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HOMOMORPHISMS AND ENDOMORPHISMS IN VARIETIES
OF PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES

(WITH APPLICATIONS TO HEYTING ALGEBRAS)

BY

M. E. ADAMS, V. KOUBEK1 AND J. SICHLER1

ABSTRACT. According to a result by K. B. Lee, the lattice of varieties of

pseudocomplemented distributive lattices is the ui + 1 chain B_i C Bo C

Bi C • ■ ■ C Bn C •■ • C Bw in which the first three varieties are formed by

trivial, Boolean, and Stone algebras respectively. In the present paper it is

shown that any Stone algebra is determined within Bi by its endomorphism

monoid, and that there are at most two nonisomorphic algebras in B2 with

isomorphic monoids of endomorphisms; the pairs of such algebras are fully

characterized both structurally and in terms of their common endomorphism

monoid. All varieties containing B3 are shown to be almost universal. In

particular, for any infinite cardinal k there are 2K nonisomorphic algebras of

cardinality k in B3 with isomorphic endomorphism monoids. The variety of

Heyting algebras is also almost universal, and the maximal possible number

of nonisomorphic Heyting algebras of any infinite cardinality with isomorphic

endomorphism monoids is obtained.

1. Introduction. Endomorphisms of any algebra A form a monoid End(A) un-

der composition; the present paper is concerned with endomorphisms of distributive

lattices.

The dual Ld of a distributive lattice (L; V, A) is the distributive lattice (L; +, ■)

for which x + y = x A y and x ■ y = x V y for all x, y E L. Clearly, End(Ld) = End(L)

for any distributive lattice although, in general, Ld and L need not be isomorphic.

In B. M. Schein [46], however, it is shown that a distributive lattice is determined

up to its dual by its endomorphism monoid. Similarly, only a distributive (0,1)-

lattice and its dual have isomorphic (0, l)-endomorphism monoids (R. McKenzie

and C. Tsinakis [37]). On the other hand, distributive 0-lattices or 1-lattices are

determined by monoids of their respective bound-preserving endomorphisms [45].

Boolean algebras, that is, distributive lattices with complementation as an added

unary operation, are once again determined by their endomorphism monoids (K.

D. Magill [34], B. M. Schein [46], C. J. Maxson [35]). Boolean algebras are par-

ticular examples of pseudocomplemented distributive lattices, the present topic of

investigation.

A pseudocomplemented distributive lattice (L; V, A, *,0,1) is an algebra of type

(2,2,1,0,0), where (L;V,A,0,1) is a distributive (0, l)-lattice and * is the unary

operation of pseudocomplementation: the pseudocomplement x* of x G L satis-

fies x A y = 0 if and only if y < x* for every y E L. It appears that pseu-

docomplemented distributive lattices were studied first by V. Glivenko in [15];
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sometime later, P. Ribenboim [45] proved that pseudocomplemented distributive

lattices form a variety. Subsequently, K. B. Lee [33] fully described the lattice of all

varieties of pseudocomplemented distributive lattices; the lattice is an u + 1 chain

B-X C Bq C Bx C • • • C Bw. The variety B-X consists of all one-element algebras

and Bo is the variety of all Boolean algebras; for n > 1, K. B. Lee showed that the

variety Bn is defined by the identity

(xi A • • • A xn)* V (x\ A ■ • • A xn)* V • • • V (xi A • • • A x* )* = 1.

Three important papers quickly followed this discovery (namely G. Grätzer and

H. Lakser [18, 19], and H. Lakser [32]), and more since then; see R. Balbes and

Ph. Dwinger [3] for numerous references on this subject. In fact, the variety Bx

of Stone algebras had already been intensively studied by G. Grätzer and E. T.

Schmidt [21], J. C. Varlet [49] and others.

The present paper investigates the question of determining a pseudocomple-

mented distributive lattice from its endomorphism monoid.

In §3 it will be shown that the structure of End(L) determines whether or not

the pseudocomplemented distributive lattice L has a homomorphic image in Bi\Bo;

anticipating this result, let us call End(L) a Stone monoid if L has a Stone homo-

morphic image that is not Boolean. Thus, for instance, End(L) is a Stone monoid

for every L E Z?i\Z?n. The situation is described by the following

THEOREM 1.1. (i) If L G B2 and if End(L) is a Stone monoid, then L is
determined within B2 by End(L).

(ii) For L E B2 such that End(L) is not a Stone monoid there exists at most one

algebra L+ E B2 not isomorphic to L and such that End(L+) = End(L).

(iii) The varieties B3, Z?4,..., Bu are almost universal.

Observe that Theorem 1.1 (i) implies that Stone algebras are uniquely determined

by their endomorphism monoids, thereby extending the earlier quoted result on

Boolean algebras to the variety BX. Nonisomorphic algebras L,L+ G B2 with iso-

morphic endomorphism monoids are fully characterized in §3 of the present paper.

Almost universality (defined below) of B3, B4,..., Z?w implies that, in particular,

algebras from each of these varieties with isomorphic endomorphism monoids bear

very little structural similarity to one another.

A homomorphism / : L —► L' of pseudocomplemented distributive lattices will

be called constant if f(L) = {0,1} Ç L', that is, if its image is the set of constants

of its codomain. Every nontrivial pseudocomplemented distributive lattice has a

minimal prime ideal Z, and the mapping defined by f(I) = {0}, f(L\I) = {1} is
a homomorphism of L onto the two-element chain {0,1} (see [3]); in other words,

there are constant homomorphisms between any pair of pseudocomplemented dis-

tributive lattices. A variety V is almost universal if the category of all undirected

graphs and all their compatible mappings is isomorphic to a subcategory of V con-

sisting of all nonconstant homomorphisms between algebras from some subclass

D of V. Thus nonconstant homomorphisms between algebras in D must form a

category; that is, the composite of nonconstant homomorphisms must never be

constant. Almost universal varieties possess a very rich categorical structure (see

A. Pultr and V. Trnková [43]). From Theorem l.l(iii) it will follow, for instance,

that for every infinite cardinal k there exists a system (Lt G B3 : i G 2K) such that

Hom(Li,Lj) consists of constants for distinct i,j E 2K, while [Li] = /c, and End(L¿)
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is isomorphic to the monoid of 2K right zeros and the identity endomorphism for

every i <2K.

If the category of all isomorphisms of undirected graphs is isomorphic to the

category of all isomorphisms between algebras from a subclass D of a variety V, we

will say that V is isomorphism universal. For every group G there is a proper class

{Ai G V : i G Z) of pairwise nonisomorphic algebras in any isomorphism universal

variety V such that Aut(Ai) = G for every i E I (see [26]). While the variety Bo

of Boolean algebras is not isomorphism universal (R. McKenzie and J. D. Monk

[36]), Corollary 4.18 below shows that all other subvarieties of Bu are isomorphism

universal.

As it happens, the construction used to prove Theorem 1.1 (iii) produces dis-

tributive (0, l)-lattices that are Heyting algebras as well. Recall that an algebra

(H; V, A, -►, 0,1) of type (2,2,2,0,0) is a Heyting algebra if (H; V, A, 0,1) is a dis-
tributive (0, l)-lattice with an added operation —> of relative pseudocomplementa-

tion defined by z < x —► y just when xAz <y. The class of all Heyting algebras is a

variety (see [3] or H. Rasiowa and R. Sikorski [44]). A homomorphism f:H—>H'

of Heyting algebras is a mapping preserving all five operations; in particular, / is a

(0, l)-homomorphism of the underlying distributive lattices. Any nontrivial Heyt-

ing algebra H has a minimal prime ideal and, as before, the characteristic function

of the complementary prime filter is a constant homomorphism of H onto the set

{0,1} of constants of any nontrivial Heyting algebra H'. There are no nonconstant

extraneous Heyting algebra homomorphisms, however; in fact, the following will be

shown to hold.

THEOREM 1.2.   The variety of Heyting algebras is almost universal.

One of the consequences of this result is that for any infinite cardinal rc there

is a family (Hi: i G 2K) of Heyting algebras such that |ZZ¿| = k for all i E 2K,

ïlom(Hi,Hj) consists of 2K constant maps if i,j E 2K are distinct, and, for all

i E2K, End(Zí¿) is isomorphic to the monoid obtained by adding 2K right zeros to

the trivial monoid. The latter claim shows that a Heyting algebra is not determined

by its endomorphism monoid, thereby solving a problem posed, for instance, by R.

McKenzie and C. Tsinakis in [37]. Observe that Theorem 1.2 also proves the

isomorphism universality of the variety of Heyting algebras. In a subsequent paper

it will be shown that the number of right zeros of End(ZZ) can be reduced to one,

the least number possible.

Priestley's duality [39] between distributive (0, l)-lattices and certain ordered

topological spaces will be used throughout the paper; the results will also be inter-

preted algebraically.

With pleasure we acknowledge correspondence with R. Beazer on the subject of

pseudocomplemented distributive lattices as well as conversations with C. Tsinakis

which led to the investigations presented here.

2. Preliminaries. This section provides the minimal background and notation

concerning pseudocomplemented distributive lattices and Priestley's duality appli-

cable to these lattices. For further information on pseudocomplemented distributive

lattices the reader is referred to [3] or G. Grätzer [16, 17]. Fuller description of

the topological duality can be found in H. A. Priestley [39, 40]; see also the more

recent survey articles by B. A. Davey and D. Duffus [12] or H. A. Priestley [42].
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H. Lakser [32] showed that a pseudocomplemented distributive lattice is sub-

directly irreducible if and only if as a lattice it is isomorphic to a Boolean lattice

with a new unit added. The variety Bn is then generated by the finite subdirectly

irreducible lattice with n atoms if n > 0, while Bo is the variety of Boolean algebras

(see K. B. Lee [33]).

PROPOSITION 2.1 (K. B. LEE [33]). For any finite n > 0, a pseudocomple-

mented distributive lattice L lies in Bn if and only if each prime ideal of L contains

at most n minimal prime ideals.

Next is a brief summary of Priestley's duality as it applies to pseudocomple-

mented distributive lattices.

For a poset P, a subset Q of P is decreasing if x E P, x < q E Q imply x E Q. A

mapping /: P —* P' is order preserving if f(x) < f(y) in P' whenever x < y in P.

Endowed with a topology r, the pair (P, r) is a totally order disconnected space if

for all x,y G P with x^y there exists a clopen decreasing Q Ç P such that x EQ

and y E P\Q.

THEOREM 2.2 (H. A. PRIESTLEY [39, 40]). The category of all (0,1)-
homomorphisms of distributive (0, l)-lattices is dually isomorphic to the category T

of all continuous order preserving mappings of compact totally order disconnected

spaces.

In fact, if (P, t) eT and a lattice L correspond in this duality, then P is the poset

of all prime ideals of L ordered by inclusion, while elements of L are represented by

clopen decreasing subsets of (P,t). Furthermore, if (P',t') corresponds to L' and

if h: L —* L' is a lattice (0, l)-homomorphism associated with a continuous order

preserving mapping /: (P',t') —> (P, r), then h(x) = x' if and only if f~l(X) = X',

where X, X' are the clopen decreasing sets representing x, x', respectively. It is easy

to see that h is one-to-one if and only if / is onto, and that h is onto if and only if

/ is a one-to-one order embedding.

For a poset P, let Min(P) denote the set of all minimal elements of P. For any

Q Ç P let (Q] = {x E P: x < q for some q E Q}, and [Q) = {y E P: q < y
for some q E Q}; define also Min(Q) = (Q] n Min(P). Should Q = {x}, the sets
(Q], [Q),Min(Q) will be abbreviated as (x], [x),Min(x), respectively. If the partial

ordering P is to be emphasized, Min(Q) will be written as Minp(Q).

Since every prime ideal of a distributive lattice L contains a minimal prime

ideal, in the space (P, r) representing L the set Min(x) must be nonempty for every

x E P. Such a space has the p-property if [Q) is a clopen set for every clopen

decreasing subset Q of (P,t). Since [Q) = [Min(Q)) for any decreasing Q E P,

the set P\[Q) is easily seen to represent the pseudocomplement x* of the element

x in L corresponding to the clopen decreasing set Q. Any compact totally order

disconnected space (P, r) satisfying these properties will henceforth be called a p-

space. In view of [33] we may also conclude that, for n > 0, a p-space (P, r) is dual

to a lattice in Bn if and only if |Min(x)| < n for every x E P, and that Boolean

algebras are dual to those p-spaces for which P = Min(P). An order preserving

mapping /: P —► P' is a p-map if /(Min(x)) = Min(/(x)) for every x E P. Any

continuous p-map will be called a p-morphism.

As observed in [1] and H. A. Priestley [41], pseudocomplemented distributive

lattices and p-spaces correspond under the duality of Theorem 2.2 as follows.
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THEOREM 2.3. Bu is dually isomorphic to the category Tp of all p-morphisms

ofp-spaces. For n > 0, the restriction of this duality to Bn gives the full subcategory

Tn'ofTp determined by allp-spaces (P,t) satisfying |Min(x)| < n for all x E P.

Finally, (Q, a) is a subspace of a p-space (P, r) if it inherits the topology and the

order of (P, t) and if MinP(Q) Ç Q.

3. The varieties Bo,Bi,B2. Throughout this section we will abuse the nota-

tion by writing (P, t) E V whenever V is a variety of pseudocomplemented distribu-

tive lattices containing the algebra represented by the p-space (P, r). A p-morphism

is any continuous order preserving p-map.

For i = 3,... ,7 let the spaces Pi of Figure 3.1 denote the corresponding pseu-

docomplemented distributive lattices L¿ of cardinality i as shown in Figure 3.2.

ob

m       °m    °

Pa P4

I <>
L3 L4

We begin with another characterization of p-spaces, as given in Lemma 3.2.

LEMMA 3.1. Let (P,t) be a compact totally order disconnected space with com-

pact Min(P). Then for every set K clopen in Min(P) there is a clopen decreasing

CEP with C n Min(P) = K.

PROOF. Let K Ç Min(P) be clopen, so that both K and L = Min(P)\Zi are

compact. Fix I E L; for every k E K there is a clopen decreasing Ak containing k

and missing /. Hence K Ç \JAk and the compactness implies that K is contained

in a clopen decreasing set Bi such that / G P\P¡. Now the compact set L is

covered by the latter increasing clopen sets, and the compactness of L shows that

L is contained in a clopen increasing set D disjoint with K. The set C = P\D is

decreasing and C n Min(P) = K as required.

LEMMA 3.2. Let (P,t) be a compact totally order disconnected space such

that Min(P) is compact. Then (P, r) is a p-space if and only if every continuous

f : Min(P) —» Pi can be extended to a p-morphism g : (P, r) —> P5.

A A M1      Om     o„       öm     t> „       crm    ^ n

Figure 3.1

~5 "6

Figure 3.2
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PROOF. Assume (P,t) to be a p-space. Then Min(P) is a compact totally

disconnected space. If /: Min(P) —> P4 is continuous, then f~l{m} is a clopen

subset of Min(P), so that Lemma 3.1 implies the existence of a clopen decreasing

CEP with f~l{m} = CnMin(P). The complement D of C is a clopen increasing

set with D n Min(P) = /_1{n}- A clopen increasing E E P with E n Min(P) =

/_1{m} is found analogously. Extend / to g by setting g(x) = a for a E D f) E,

m for x E E\D, and n for x E D\E; it is easily seen that g is a continuous order

preserving p-map.

Conversely, assume the extension property; to show that (P, r) is a p-space it

suffices to establish the p-property. Let 5 Ç P be a clopen decreasing set. Then

Min(S) = Min(P)n5 is a clopen subset of Min(P), so that there exists a continuous

map /: Min(P) —► P4 with /_1{m) — Min(S) which, by hypothesis, extends to a

p-morphism g: (P,t) —> P5. Clearly [S) = [Min(S)) = g~l{m,a}, so that [S) is

clopen by continuity of g.

LEMMA 3.3. Let x -¿ y in (P, r) G B^. Then there exists a p-morphism g: P —>

P3 with g(x) j£ g(y) if and only if x E P\Min(P).

PROOF. Assume that x G P\Min(P). For every minimal n E P there exists

a clopen decreasing set Qn containing n and such that x £ P\Qn. The union of

these sets contains the closed subset Min(P) of the compact space (P,t); finitely

many of these sets then cover Min(P) and their union R is a clopen decreasing set

not containing x. There is also a clopen decreasing Q containing y but not x. Let

g_1{m} = Q U R for the minimal element m of P3 and ç/_1{o} = P\(Q U R); it

is easy to see that g is a p-morphism as required. Since ç/(Min(P)) = {m} for any

p-map g, g(x) = a is possible only if x £ Min(P).

Thus nonminimal elements can be separated by p-morphisms into P3.

LEMMA 3.4. Let x e Min(P) and x ■£. y in (P,t) G Bu. Then there exists

a p-morphism g: P —► P5 such that {g(x),g(y)} = Min(P5). If (P,t) G Pi then

g(P) E P4 for any such p-map.

PROOF. Since x is minimal, y ^ x as well, and there is a clopen decreasing set

Q such that y EQ and x E Min(P)\Q. The set Q D Min(P) is clopen in Min(P),
so that there is a continuous /: Min(P) —> P4 with /_1{n} = Min(Q) D Min(y).

The extending p-morphism g: (P,t) —* P5 must therefore satisfy g(y) =n/ g(x) E

Min(P5).

This shows that minimal elements can be separated by p-morphisms into P5 or,

in the case of Pi, by p-morphisms into P4.

COROLLARY 3.5. If (P,t) G B^, then g(x) < g(y) for every p-morphism

g: P —> P5 if and only ¿fMin(x) Ç Min(y).

PROOF. If g: P —► P5 is a p-morphism with g(x) ¿ g(y) then g(y) is a minimal

element of P5, so that g(Min(y)) = {g(y)}; since g is a p-map, there must exist

t E Min(x)\Min(y). Conversely, for any such í there is a p-morphism h: P —» P5

with {h(t),h(y)} = Min(Ps) by Lemma 3.4, and h(x) % h(y) follows.

In view of this claim, some other means are needed to separate elements with

the same nontrivial set of minimals in the absence of the Stone space P3.
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LEMMA 3.6. Let y,z E (P,t) E Bu be such that Min(y) = Min(z) = M has

more than one element. Then z ^ y if and only if there exists a p-morphism

g: P —> P6 such that g(y) = a and g(z) = b.

PROOF. By hypothesis, the element z is not minimal; Lemma 3.3 gives a p-

morphism 33: P —> P3 with gs(z) = a and ç/3(M U {y}) = Min(p3) = {m}. Fur-

thermore, by Lemma 3.4 there is a p-morphism g5: P —> P5 with (?5(M) = Min(P5)

and, hence, g(y) = g(z) £ Min(Ps).

Define g: P —> P& by g(x) = b whenever ¡73 (x) = o and g(x) = cy5(x) for all other

x E P. It is easy to see that ç; is a p-morphism with g(y) = a < b = g(z). The

converse implication is trivial.

COROLLARY 3.7. Let (P,t) E B2 be such that distinct y,z E P are incompara-

ble whenever Min(y) = Min(z) = M has more than one element. Then there exists

a p-morphism g: P —> P7 such that g(y) = a and g(z) = b for any such pair {y, z}.

PROOF. By hypothesis, the mapping g of Lemma 3.6 is also a p-morphism to

P7.

LEMMA 3.8. If i E {3,5,6} and Q = Pi is a subspace of (P,t) E Bu, then
there exists an idempotent f E End(P, r) such that f(P) = Q. The claim also holds

true for P4, provided (P, t) E Pi .

PROOF. In all cases the lemma follows from the preceding separation state-

ments. Thus, for instance, Lemma 3.4 implies that for every subspace Q of (P, r)

isomorphic to P5 there exists a p-morphism g: (P,t) —> P5 with g(Q) = P5; the

composite f = hg in which h is the p-isomorphism of P5 onto Q Ç (P, t) is the

required idempotent endormophism.

The following is similarly derived from Corollary 3.7.

LEMMA 3.9. If Q = P7 is a subspace of (P,t) E B2 and if (P,t) contains no

subspace isomorphic to P§, then there exists an idempotent f E End(P, t) such that

f(P) = Q-

Let cm denote the constant endomorphism of (P,t) G Pw with value m G

Min(P).

LEMMA 3.10.   Let (P,r) G Pw and let E = End(P,r).  Then

(i) fcm = cf(m) for all f E E and m G Min(P),

(ii) f E E is a left zero of E if and only if f = cm for some constant with

m G Min(P),

(iii) for f E E and m G Min(P), m G f(P) if and only if cm E fE.

PROOF, (i) is clear. To see (ii) observe that, for f E E and x E P, cm/(x) =

m = cm(x) and that if / is a left zero then, for m E Min(P), / = fcm = c/(m)-

Consider (iii). If m G /(P), then m = f(n) for some n G Min(P). Since fcn(x) = m

for all x G P, cm = fcn follows. Conversely, cm = /<? implies m = cm(x) = fg(x)

for any x E P. The proof is complete.

NOTATION. For idempotent f,g E E = End(P,r) G Bu and a p-morphism

a: f(P) —y g(P), the composite F(a) = gaf is an endomorphism of (P,t). Follow-

ing are some properties of F.
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LEMMA 3.11. If f,g,a and F are as above and if ß: g(P) —► h(P) for some

idempotent hE E, then, for H(f,g) = Hom(/(P),c/(P)),
(i) F(ßa) = F(ß)F(a),

(ii) F(H(f,g)) =gEnEf = {eEE: gef = e},
(iii) P(e [ f(P)) = e for every eEgEf) Ef,
(iv) F is one-to-one on each H(f,g).

In particular, F is a constant-preserving semigroup isomorphism o/End(/(P))

onto fEnEfEEnd(P).

PROOF. To see (i) note that F(ß)F(a) = hßggaf = hßgaf = hßaf = F(ßa).

Next observe that e = ç/ei = e2f implies gef = ç/2ei/ = ç/ei/ = e2f2 = e2f = e;

hence gef = e is equivalent to e G gEHEf. To see that F(a) G gECiEf it is enough

to recall that /, g are idempotent; since e(f(P)) Ç g(P) for every e G gE fl Ef, (ii)

follows immediately, (iii) and (iv) are also easily obtained.

LEMMA 3.12. For (P,t) E Bu, ifEnd(P,r) == End(P¿) for i = 3,5,6,7, then
(P, t) = P3, P4 or P5,P6,P7, respectively.

PROOF. End(Pj) = {1, cm}, so that Min(P, r) is a singleton by Lemma 3.10(h);

should P\Min(P) have more than one element, Lemma 3.3 would imply the exis-

tence of at least two idempotent endomorphisms distinct from 1 and from cm.

Again by Lemma 3.10(h), Min(P, r) = {m,n} in all remaining cases. If there

is an element x G P\Min(P) with Min(x) = {"^}, then Lemma 3.3 implies the

existence of a nonconstant idempotent / with fcm = fcn = cm. Since every z E

P¿\Min(Pj) satisfies Min(z) = Min(P¿) for i = 4,..., 7, there is no such idempotent

in any of the corresponding End(P¿). We see that Min(x) = Min(P, r) for any

x G P\Min(P).
Let F be the set of all / G End(P, t) with fcm = cm and fcn = cn. By Lemma

3.8, for every a E P\Min(P) there exists an idempotent ea E F with ea(P) =

{m,n,a}. Since these idempotents are exactly the left zeros of the semigroup F,

the space (P, t) is isomorphic to P4 or to P5 if and only if F is trivial. Otherwise,

P\Min(P) has exactly two elements; these elements are incomparable just when

there exists a nontrivial f E F such that f2 is the unit of F, and this property

distinguishes P7 from Pq . The proof is complete.

A p-space (P, t) G B2 lies in Pi if and only if it does not contain a subspace

isomorphic to P5; the following is obtained immediately from 3.8, 3.11 and 3.12.

PROPOSITION 3.13. The endomorphism monoid of a p-space (P,t) E B2 de-

termines whether or not each of P3,P4 or Ps,P6 is a subspace of (P,t).

Similarly, the following is seen to hold by 3.9.

PROPOSITION 3.14. If (P,t) E B2 does not contain a subspace isomorphic to

Pß, then End(P,r) determines whether or not there is a subspace of (P,t) isomor-

phic to P-j.

The lemma below provides a first step needed to recover the structure of a space

in B2 from its endomorphism monoid.

LEMMA 3.15. Let (P, r), (Q, a) E B2, and let $ be an isomorphism o/End(P, r)

onto End(Q, a). Then there is a homeomorphism <p of the Boolean subspace Min(P)
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onto the subspace Min(Q) of Q such that $(f)(<p(m)) = <p(f(m)) for all f E

End(P, r) and m G Min(P). In particular, m E f(P) is equivalent to <p(m) E

$(/)(<?) for every m £ Min(P).

PROOF. The isomorphism $ establishes a bijection between the sets of left zeros

of the respective endomorphism monoids; by Lemma 3.10 there is a bijection <p

of Min(P) onto Min(Q) defined by $(cm) = c^^). Furthermore, for any / G

End(P, r) and any m G Min(P), we see that, for all q G Q,

*(/)(lp(m)) = $(/)(c,w(?)) = *(/)*0=m)(9)

= $(/cm)(<?) = *(c/(m))(g) = cvfim)[q) = f{f{m)).

To show that <p is a homeomorphism, let A E Min(P) be a clopen set. There is a

p-morphism /: Min(P) —» P4 with /_1{a} = A, so that, by Lemma 3.2, there is a

p-morphism g : (P, r) —> P5 extending /. Whether g(P) = P5 or c;(P) = P4 there

exists an idempotent endomorphism h of (P,t) such that Min(P) D h~x{a} = A,

where {a} = h(A). Since <p is a bijection of Min(P) onto Min(Q), for every m G

Min(P), $(h)((p(m)) = ip(h(m)) = <p(a) is equivalent to <p(m) E <p(A). Therefore

<p(A) = Min(Q) n $(/i)_1{<p(a)} is a clopen subset of Min(Q). Since the Boolean

spaces Min(P), Min(Q) have clopen bases and are compact, <p is a homeomorphism.

DEFINITION. A subset S of End(P, r) is called a separation set if

(i) s(P) is finite for each s E S,

(ii) if x ^ y, then s(x) % s(y) for some s E S.

It is an order separation set if, in (ii), it is also the case that s(y) E Min(P).

The role of (order) separation sets is apparent from the claim below.

LEMMA 3.16. Let (P,r),(Q,a) E Bw have the same underlying set X and let

S E End(P, r) n End(Q,a). Then

(i) if S is a separation set for (P, r) then t = a,

(ii) if S is an order separation set for (P, t), then r = a and P = Q.

PROOF. If 5 is a separation set for (P,t), then conditions (i) and (ii) from the

definition imply that sets of the form s_1{s(x)} with s E S and x G X form a

clopen subbase in either compact Hausdorff topology; this is possible only if t = a.

In view of Lemma 3.15 we may assume that Min(P) = Min(Q). Let S E

End(P, r)nEnd(Q, a) be order separation. If x $£ y in P, then s(x) ^ s(y) E Min(P)

for some s E S, while x < y in Q would yield s(x) < s(y) E Min(Q) in Q and hence

s(x) = s(y). This concludes the proof of (ii) since S is also a separation set.

Following is the first instance in which the underlying set can be recovered from

the endomorphism monoid.

PROPOSITION 3.17. Let (P,r),(Q,a) E B2 and let $ be an isomorphism of
End(P, r) onto End(Q, a). If both spaces contain a subspace isomorphic to P5, then

there is a bijection tp of P onto Q extending the homeomorphism <p of Min(P)

onto Min(Q) from 3.15 and satisfying $(/) o xb = ip o f for any f E End(P, r).

Furthermore, for m E Min(P) and x E P, m < x if and only ifip(m) < i/j(x).

PROOF. Let P5 = {m,n,a} E (P,t) and P5 = {r,s,b} Ç (Q,a) with 0,6 non-
minimal. Without a loss of generality we may assume that a Boolean space (M, p)

is the subspace of minimals of either p-space. Therefore Lemma 3.15 translates to
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say that, for every / G End(P, r), the restrictions of / and of $(/) coincide on

(M,p).
There exists an idempotent / G End(P, r) for which f(r) = m and f(s) = n;

this follows from Lemma 3.2 since (M,p) is a Boolean space. Thus $(/)(r) =

m, $(/)(s) = n as well and, therefore, {m,n,$(/)(6)} is a subspace of (Q,a)

isomorphic to P5. We see that P(m,n) = {xE P: Minp(x) = {m,n}} is nonempty

if and only if Q(m,n), defined similarly in (Q,a), is nonempty.

Select and fix an idempotent / G End(P,r) with f(P) = {m,n,a} = P5. The

endomorphism $(/) of (Q,a) is idempotent and its image is isomorphic to P4 or

to P5 by Lemmas 3.11 and 3.12. Since Q(m,n) is nonempty, the first case cannot

occur; let b denote the nonminimal element of $(/)(Q). For every x G P(r,s)

there also is an idempotent gx such that gx{P) = {r, s,x}; by Lemma 3.11, e =

gxef for exactly two nonconstant e G End(P, r), and e(a) = x for both of these.

Thus the two maps $(e) = $(ç/x)$(e)$(/) also are nonconstant; since <&(gx)(Q)

is isomorphic to a subspace of P5 as well and $(/)(Q) = P5, there is a uniquely

determined ip(x) = $(e)(6) in Q(r,s). For I E M, I < x if and only if I E e(P).

By Lemma 3.10(iii), this is equivalent to c; G eEp, where Ep = End(P, r); that

is, ci = $(cj) G $(e)$(Pp) = $(e)EQ or, equivalently, I E $(e)(Q). Thus, m < x

is equivalent to m < V(x) for any x with |Min(x)| > 1. For x G P\M with

Min(x) = {r} let ^(P) = {r, x} for an idempotent endomorphism c^; there is a

unique nonconstant gxef = e with e(a) = x, so that ip(x) = $(e)(6) is well defined

and ip(x) E P\M. Similarly, / < x if and only if / < ip(x) for l G M. The definition

of rp can now be summarized as follows. For every x E P there is an endomorphism

ex = 9x^xf of (P,t) such that ex(a) = x; ib(x) is then defined as $(ex)(6) for any

such endomorphism. Clearly then m < x if and only if m < ip(x) for any m G M.

For every /i G End(P, r) we thus have hex(a) = h(x) and, therefore,

*(/i)i>(x)) = *(/i)$(ex)(6) = *(/iei)(6)

= $(efc(l))(6) = ^(h(ï)).

It is obvious that ip is one-to-one. To see that ip is onto, note that the argument

may be reversed: for every y E Q there is an endomorphism ky = ky$(f) such

that ky(b) = y. Thus $~1(fc!/)(o) is the element whose ^-image is y. The proof is

complete.

THEOREM 3.18. Algebras in Bx are uniquely determined by their endomor-

phism monoids.

PROOF. If (P,r),(Q,a) E Bx have isomorphic endomorphism monoids then

Proposition 3.13 implies that either they are both Boolean and hence isomorphic by

Lemma 3.15, or, by Proposition 3.13, both contain P3 as a subspace. Assume again

that the spaces share the subspace of their respective minimals. If {m, a} Ç (P, r),

then there exists a nonconstant idempotent endomorphism / with f(P) = {m,a};

for every x G P\M there is an endomorphism ex = exf with ex(a) = x. Similarly to

the proof of 3.13 we establish a bijection ib of P onto Q such that $(/i) oip = ipoh

for any endomorphism h of (P,t). The underlying sets of P and Q may thus

be identified. Then 3.3 and 3.4 combine to show that the endomorphisms whose

images are isomorphic to P3 or to P4 form an order separation set, so that the

spaces coincide by 3.16.
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THEOREM 3.19. If (P,r),(Q,a) E B2 have isomorphic endomorphism mon-

oids and if P3 is isomorphic to a subspace of one of them, then the spaces must be

isomorphic.

PROOF. Recall that under the hypothesis both spaces must contain a copy of

P3. If P5 is not a subspace of either, Theorem 3.18 applies. Hence assume that

(P, r) contains both P3 and P5 as subspaces. If /, g are idempotent endomorphisms

such that /(P) — P5 and g(P) — P3, then, by 3.11, there is a nonconstant e = gef

in End(P,r). From 3.11 and 3.12 we see that <¡>(g)(Q) = P3 and $(/)(<2) = P4 or

P5. Should the first case occur, the set of all h G End(Q, er) with h = $(g)h$(f) will

consist of a single constant. Thus $(Q) = P5 and 3.17 implies that the underlying

sets of P and Q and also their endomorphism monoids can be identified. By 3.3 and

3.4, the endomorphisms with images contained in P3 or P5 form an order separating

set, so that (P,t) and (Q,a) are isomorphic by 3.12. This completes the proof.

From now on we will assume that P3 is a subspace of neither space. The first

case to consider will be that of P5 being contained in both. Therefore, by 3.17,

we may assume that the two spaces share the space M of minimals, have the same

underlying set X, and End(P, r) = End(<Q,cj).

If P\M contains a comparable pair, say a < b, then Min(6) = Min(a) = {m, n}

and {m,n,a,b} = Pq. Thus, by 3.11 and 3.12, we obtain that {m,n,a,b} is a

subspace of (Q,a) isomorphic to Po; note, however, that possibly a > b in Q.

Select an idempotent h E End(P, r) with h(P) = {m, n, o, b} = Pa; see Lemma 3.6.

The sets P(r, s) = Q(r, s) are pairwise disjoint and cover X\M, so that x < y in P

iff x < y in Q unless x,y E P{r,s) for some {r,s} E M, by Proposition 3.17. For

every pair x < y in P(r, s) the subspace {r, s, x,y} is isomorphic to P^; hence there

is an endomorphism g with g(a) = x and g(b) = y. Thus x<yort/<xin<5as

long as o < b or b < a holds, respectively, in Q. In either case from 3.4, 3.5, 3.6,

3.12 it follows that a = t since the endomorphisms into Pq form a separation set.

If o < b in Q, then Q = P. If b < a in Q, then the Q-order of each P(r, s) is dual

to the P-order of P(r, s); that is, the identity map of X\M is a dual isomorphism

of P \ M onto Q\ M. We see that there possibly is another space (Q, t) with

End(P, r) as its endomorphism monoid.

To see that this is indeed the case, let (Q, r) be obtained from the p-space (P, r)

by the reversal of the partial order of P\M. We need to show that (Q,t) is a

p-space whose endomorphism monoid coincides with that of (P,t).

To verify that End(P, r) Ç End(Q,r), note that the topologies coincide, and

that Minp(x) = Minç(x) for all x G X. Let / G End(P,r) and x < y in Q. If

x E M then x < y in P and, consequently, f(x) E M and f(x) < f(y) in P;

thus f(x) < f(y) also in Q. If x G Q\M then x,y E Q(r,s) = P(r,s) for some

{r, s} E M, so that x > y in P. If f(x) E M then f(y) = f(x) since / is order

preserving; the same conclusion is drawn if f(y) E M, for / is a p-map and P3 is

not a subspace of (P, t). Thus f(x) E X\M iff f(y) E X\M and hence in this case

too f(x) < f(y) in Q by definition. We see that every p-endomorphism of (P,t) is

also a p-endomorphism of (Q,t). The argument can be reversed to conclude that

End(P,T) = End(Q,r).

Clearly (Q, t) is compact; to see that it is totally order disconnected, let x %

y in Q. Assume first that there is some m in MinQ(x)\MinQ(y). Then m G

Minp(x)\Minp(y), so that there is an endomorphism g of (P,t) with g(X) E P5
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and {g(y),g(m)} = Min(P5) by Lemma 3.4. Since ç; is also an endomorphism

of (Q, t), the set g~1{g{y)} is clopen, decreasing, and does not contain x. By

symmetry, we may assume that Ming(x) = Minç(î/); since (Q,t) does not contain

a subspace isomorphic to P3, it follows that x,y E Q(r,s). Hence x *¿ y in (P,t)

and there exists / G End(P, r) with f(X) = {m,n,a,b} such that f(x) = a and

f(y) = b. Since a < b both lie in P(f(r),f(s)) = Q(f(r),f(s)), the opposite a > b
holds in Q; thus /_1{a} is a clopen increasing set of Q containing x and missing

y. As a result, (Q, t) is totally order disconnected.

To show that (Q, r) is a p-space it remains to show that every continuous map of

(M,p) into P4 extends to a p-morphism of (Q, r) into P5. This, however, is trivial

since (P,t) has the p-property and every Q(r,s) = P(r,s) will be collapsed under

the extension. By Lemma 3.2, (Q, r) is a p-space.

Let (P+,t) denote the space obtained from (P,t) in this manner and let L+

denote the algebra in B2 that is represented by (P+,t) provided L corresponds to

{P,t). It is clear that L = L+ if and only if P = P+, that is, if and only if the

poset P(r,s) is self-dual for all {r, s} Ç Min(P). We have proved the following.

PROPOSITION 3.20. For (P,t) G B2 such that P3 is not a subspace of P while

Pe is, there exists at most one other space (P+,t) E B2 such that End(P,r) =

End(P+,r). The underlying sets of these two possible spaces coincide and P+ has

Pe amongst its subspaces but not P3.

The next case to consider is that of a space (P, r) G B2 containing neither P3

nor Pß as a subspace; we shall still assume that P5 is a subspace of both (P, r) and

(Q, a). Recall that (Q, a) does not contain P3 or Pe either, and that the underlying

set and the order of the two spaces coincide since every P(r, s) = Q(r, s) must be

an antichain. If P7 = {m,n,a,b} Ç (P,t), then P7 is also contained in (Q,a) by

3.14. But then the endomorphisms into P7 will form a separation set; see Corollary

3.7. Otherwise every P(r,s) = Q(r,s) has at most one element and separation is

obtained by mapping into P5; see 3.4. The following has been established.

THEOREM 3.21. If two spaces in B2 with isomorphic endomorphism monoids

contain P5 and one of them does not contain Pa, then the other one does not contain

Pe and they are isomorphic.

The remaining case is that of (P, r) containing no copy of either P3 or P5, while

(Q,a) contains P5 = {m,n,a}, but, by Lemma 3.12, not P3,P6, or P7. By 3.15,

(P, r) is a Boolean space homeomorphic to Min(Q). For every pair {r, s} E Min(Q),

the set Q(r, s) has at most one element. For every pair {r, 5} Ç Min(Q) there is, by

3.2, a p-endomorphism / of (Q,a) such that f({m,n}) = {r,s}; thus every Q(r,s)

has exactly one element. By Theorem 3.21, there is, up to isomorphism, at most

one such space; the existence of (Q, a) remains to be shown.

For f:PxP^y P+ = {{m,n}: m,n E P} given by f(m,n) = {m,n}, let

a denote the quotient topology on P+; that is, B Ç P+ is open if and only if

f~l(B) is open in the product space (P,t)2. Let P+ be ordered by inclusion;

clearly, P+({m},{n}) has exactly one element for every pair m,n E P. Since

(P, r)2 is a Boolean space, (P+, cr) is compact. Observe that for any clopen CEP,

(m,n) E A = (C x P) U (P X C) if and only if {m,n} E f(A). Consequently,

f~l(f(A)) = A and f(A) is clopen. Clearly, Min(P+)n/(A) = {{m}: m G C}, so
that P is homeomorphic to Min(P+). Further, f(A) is increasing since (m,n) E A
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for every n E P whenever m G C. Thus, if X ^ Y E P+, then, for m E X\Y,

C may be chosen such that m EC and C fl Y =0; consequently, X G f(A) and

Y £ f(A). Thus (P+,a) is totally order disconnected. If D E P+ is clopen

decreasing, then f~1(D) = (J(C¿ x C[: i < k) where Ci,C[ E P are clopen. Then

f(B) is clopen, where P = \J((Ci x P) U (P x Ci): i < k). Since D is decreasing,

(m,n) EB if and only if {m} G B or {n} G B: thus /(P) = [D), and (P+,a) is a

p-space.

Since, for any p-morphism g of (P+,a) to itself, ç/(Min(P+)) Ç Min(P+), all that

remains to be shown is that any continuous map g of (P, r) extends uniquely to a p-

morphism of (P+,a). Define g+{x, y} = {g{x),g(y)} for all {x,y} E P+; it is clear

that g+ is the only p-map extending g when (P,t) is identified with Min(P+). The

map gxg:PxP^PxP is continuous, and sois f o (gxg) = g+ o /; to establish

the continuity of g+ it is enough to recall that / is a quotient map. Altogether, $

defined by $(g) = g+ is an isomorphism of End(P, r) onto End(P+,cr). It is clear

that these spaces are nonisomorphic.

THEOREM 3.22. For every Boolean space (P,t) there is a unique space (P+,a)

in B2 such that End(P,r) = End(P+,cr) and (P,t) ^ {P+,<r); the space (P+,a)

lies in B2\Bi.

Following is a summary of the results of the present section in an algebraic form.

THEOREM 3.23. At most two nonisomorphic pseudocomplemented distributive

lattices in B2 may have isomorphic endomorphism monoids: either one of the pair

is a Boolean algebra and the other is a unique algebra in B2\Bi, or both algebras

of the pair lie in B2\Bi. In both cases, any quotient of either one of the algebras

that lies in Pi is Boolean.

4. The variety P3. An undirected graph (X,R) is a set X together with a

collection R of two-element subsets of X. For graphs (Xi, Pi ), (X2, R2 ), a mapping

ip: Xi -* X2 is compatible iff, for {x,y} E Pi, {<p(x),<p(y)} E R2.

A variety V of algebras is almost universal if the category of all compatible

mappings of undirected graphs is isomorphic to the class of all nonconstant homo-

morphisms between algebras from a subclass D of V.

The object of this section is to show that the variety P3 is almost universal and,

hence, by definition, that P4,..., Bu are also almost universal. As observed in §1,

there are a number of immediate consequences each of which illustrates the marked

difference between the varieties B2 and P3. Using ideas from [1], G. Grätzer, H.

Lakser and R. W. Quackenbush [20], and [38], it is not hard to show that, for

any integer n, there exist an integer N and a collection (L¿ G P3 : i < n) of finite

pseudocomplemented distributive lattices such that, for distinct i,j < n, Li ^ Lj

and End(L¿) consists of the identity and N right zeros. This weaker result (which

is one of the consequences of Theorem l.l(iv)) already indicates the change at P3.

Since it is easily obtainable en route to the main construction, it will, by way of

motivation, be derived shortly.

Some more notation is needed.

The height of a poset P is the largest positive integer n for which P has a chain

of cardinality n; if no such integer exists then the height of P is infinite. A poset P

is a triple order if (i) it has height at most two, (ii) for x G P, if x ^ Min(P) then

I Min(x)| = 3, and (iii) for x,y E P, Min(x) = Min(y) implies x = y.
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For a graph (X, R), the subgraph induced by Y Ç X is the graph (Y,S), where,

for x, y E Y, {x, y} E S iff {x, y} E R. The complementary graph of (X, R) is the

graph (X, R'), where, for distinct x,y E X, {x,y} E R' iff {x, y} £ R. A graph

(X, R) is connected if, for distinct x,y E X, there exist an integer n and, for i < n,

Xi E X such that x = xq, y = xn, and, for i < n, {x¿, x¿+i} G P. Finally, a graph

is automorphism rigid if the only compatible bijection to itself with a compatible

inverse is the identity. A graph is endomorphism rigid if the only compatible map

to itself is the identity.

Choose a finite graph (G, R) satisfying the following properties:

(i) (G, R) is automorphism rigid;

(ii) (G,R),(G,R') are connected;

(iii) (g,r)?(G,r');
(iv) \G\ > 12;
(v) for H EG such that \H\ + 2 > ]G\, if (H, S) denotes the induced subgraph

of (G,R), then |5|,|S'| > 5.
Such graphs abound. For example, by Z. Hedrlin and A. Pultr [25] (see also A.

Pultr and V. Trnková [43]), the graph of Figure 4.1 satisfies (i)-(v); it is, in fact,

endomorphism rigid.

FIGURE 4.1

Let T = G U R U R' U {a, b}, where a, b are distinct elements. Define a partial

order on T by the following:

(i') for r E R, Min(r) = {a} U r;

(ii') for i> E R!, Mini/) = {b} U r'.

Further, let T'=TU {c,d,e,/} for distinct elements c,d,e and / not contained in

T. Choose, for 1 < i < 12, distinct c/¿ G G (this is always possible by the choice of

(G, R)). Define a partial order on V as an extension of T by the following:

(iii') Min(c) = {01,02,03};

(iv') Min(ci) = {g4,g5,9eh
(v') Min(e) = {37,08,99};

(vi') Min(/) = {910,011,012}.

Thus, for the graph (G,R), T satisfies (i'), (ii') and T satisfies (i')-(vi'). Clearly,

both T and T" are triple orders.

For posets Pi and P2, a map tp: Pi  —* P2 is a constant iff, for x,y E Pi,

<p(x) = <p(y).

LEMMA 4.1.   Let <p: T —> V be a p-map.  Then either ip is the inclusion map

or a constant.
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PROOF. Consider the case that <p is not a constant: it is to be shown that <p is

the inclusion.

Assume first that there exist distinct x,y E G such that <p(x) = <p(y). Then

either {x,y} E R or {x,y} E R'. Suppose {x, y} E R. Then since <p is a p-map

and T' is a triple order, ip(a) = (p(x) = <p(y). Hence, tp(z) = <p(x) — ip(a) for

{x,z} G P. Since (G,R) is connected, it follows that <p(u) = ¡p(a) for u E G.

Further, {u, v} G R' for some u,v E G. Whence ¡p(b) = p(a). Consequently, since

T" is a triple order, it follows that <p is a constant. A similar argument holds in the

case {x, y} E R'.

Suppose <p(x) = ¡p(a) or ip(b) = tp(x) for some x E G. Consider <p(a) = <p(x).

For some y EG, {x, y} E R. Thus, <p(a) = <p(x) = <p(y) and, by the above, <p is a

constant. The case <p(b) = <p(x) is similar.

Thus <p is one-to-one on G U {a} and on G U {6}.

Suppose next that <p(a) E G or <p(b) E G. Consider <p(a) E G. Then let

H = {x G G: <p(x) E G}. Since <p is one-to-one on G, \H\ + 2 > \G\. Thus, by

the choice of (G,R), \S\ > 5 for the induced subgraph (H,S). For s E S Ç R,

ip(Min(s)) E G. Since f is one-to-one on P U {a} this contradicts the fact that

{xET':x£ Min(T') and Min(x) Ç G} = {c,d,e,f}. Hence <p(a) xf G. Similarly,

p(b) i G.
Thus p({a,b}) E {a,b}.

Let <p(x) E {a,b} for some x E G. By the above, <p(a) ^ <p{x). Hence,

{<p(a),ip(x)} = {a,b}. For some y E G, {x,y} E R. Since a, x E Min({x, y}),

a,b E Min(ip({x,y})). This is impossible as no element of T" covers both a and b.

Therefore <p(G) = G.

Suppose that either ip(a) = a or tp(b) = b. Let <p(a) = a. Since <p(R) Ç R and

(G, R) is finite, <p is a graph automorphism of G. By choice, <p is the identity on

G. However, for some x,y G G, {x,y} G R'. Thus, <p(b) jí a. Hence, <p(b) = b and

ip is the inclusion map. A similar argument applies if <p(b) = b.

Consider <p(a) = b and ip(b) = a. In this instance, since <p is one-to-one on

G U {a, b} and V is a finite triple order, <p(R) = R' and ip(R') = R. That is,

(G,R) = (G,R') which is impossible. This covers all outcomes. The proof is

complete.

Since T is finite, when endowed with the discrete topology it corresponds to the

dual space of a finite pseudocomplemented distributive lattice L E P3. By Lemma

4.1, End(L) consists of constant endomorphisms (of which there are |G| + 2) and

the identity; that is to say, End(L) has an identity and |G| + 2 right zeros. It follows

from Z. Hedrh'n and A. Pultr [25] (see also A. Pultr and V. Trnková [43]) that for

any integer n there exist finite graphs (G¿ : i < n) satisfying the required conditions

(i)-(v) such that, for distinct i,j < n, |G¿| = |Gj| and G¿ ^ Gj. The following

proposition is immediate.

PROPOSITION 4.2. For any integer n there exist finite pseudocomplemented

distributive lattices (Li E P3: i < n) and an integer N such that, for distinct

i,j <n, Li"^ Lj and End(L¿) = End(Lj) consist of an identity and N right zeros.

Recall that Tp denotes the category of compact totedly order disconnected spaces

with the p-property together with all continuous p-maps and that this category is

dually isomorphic to the variety of pseudocomplemented distributive lattices. Let
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Tg denote the full subcategory of Tp corresponding to the variety P3. Thus, by

Proposition 2.1, a compact totally order disconnected space with the p-property

(P, r) is in 7f iff, for x G P, | Min(x)| < 3.

Let LT(2) denote the category whose objects are simultaneously (0, l)-lattices

with two additional unary operations and compact totally disconnected spaces for

which the algebraic operations are continuous. (A topological space (X, r) is totally

disconnected iff, for distinct x,y G X, there exists a clopen set Y E X such that

x if Y and y E Y.) Thus an object of LT(2) is of the form (L;t, V, A,a,ß,0,1),

where (L;V,A,a,ß,0,l) is a (0, l)-lattice with two unary operations a,ß (that is

to say, of type (2,2,1,1,0,0)) and (L,t) is a compact totally disconnected space;

furthermore, the algebraic operations are continuous functions. Morphisms of LT(2)

are all continuous homomorphisms; in other words, all (0, l)-lattice homomorphisms

preserving a, ß which are also continuous.

The initial objective is to construct a functor $ from LT(2) to T$ showing that

LT(2) is isomorphic to a subcategory of T| consisting of all nonconstant continuous

p-maps. Subsequently, a functor $ will be given and used to show that the category

.4(2) of all algebras with two unary operations and their homomorphisms is dually

isomorphic to a full subcategory of LT(2). A well-known result by Z. Hedrlin and

A. Pultr (see [43]) states that .4(2) is universal. A category C is universal if the

category of all graphs and their compatible maps is isomorphic to a full subcategory

of C. Since T% is dually isomorphic with P3, the composite $ o $ together with

this duality will establish the almost universality of P3.

CONSTRUCTION 4.3. Define a functor $: LT(2) -> T3P as follows:

For (L; r, V, A, a, ß,0,1) G LT(2), let P be the disjoint union

{a, b}U(Lx(GöRö R')) U ((L x L) x {0,1}) U L U {g}, where G, R, R' and
{a, b} are as before.

Define a partial order on P such that the following hold:

(i) for x,y G L and s, t E G U R U R', (x, s) > (y, t) in P iff x = y and s > t in T;

(ii) for x G L, s E G U R U R' and í G {a, b}, (x, s) > t in P iff 5 > t in T;

(iii) for (x,y) E L x L, Min((x,y,0)) = {(x,ç/i), (y,g2), (x V y,g3)}, and

Min((x,y,l)) = {(x,g4),(y,g5),(x Ay,g6)};

(iv) for xG L, Min(x) = {(x,g7), (a(x),gs), (ß(x),g9)};

(v) Min(g) = {(0,gio),(0,gii),(l,gi2)}.

Intuitively, P contains L copies of T where the elements a and b are identified; all

remaining elements reflect the algebraic operations of (L; V, A, a, ß,0,1).

Define a topology on P in the following manner. P is the union of finitely many

sets: two singletons {a}, {b}; [G U R U P'| copies of L; two copies of L x L; a single

copy of L; a singleton {g}. Since (L, t) is a compact totally disconnected space, so

is L x L in the product topology. Let a be the union topology on P; more precisely,

(P, a) is the union of three isolated points, |GuPUP'| +1 copies of L with topology

r, and two copies of L x L with the product topology. It immediately follows that

(P, a) is a compact totally disconnected space.

Let $(L; r, V, A, a,ß, 0,1) = (P,cr).

For Li,L2 E LT(2), let ip: Li —> L2 be a continuous homomorphism. Define

$(ip): $(Li) —» ®(L2) as follows:

(i) *f»(a) = a;

(ii) $(rb)(b) = b;
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(iii) for x G Li and s G G U P U R', $(tp)(x, s) = (ip(x), s);

(iv) for x,yELi and ¿ = 0,1, $(ip)(x,y,i) = (ip(x),ip(y),i);

(v) for x G Li, $(ip)(x) = ip(x);

(vi) $(ih)(g) = g.

It must be shown that $ is the well-defined functor that it is claimed to be.

Initially it is to be shown that $(L) G Tf for all L E LT(2).

The first lemma is routine.

LEMMA 4.4.   For L E LT(2), $(L) is a triple order.

LEMMA 4.5. $(L) is a compact totally order disconnected space for any L E

LT(2).

PROOF. Clearly, as defined, for L E LT(2), $(L) is a compact totally discon-

nected space.

For p,q E P, let p%q. Then it must be shown that there is a clopen decreasing

set Q E P such that q EQ and p^Q.

Suppose p = (x,s) and q = (y,t) for x,y E L and s, t E G U R U R'. If x ^ y

then there exists a clopen set U Ç L such that x £ U and y E U. Thus, for

Q = U X {r: r < t} U {o, 6}, q E Q, p £ Q, and Q is clopen decreasing. If x = y

then s % t; set Q = L x {r : r < t} U {a, b}.

If either p or q is a, b or g, then the construction of Q is clear. Similarly, if p G L

or (L x L) X {0,1}, then finding a suitable Q is again straightforward.

Thus it remains to consider the cases for which q E L or q E (L X L) X {0,1}.

Of these the cases that bear closer inspection are when p = (x,c/¿) for i = 1,2,3

and q E (L X L) X {0}, or p = (x,g¿) for i = 4,5,6 and q E (L X L) X {1},

or p = (x,gi) for i = 7,8,9 and q E L. Suppose first that q E (L X L) X {0}

and p = (x,gi) for i = 1,2, or 3. Consider the unique element (y,gi) such that

q > (y, gi). Since x ^ y, choose a clopen set U E L such that x kfU and y EÍJ.

Let V = {r E (L x L) x {0}: r > (z,g{) for some z E U}. Then V is clopen since,

in the case i = 1,2, projections are continuous and, in the case i = 3, the join

function is continuous by hypothesis. Let Q = V U (U x {gi}) U(Lx {gj : j ^ i

and j = 1,2,3}). For q E (L X L) x {1}, a similar argument holds. Finally, let

p = (x, gi) for i = 7,8,9, and let q E L. Then there is exactly one (y, gi) such that

q > (y,gi). Similarly, since x ^ y, there exists a clopen set U E L such that y E U

and x c£ U. Because a,ß are continuous, V = {r E L: r > (z, gi) for some z E U}

is clopen. It is then sufficient to consider Q = V U (U x {gi}) U (L x {g3■: j ^ i and

j = 7,8,9}). The proof is complete.

LEMMA 4.6.   For LE Lt(2), $(L) has the p-property.

PROOF. It must be shown that [Q) is clopen for any clopen decreasing set

Q Ç P. However, a subset of P is clopen iff its intersection with each copy of L

or L x L is clopen. The claim follows by observing, as in the previous lemma, that

the projections, join, meet, a and ß are all continuous functions.

Thus, for L G LT(2), $(L) G Tf. The next lemma is routine.

LEMMA 4.7. For Li,L2 G LT(2) and a continuous homomorphism ip: Li —»

L2, $(V") is a continuous p-map.
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Consequently, $ is a well-defined faithful functor. It is now to be shown that it

is almost full; that is to say, if, for Li,L2 E LT(2), p: $(Li) —► $(L2) is a continu-

ous p-map which is not a constant, then there exists a continuous homomorphism

xp: Li -+ L2 such that <p = $(rp).

LEMMA 4.8. For Li,L2 E LT(2), let p: $(¿i) —> $(L2) be a continuous p-

map which is not a constant. Then <p(a) = a, p(b) = b, and there exists a mapping

xp: Li —> L2 such that <p(x,s) = (xp(x),s) for all x E Li and s G G U R U P'.

PROOF. For x G Li, let £x: T —y $(Li) be the mapping defined as follows:

(i) 6r(o) = a;

(ii) Mb) = b;
(iii) for s E G U P U R', £*(«) = (x, a).

Let £: $(L2) —► T' be the mapping defined by

(i) {(a) = a;

(ii)m = b;
(iii) for x G L2 and s E G U P U P', £(x, s) = s;

(iv) for x,y E L2, £(x,y,0) = c, £(x,y, 1) = d;

(v) for x E L2, £(x) = e;

(vi) í(s) = /•
Clearly, for x G ¿i, &: T -» $(Li), p: $(Za) -> $(L2), and £: $(L2) -> T'

are all p-maps. Let px : T —► T" denote the p-map £ o <p o Çx. By Lemma 4.1, px is

a constant or inclusion. Hence, it is either the case that px is a constant for some

xELi or that px is the inclusion for every x G Li.

Suppose, for some x G la, Ac is a constant. Since px is a p-map, either po£x(T) =

{a}, <po£x(T) = {b}, or, for some s E G, <po£x(T) Ç L2 x {s}. However, L2 x {s} is

an antichain in $(L2). Thus, in either case, <p o £x is a constant. Since, for y G L\,

py(a) = px{a) and py(b) = px{b), py is a constant for all y E Li and, consequently,

<P°iy = <P°kx for all y G L\. From the fact that Min(<b(Lx)) E \J(£y(T): y G Li),
it follows that <p is a constant on Min($(Li)). Since $(L2) is a triple order, <p must

be a constant on $(Z_a). By hypothesis, this is impossible.

Consider the alternative: px is the inclusion for every x G Li. In particular,

<p(a) = a, <p(b) = b, and, for x G ¿i and s E G, there exists y G L2 such that

<p(x,s) = (y,s). Choose t EG. Then either {s,t} G R or {s,i} G P'. Whence,

Min((x, {s,i})) = {a, (x,s), (x,t)} or {6, (x, s), (x,f)}. Since ip(a) = a, p(6) = 6,

and <p(x, s) = (y, s), it follows that <p(x, t) = (y, t) and <p(x, {s, t}) = (y, {s, t}). Let

xp(x) = y. The proof is complete.

LEMMA 4.9. For Li,L2E LT(2), lettp: 4>(Li) —► $(L2) be a continuous p-map

which is not a constant. Then there exists a continuous homomorphism xp : Li —> L2

such that <p = $(xp).

PROOF. By Lemma 4.8, there is a mapping xp: Li —* L2 such that p(a) = a,

<p(b) = b, and <p(x, s) = (xp(x), s) for every x G ¿i and s E G U P U P'. Clearly, xp

is continuous. It must be shown that xp is a homomorphism.

For x, y G Lx, Min((x,j/,0)) = {(x,gi),(y,g2),(xVy,g3)}. Hence, Min(<p(x,y,0))

= {(xp(x), gi), (xp(y), g2), (xp(x V y),g3)}. In order that a point with these three

minimals exist it is necessary that xp(x V y) = xp(x) V xp(y); whence, (p(x,y,0) =

(xp(x),xp(y),0). Thus xp preserves joins and p has the required form on Li xLi x{0}.
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A similar argument shows that xp preserves meets and that p> has the required form

on Li x Li X {1}.

For x G Ii, Min(x) = {(x,g7),(a(x),gs),(ß(x),gg)}. Hence, Mm(<p(x)) =

{(xp(x), 07), (xp(a(x)), g6), (xp(ß(x)), ç/9)}. Such a point exists iff xp(a(x)) = a(xp(x))

and xp(ß(x)) = ß(xp(x)); in which case, <p(x) = xp(x). Thus <p has the required form

for Li and xp preserves the unary operations.

Finally, since Min(<p(g)) = {(xp(0),gio),(xp(0),gu),(xp(l),gi2)}, it follows that

tp(g) = g and, hence, xp preserves 0 and 1.

Consequently, xp: Li —> L2 is a continuous homomorphism and <p = $(xb). The

proof is complete.

The above results combine to give the following

THEOREM 4.10.   $: LT(2) -> T\ is an almost full embedding.

The objective now is to construct a contravariant functor $ from .4(2), the

variety of algebras with two unary operations, to a full subcategory of LT(2). By

means of $ it will be shown that A(2) is dually isomorphic to a full subcategory of

LT(2).

For a set X, let B(X) denote the set of all subsets of X. There is a natural

identification between B(X) and 2X; namely, any subset of X corresponds to its

characteristic function. For every / : X —y Y let B(f) : B(Y) —y B(X) be defined by

B(f)(Z) = f~1(Z). Under the above identification the xth projection icx: 2X —y 2

is just P(£x) for the mapping £x: 1 —► X with the value x E X. The topology tx

of the product B(X) = 2X of X copies of the discrete space 2 is thus generated by

all maps P(£x) = 7rx with x E X. The following proposition is well known (see, for

example, J. L. Kelley [29]).

LEMMA 4.11. (B(X),tx) is a compact totally disconnected space for any

setX.

For any set X, B(X) also is a (0, l)-lattice where union and intersection repre-

sent join and meet. Thus (B(X); tx, V, A,0,1) is simultaneously a bounded lattice

(P(X); V, A,0,1) and a compact totally disconnected space (B(X),tx). For ev-

ery f:X —y Y, the lattice (0, l)-homomorphism B(f) is continuous: tx has a

subbase consisting of sets of the form P(£x)-1{¿} for i = 0,1 and x E X, and

B{tx) ° B(f) = P(£/(x)) for every x G X.

The two claims below follow by [12 and 14]; their proofs are included here for

the sake of completeness.

LEMMA 4.12.   The binary operations V, A are tx-continuous.

PROOF. Let J(A, B) = A\JB for A, B E X; we aim to show that J is continuous

with respect to the product topology on B(X)2. Let p¿ : B(X)2 —> B(X) be the two

projections for i = 0,1. Clearly B(ÇX)(J(A, B)) = 0 is equivalent to x G X\(AUB)

and the latter statement holds if and only if P(£x)po(.4,P) = B(£x)pi(A, B) = 0.

Since po,Pi, and all P(£x) are continuous, J_1(P(£x)_1{0}) is clopen in B(X)2 for

every x G X. Since the maps B(£x) generate tx, this proves that J is continuous.

The continuity of meet easily follows.

LEMMA 4.13. xp: B(Y) —» B(X) is a continuous lattice (0,1)-homomorphism

if and only if xp = P(^) for some mapping £: X —> Y.
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The proof of Lemma 4.13 will be facilitated by the lemma below. Before its

formulation, recall that (P(l);ri, V, A,0,1) is simply the two-element chain 2 =

{0,1} with 0 < 1, endowed with the discrete topology.

LEMMA 4.14. A mappings of (B(X);tx, V, A,0,1) into B(l) is a continuous

lattice (0,1)-homomorphism if and only if' 7 = P(£x) for some x EX.

PROOF. If 7 is a continuous lattice (0, l)-homomorphism, then 7_1{1} is a tx-

clopen set containing X. Since tx is generated by the system (P(£x): x G X),

the set 7_1{1} is a union of (finitely many) basic sets and there exists a finite

F E X such that X is an element of a basic set A = f){B{^x)~1{ix}- x E F)

contained in 7_1{1}; here ix E {0,1} for every x G F. In fact, ix = 1 must

hold for all x G F because X E A. It follows that A is the family of all Z E X

such that FEZ. In particular, F E A E 7_1{1}; since F is the join of all

singletons {x} with x G F and 7 is a lattice homomorphism, there is an x G F

with 7({x}) = 1. If x G Z Ç X, then -j(Z) = -y({x}) V i(Z) = 1, while x (£ Z
yields ^(Z) = ~i(Z) A 1 = -j(Z A {x}) = 7(0) = 0; in other words, 7 = B(£X). This

completes the proof since the converse is trivial.

PROOF OF LEMMA 4.13. Suppose xp: B(Y) -> B(X) is a continuous lattice

(0, l)-homomorphism. For every x G X the composite P(£x) o xp = B(£y) for a

unique y G Y, by Lemma 4.14. Set £(x) = y and note that x G xp(Z) is equivalent

to x E B(Q(Z); in other words, xp(Z) = B(£)(Z) for all Z Ç Y. Hence xp = P(£)

and the proof is complete.

Thus, for a set X, (B(X);tx,V,A,0, 1) is composed of a compact totally dis-

connected space (B(X), tx) (Lemma 4.11) and a (0, l)-lattice [B(X); V, A, 0,1) for

which the operations V, A are continuous (Lemma 4.12). By Lemma 4.13, continu-

ous (0, l)-lattice endomorphisms of B(X) are exactly all maps of the form P(£) for

some £ : X —> X. If (X; a, ß) is an algebra with two unary operations a, ß, then

V(X;a,ß) = (B(X);tx,\/, A,B(a),B(ß),0,1) is an object of LT(2). Let PT(2) be
the category of all such objects together with all continuous homomorphisms. Thus

Pr(2) is a full subcategory of LT(2).

Recall that £: (X;a,ß) —> (Y;a,ß) is a homomorphism in A(2) if and only if

£ o a = a o £ and £ o /3 = /3 o £. It is easily seen that these equalities hold if

and only if B(a) o P(£) = P(£) o B(a) and B(ß) o P(£) = P(£) o B(ß). Setting

*(£) = P(£) for any morphism £ in A(2) gives rise to a contravariant full embedding

V : A(2) —y LT(2) whose range is the full subcategory PT(2) of LT(2). This concludes

the proof of the claim below.

THEOREM 4.15.  A(2) is dually isomorphic to BT(2).

Since A(2) is universal and T3 is dually isomorphic to P3, Theorems 4.10 and

4.15 combine to prove the following

THEOREM 4.16.   The variety B3 is almost universal.

COROLLARY 4.17.   The varieties P4,..., Bw are almost universal.

Any almost universal variety is isomorphism universal. Adding a new zero to

any distributive (0, l)-lattice produces a pseudocomplemented lattice in the variety

Pi. Since any lattice isomorphism preserves all existing pseudocomplements, the

following is an immediate consequence of Theorem 4.13.
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COROLLARY 4.18.   The variety Pi of Stone algebras is isomorphism universal.

This also strengthens Birkhoff's representation theorem [9] by showing that there

is a proper class of nonisomorphic distributive lattices whose automorphism groups

are isomorphic to a given group. In fact, the presented construction implies the ex-

istence of the maximal possible number of nonisomorphic such distributive lattices

of a given infinite cardinality not smaller than that of the represented group.

Let k be an infinite cardinal. It follows from [26] that, for any monoid M of

cardinality < k, there are algebras (X¿ G A(2): i < 2K) such that, for i < 2K,

\Xi\ = k, End(Xi) = M, and, for distinct j < 2K, there are no homomorphisms

£: Xi —» Xj. Under the construction, for i < 2K, ty(Xi) has 2K minimal elements.

Thus, in particular,

THEOREM 4.19. Let M be a monoid such that \M\ < k, where k is an infinite

cardinal. Then there exists a system (Li E B3 : i < 2K) such that, for i < 2K,

\Li\ = n, the nonconstant endomorphisms of Ll form a monoid isomorphic to M,

and Hom(Lj, Lj) consists of constants whenever i ^ j. In particular, if M is trivial,

then End(L¿) = End(Lj) consists of2K right zeros and a unit.

Moreover, if M is finite, then, for N < u, there is a family (Li E B3 : i < N)

such that, for distinct i,j < N, |L¿| = \Lj\ < Nn, the nonconstant endomorphisms

of Li are isomorphic to M, and if f: Li —» Lj is a homomorphism then it is a

constant.

5. Heyting algebras. The objective now is to extend the results of the last

section to the variety of Heyting algebras.

Since every Heyting algebra is a distributive (0, l)-lattice, it is representable

by a compact totally order disconnected topological space. Any homomorphism

h: H —y H' of Heyting algebras is a (0, l)-homomorphism and hence it corresponds

to a unique continuous order preserving mapping of the space representing H' to

that representing H. The next two lemmas are part of the folklore (see, for instance,

H. A. Priestley [42]).

LEMMA 5.1. Let P be a compact totally order disconnected topological space.

Then P is a dual space of a Heyting algebra if and only if [Q) is clopen for every

convex clopen Q E P (that is, if P has the h-property).

LEMMA 5.2. Let p: P -> P' be a continuous map and let P, P' be compact

totally order disconnected spaces with the h-property. Then p is the dual of a

Heyting homomorphism if and only if it preserves order and p((x]) = (<p(x)] for

every x E P (that is, if p is an h-map).

The variety of all Heyting algebras is thus dually isomorphic to the category Th

of all continuous h-maps between compact totally order disconnected topological

spaces with the /i-property.

Recall that the functor $ constructed in §4 is such that $(L) is a triple order

and Min($(L)) is a clopen set for every L E LT(2). Hence Q H Min($(L)) is a

clopen set for any clopen Q Ç $(L). Furthermore, [Q n Min($(L))) is clopen by

the p-property of $(L); since $(L) is a triple order, [Q) = Q U [Q n Min($(L))).

Whence [Q) is a clopen set. That is, $(L) has the /i-property for every L G LT(2).

Now if p: $(Z>) —y ®{L') is an order preserving p-map then it also is an h-map
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because (p(x)] = Min(<p(x)) U {/(x)} in the triple order of $(L'); it is clear that,

conversely, every h-map is a p-map.

These remarks together with Theorems 4.10 and 4.15 show that Heyting algebras

form an almost universal variety as claimed by Theorem 1.2.

There is a consequence analogous to Theorem 4.19.

THEOREM 5.3. Let k, be an infinite cardinal and let M be a monoid with no

more than k elements. Then there is a family (Hi: i < 2K) of Heyting algebras

such that \Hi\ = k for all i < 2K, the nonconstant endomorphisms of each Hi form

a monooid isomorphic to M, and Hom(Hi,Hj) consists of constants for distinct

i,j < 2K. Furthermore, each Hi has exactly 2K constant endomorphisms.
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