oo,

,      v       [<■■   dc    _ (c- a)k        ,
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Thus (16) is bounded below by

Consequently,

£y'(c)       pj(a,b)       (c-a)

aJ + ^r + —k—^Â- + 0(1)-

^l>.l+fií£>+«(,).
77À

Now as c -» -oo, £j(c) = (c — «o)/A + o(l) and therefore as a — -oo we obtain

(17) aj<-(a-u0)/ir\.

We now complete the proof of Theorem 1. As b — oo from a ■ > -oo we have

k   ij(b)_        *   />>,&)

-i     * -,
7-1 y-i

as a -> -oo, using (14) and (17). Thus

-±(a-u0)> p(a, b) - ~ 2 tj(b) + o(l).
7=1

Now

Thus

7=1 \ 7=1 /

\ 7=1

Furthermore, by (14) we see that there is equality if and only if £'(c) = £"(0 for

a < c < b. Thus the level curves are vertical and hence w(£ + z'tj) = uQ + X£.

Proof of Corollary 1. We map the unit disk onto the w-plane by

z
w — -,

(1 - ze-^)2/k ••• (1 -ze~'^)2/k

so that w(\z\ < 1) is the complex plane cut along k rays separated by angle 2-rr/k.

This domain is then mapped onto an infinite horizontal strip by

£ + z'tj = -log(w).

Suppose that/(z) is areally mean /7-valent, i.e.

(RRp(R)dR^ \PR2

for 0 < R < oo, where p(R) is the proportion of the circle \w\ = R covered by

f(\z\ < 1), counting multiplicity. Furthermore if f(z) = zp + ■ ■ ■, and we define
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/(£ + z'tj) = log|/(z)| we see that

(18) M(£ + ztj) = 2/>£ + o(1)

near -oo. Also

(19) <*•*»*•*»)-ÈÇj^j)-
Now if £ + z'tj = w(z), then as z -» e'*',

£=-^log(l-|z|)-log/3;,

where ßj = LT^I«?''*' - e'+j\l/k. Consequently, if z} - e'^, £,■ + ty = w(zj), |/(zy)|

= Ä,

(20) klogR + ?f 2 log(l -ky|) = Ac log/? + ^ 2 H - l08^)   •
7=1 \ 7=1 /

It is known for mean /»-valent functions [4, p. 164] that

,~,\ fR2    dR 1 ,     R2
(2I) /,,wail08v

Consequently by (19) and (21) log R « 2î7/?/I(log /?)■ Thus by (20)

klogR + -^ 2 log(l t|«/|)<2»MU(log*)-¿ 2 U7 + logj8y)  .

Therefore by Theorem 1

- / 2      * \ k
lim\klogR+ -f2 log(l -|*;l)   < -2/7 2 log/3,

\ 7=1 / 7=1

as u0 = 0 with equality only for u = 2/?£. This completes the proof of Corollary 1.

Proof of Corollary 2. The proof of a weaker version of this result with

convergence in Stoltz angles is just a special case of Corollary 1. The condition that

D is locally /V-connected at oo allows us to remove these restrictions. For then if R is

large, D n {|w| > R} has exactly k components. Consequently in each strip S¡,

//log R) = Tj(R). Thus

£;(log R) = inf{£: £ + z'tj G //log R)},

Çj'(logR) = sup{£: £ + z'tj G //log R)}

and our previous analysis then may be applied to yield the result.

Proof of Theorem 2. If f(z) has maximal growth at one point then Hayman [6,

p. 243] shows that

(22) |i/„+1| — |an|| -» a < 1

with equality only for/(z) = z/(l — ze''*')2. If/(z) does not have maximal growth

at one or two points then Eke [4, p. 151] proves that

(23) k+,1 -\an\ -0.
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Hamilton [5] gives his proof of

lim||fl„+1|-|aj < 1

for univalent functions with maximal growth at two points e"f>l, e'*2, however most

of his method also works for mean 1-valent functions. Set

«,.(«)= «-'/((l-^)e-'*').

Then Eke [4, p. 185] proves that

(24) am = axe-""f' + a2e-,m^- + o{max(|a,|, |a2|)}

for m — n, n + 1 as n -* oo.

Hamilton considers sequences nk according to whether

(25) lim max(\ax(nk)\,\a2(nk)\) < oo
k

or not. In the first case, by (24),

\a„+x - e'^an\ = a2(e-i(n+x)^- - î?-"*î+*i) + o(l)

if a, = max(|a,|, |a2|). Hence as nk -» oo

11/7 1 — 1/7    II   sSl/Y    I   li>",>1   —   /»"M    J-   rtCl  I||"«+ll      l"n|| "~l"2l Ie e      I  ^ °v1F

Now from Corollary 1 we have

|o2| <|i?''*' - e'*2\~l + o(l)

with asymptotic equality only for z/(l - ze~">')(l - ze~'**). This proves the theo-

rem for a subsequence satisfying (25). For the other case, limmax(|a,|, \a2\) = oo. In

this case we prove, as nk -* oo,

la«+ll  ~\an\  ^°-

The proof is exactly the same as Hamilton's (and similar to Eke's proof of (23)). This

completes the proof of Theorem 2.
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