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ON SOME NONEXTENDABLE DERIVATIONS

OF THE GAUGE-INVARIANT CAR ALGEBRA1

BY

GEOFFREY L. PRICE

Abstract. We provide examples of some approximately inner, commutative

»-derivations which are generators on the gauge-invariant CAR algebra but which

have no closed densely-defined extensions to the CAR. Necessary conditions are

given for a class of generators on the GICAR algebra to extend to closed »-deriva-

tions on the CAR.

1. Introduction. Given a pair 8, 8' of closed «-derivations on a C*-algebra s/, we

say that 8' is an extension of 8 if its domain D(8') contains D(8) and its restriction

8'\D{S) coincides with 8. We say that 8 is extendable if it admits an extension 8' which

is the infinitesimal generator of a strongly continuous one-parameter group of

»-automorphisms. (For brevity, we refer to 8' as a generator.) Recently a number of

articles [3,4,6-9,11] has appeared concerning the extendability of *-derivations

commuting with a compact group {ag: g e G) of «-automorphisms of s¿, i.e., ag

leaves D(8) globally invariant and ag(8x) = 8(agx), all x e D(8). A very recent

result of Bratteli and Jorgensen [3] says that if G is abelian and s/G, the subalgebra

of elements fixed by G, is AF, then under the assumption that 8\^c is a generator, 8

itself must also be a generator. Moreover, in certain more restrictive cases the

authors show that any two generator extensions of 8\¿¿g to s/which commute with G

are related by a one-parameter subgroup of the action of G.

The latter result suggests the following problems. Let (sí, G, s/G) be as above,

and suppose ôG is a closed »-derivation on s/G which generates a C*-dynamics. Then

must it follow that there is a densely defined closed »-derivation on sí which restricts

to 8G on s/G1 In particular, are there extensions commuting with the action of G?

In this paper we consider the particular situation where s/ is the CAR algebra (a

UHF algebra of Glimm type 2°°), G = T, the circle group, and s/T = s/° is the

GICAR algebra (gauge-invariant subalgebra of the canonical anticommutation

relations algebra). We exhibit a class of commutative »-derivations on s/° (in the

sense of [13]) which generate a C*-dynamics on s/° but have no closed extensions to

the CAR (Corollary 4.1).

Some of our techniques are inspired by the results in [1,12,14], and we thank

Robert T. Powers for acquainting us with the material therein. We also wish to
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record our thanks to Fred Goodman, R. T. Powers and Palle Jorgensen for helpful

conversations at the April 1982 CBMS conference in Iowa, and we are grateful to O.

Bratteli for sending us a preprint of [3]. Finally, we thank S. Sakai for pointing out a

serious error in the original manuscript.

2. Preliminaries and notation. We recall some facts needed from [1] and [2] about

the GICAR algebra and introduce some notation. Let B be the 2 x 2 matrix algebra

over C with matrix units ( e,y: 1 < i, j < 2} satisfying the identities (i) e¡,en = 8jreis,

and (ii) exx + e22 = 1. For ¿eN, let Bk be a copy of B with corresponding matrix

units {ejj}. Denote the 2" X 2" matrix algebra ®"k^xBk by 9i„, with matrix units

consisting of the tensors e}j ® • • • ® e"j. Then we have the inclusions 91 x ç. 912 ç

• ■ ■ and the uniform closure of their union, 91 = <S>*>xBk, is a UHF algebra of

Glimm type 2°°, the CAR algebra (cf. [10]).

For 6 e T let ue e B be the unitary exp(i$/2)exx + exp(-z0/2)e22, and let Ug be

the corresponding elements of the Bk. Then the mapping 6 *-» ae = ® fc>1 Ad(u£) is

a strongly continuous representation of T as product automorphisms on 91 (the

gauge group of automorphisms). A straightforward argument shows that

(1) ae = s-limAd(Vn(6))
n-*oo

on 91, where

K(e)=n(eie/2etx + e-^e>2).
Zc = l

We denote by 91° the AF C*-subalgebra of elements fixed by the gauge group (called

the GICAR algebra). 91° = Un>19i°, where 91° = 9Í„ n 91°. 91°, is generated by

elements of the form e* and e* ® ej,, for 1 < i,j < 2,1 < k, I < n: in particular, a

matrix unit e) , ® • • • ® e" , Ues in 91° if and only if 2" M. - jr) = 0.
'l7l <nJn " J r—L\r       Jr/

For fixed n e N, 91° decomposes as a direct sum 91° = 2^_0M„ k of (^) x (^)

matrix algebras Mnk (where (k) are the binomial coefficients). Mnk is spanned by

matrix units e\h ® • • • ® e"Jn e 91° where k = #{r: 1 < r < zz, z'r = 1}. Let ££ be

the maximal projection in Mnk: then Ek is the sum of the (¡J) (diagonal) matrix units

Mnk of the form e\. ® • • • ® ef,. Clearly 2¡J=0£fc" = 1, and the Eg generate the

center ^(91°) of 91 „. An easy observation shows that the following identities hold

for zieN:

(2) E0"+1 = E¿en22+\

Er1 = Enken¿x + E"k_xe"xx+\       I^k^n,

pn+l        pn.n+1
Z'n + l Cjntll     ■

Given any set of operators 33 (in 91 or 91°), we define W (respectively, 99c°), the

relative commutant of 39 in 91 (respectively, in 91°), by

33c= {xe%:xb = bx, allée 33)

(respectively, 93c° = {x e 91°: xb = bx, all b e 33}).

Finally, we introduce the class of infinitesimal generators to be studied here. Let y

be the set of all sequences ( hn: n e N} of selfadjoint elements hn g 9t° such that for
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all zieN, hn+x - hn g (9t°)c°. Then it follows easily that the sequence (hn)

consists of a mutually commuting family of self adjoint elements (note that hm - hn

6 (2l°)c°, m 2s n) and the same observation shows that for fixed z¡eN, and any

x  g 9Í°

(3) elrt-(*,,)e-"*- = ei<h"ei,(h'"-h"){xn)e-i'(h'"-h'<)e-"h»

= ei,h"(xn)e-i,h»   formen.

For arbitrary x g 9i° and e > 0, choose n sufficiently large so that ||x - xn\\ < e/2

for some xn g 91°. Then f or/z > <¡r > zz we have, by (3),

||e'''^(x)e-'''^- é>/",«(*)e~'",«||

<!*"*/•(* - xje-'''*"!! + ||c,''*'(jeB)e-,''*i' - e"*»(xn)c-"*»|

+ \\ei'h"(x - xn)e-"h"\\

< e/2 + 0 + e/2 = e,

so that the sequence {ei,h'(x)e~i'hK p g N) is Cauchy, all x e 9t°. Using this and

other similar approximation arguments we have

Lemma 2.1. Let (hn) g y be a sequence defined as above. Then the limit

ß,{x) = lim eith»{x)e-uh"
n-»oo

exists for all t G R, x G 91°. The set {/?,: re R} is a strongly continuous group of

*-automorphisms o/9i°.

For a fixed sequence A = (h„) g y, let {/?/*: íeR) be the corresponding

one-parameter group of »-automorphisms of 9t°, and 8A the corresponding infinitesi-

mal generator. In Theorem 4.1 (see also the Remark following Corollary 2.3) we

shall show that some derivations 8^ fail to extend to generators on the CAR.

Roughly speaking, the reason that 8A may not lift is that, whereas the operators

exp(z'i[/z„ - hm]) tend to commute with finite tensors in 91° for large zz, m, the same

may not hold for finite tensors in 91. As a preliminary we examine the structure of

the sequence (h„).

Lemma 2.2. Let (hn) g y. Then for all n g N there exist constants \"k, p"k g R such

that

(4) A,+1 -h„=t E£{\»ke»xx+l + u^1).
k=0

Proof. Since (hn+x - hn) g 9l°+1 (hence in 9I„+1), we may write (hn+x - h„) =

Zls,xxrse"rs+l, where xrs g 9í„, r, s = 1, 2. Moreover, (An+1 - hn) e (9I°)C° (hence

in'(9í°)c) by hypothesis; but clearly «£+1 g (9í°)c, so it follows directly that for

each r, s, xrs g (9I°)C n 91„. By [1, Lemma 3.7], (9l°)c n 9In ="^(91°), so that each
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xrs is a linear combination of the Eg, 0 < k < n. In particular, xrs g 91°, but then

ae(xrs) = xrs, all f? g T, and therefore

2

hn+i-hn = ^f2\e(hn+x-hn)d0 = ^   £ xrsj2\e(e"rr)dd

= ¿   E x.pe-t'-Ve?* dO = xxxe"xr + x22e2«2+1.
r,j = l 0

Finally, the selfadjointness of A„+1 - hn implies the same for the Xjj, so the x¡¡ are

real linear combinations of the projections Eg, and the result now follows im-

mediately.

Lemma 2.3. Suppose A = (h„) and A' = (h'n) are two sequences in y. Then the

generators 8^,8^,, on 91° coincide if and only if, for each n g N,A„ - h'n G ¿^(91°).

Proof. If 8A = 6>, then ßf and ßf coincide on 91°, all t g R, « g N. Let x g 91°.

Then, by (3),

eHh"(x)e-ith" = eith'" (x)e-"h"   or   e-"h'»(ei,h") G (9t°)c°,       all r e R.

Taking (d/dt)\l=0 then gives A„ - A; g (9i°)c°. On the other hand, if hn - h'n g

^(9Í°), then clearly Ad(e"Ä") = AdíV'*;) on 21°. Hence ßf agrees with ßf on 91°,

all n g N, and, by continuity, ßf = ßf, hence 8¿ = 8A,.

Corollary. Given a sequence A' = (h'n) g y with generator 84,, there exists a

unique sequence A = ( hn) g y with 84 = 8A, such that

(i) *i = 0,

(U) **+, - Afc = I #yMi+1,      * G N,
z=o

vvAere y* g R, 0 < / < k, andyk = yk_x.

Proof. We construct (h„) inductively. Since 91° = â°(9I°), we may apply the

lemma to assume hx = 0. Suppose {hk: 1 < k < n] have been chosen to satisfy (i),

(ii), and also hk - h'k G ̂ (^°k). Using (4) and the assumption h„ - h'„ g J"(9t°),

we may assume there are £", -q" g R (0 < / < zz) such that

«

*;+i - *. - (*'»+i - A'J +(*; - *n) = E £z"({;"eîi+1 + l7^+1)-
/=o

Choose

a„+i = a;+1 - Hvn-i-vn-OEg:iE W+1
L/-o

(note that hn+x - h'n+x g^(91°+1)). Then using (2) a straightforward calculation

shows A„+1 - A„ satisfies (ii) of the corollary, where y" = £," - t\"+x, for 0 ^ / <

« - 1, and yg = è^-i - Vn = YÛ-v Hence the induction step holds.

To prove uniqueness suppose A, A" satisfy properties (i) and (ii) above and let

zz > 1 be the first index such that A„ * h"n. Then note that A„ - A'„' <£ (9t°)c°, so

8A ¥= 84„ by the lemma.
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Remark. Let [y ] denote the set of equivalence classes of sequences in y which

generate the same dynamics on 91 °. Let y0 be the subset of y consisting of those

sequences o satisfying properties (i) and (ii) of the corollary. Then by the lemma and

its corollary there exists for each a e [y ] a unique sequence A g y0 such that

[A] = o.

Suppose A = (A„) g y0, 8A is the associated derivation on 91°, and {ßf. t g R} is

the one-parameter group of automorphisms of 91° generated by 8A. It follows easily

from Corollary 2.3 that for each zz g N, A„ Mes in the maximal abelian subalgebra of

91 „ generated by the diagonal elements ej¡, 1 < k < n, i = 1,2. Hence, for t g R,

(5) ßf(e^) = hm exp(z?AJg*exp(-i/Aj = lime* = e*,

so that ßf fixes the m.a.s.a. of 91° generated by the diagonal elements. Now suppose

that (A„) is a sequence of real numbers, with Xx = 0, and A' = (h'n) is a new

sequence of operators defined by setting A'„ = h„ + ££=i Víi- Observe that (A') g

y0—note

and

An+i     "n ~ A„+1     A„ + A„+1e"1
n + l

\ „n + l _   y   r»\ -n + l
An + lell ¿^ ^1 An + lell     •

Z=0

We show that the generator 8A. on 91° has an extension to a generator on 91 if and

only if the same holds for 8A. For suppose 8A has a generator extension to 91, and let

{/?,: t g R} be the corresponding one-parameter group on 91. Then it is clear that

ßt\ o = ßf' so mat> m particular, ßt(eu) = eîï> A g N. Define another group (pr:

t e R} of automorphisms on 91 by setting, for x g 91,

p,(x) = hm exp it £ r\kexx \x ■ exp -it £ A^
" \     /c-l    ' / \        *-l

It is straightforward to show that this limit converges, and {pr} is a group of product

automorphisms on 9Í, where

p,(xk) = Ad[exp(z/A^í1)](xJ,       xk g Bk.

Furthermore, we have

&(P,(7c)) = hmp\
n

= hmßf

exp| it £ Xkekxx \-x- exp -it £ A^í,
Zc = l / \       k = l

exp ft £ Vf,
*=i

A(*)-#exp -ii E Vii
Zc = l

hm exp it ¿ Víi   • ß(x) ' exp -zz E Víi
" \    Zc = l / \       * = 1

P,(A(*))>
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so p, ° ßs = ßs ° p„ s, t e R, from which it follows that the set {/?/ = p, ° ßt: t g R} is

itself a one-parameter group of automorphisms of 91. Finally, for x g 91°, we note

that

hm
f-»0

p,(Â(*))*_limP,(#(*))-#(x) , #(*)-*
t-

= hm ß;
t-*o

[p,(x)-x]
+ 8A(x)

= Ad E A^eZc
Arcll'

Zc-1

+ 8A(x) = 8A,(x).

Hence {$/} is a one-parameter group on 91 having a generator which extends 8A,.

The argument in the reverse direction is identical. Thus we have proved

Lemma 2.4. Let A, A' g y0 be two sequences such that h'„ = h„ + 'Lk=x Víi for

some sequence (A„) of real numbers. Then 8A on 91° Aas a generator extension to 9Í z/

azzri on/y z/ô^ has one also.

Definition 2.1. Denote by yœ the subset of y0 consisting of all A' = (A'„)

satisfying the conditions

(i') A; = 0, and

(ii') h'k+x - h'k = LUEfôefr1, k g N, where {* g R, and tf_i = €* = 0.
Given /I = (A„) G y„, where A¿+1 - hk = L^E^yfe^1, as in (Ü) of Corollary

2.3, let (A„) be the sequence of real numbers A„ = -yglx, and let A'„ = hn +

X¡J=1 AAe*j. Then one verifies easily that /f ' = (A'„) lies in y^,: indeed,

n

"n + l "n ¿J ßZ «Zell     »

/ = 0

where £" = y" - y„", 0 < / < n, so that ;!' satisfies (i') and (ii') above. Using the

preceding lemma and some technical results below, we shall be able in Theorem 4.1

and its corollary to determine a necessary condition for a generator 8A (A g y0) to

extend to a closed »-derivation on 9Í.

For the remainder of the section, fix A = (h„) g ¿r°m—i.e., A, = 0, and

z=o
tf-i-íí-o,

and let ó^ be the corresponding »-derivation generating the group {ß, = /?/: z g R)

on 91°. The following condition on the coefficients £f (which we shall call Condition

C) ensures that 8A extends to a generator on 91 (Lemma 2.5).

Condition C. For 8 > 0 there exists N (= N(8) g N) such that if

(a) {/•: 1 <7 < o) is a strictly increasing (possibly infinite) set of integers with

lx > TV, and if

(b) r is any fixed integer, 0 < r < /,, then

E(#+,-#+,-i)<«.
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Condition C clearly implies the following condition.

Condition C. For 8 > 0 there exists N (= N(8) g N) such that if

(a) ( If. 1 < j < q } is a strictly increasing finite set of integers with /, > A7", and

(b) r is any fixed integer, 0 < r < lv and

(c) m is a fix J positive integer greater than lq + 1, then

E (&, - e^y-i) -(«sy-1 - Ésy-i1) < *•
7 = 1

Lemma 2.5. Le/ /l g y^ aziJ /3,, í g R, be as above. Then if Condition C is satisfied,

the generator 8Aon'ñ0 extends to a generator on 9Í.

Proof. We begin by showing that the sequence {exp(z7Aít)(eJ2)exp(-zz;Aí:)} is

uniformly convergent. For 8 > 0, let m > n > N(8). Then

(6) ||exp(z'íAm+1)(e}2)exp(-zYAm+1) - exp(zíA„)(e}2)exp(-z7A„)||

= ||exp(zï[Am+1 - A„])(e112)exp(-zr[Am+1 - A„]) - ej2||.

Using (i') and (ii') of Definition 2.1, one has

m       k

k=n  1=0

SO

(7) exp(«f[Am+1 - Aj) - exp »Y £   ¿«+1
\     k=n  1=0 J

m       k

= n n «píi^í^v1).
Zc = n  /=0

Next note that e\2 may be decomposed as the sum

E euei2i2 • • ■ eZ+1im+1 = E ei2e//>

where ./is the set of all zrz-tuples / = (i2, i3,---,im+x), with i, either 1 or 2, and

e,, = ej :   ■ ■ ■ e'"+)    . Fix one of these /, and suppose that
11 '2'2 'm+l'm + 1 ' rr

r = # {y : 2 < y < « and z'y = 1}.

Furthermore, let {/y : 1 < j < q } be the ordered set of indices /, zz < / < m, such that

z'/+1 = 1. Then using (2) one has, for t g R, k > zz,

exp(itEik^x+1)e\2e„ = exp(zY¿//c)e}2e//,

if both ik + x = 1 and / = [1 + #(;: 2 <y < k, ij = I}] hold, and

exp(zY£,^fef1+1)el2e„ = e\2eu,

otherwise. Applying (7), we then have, by the preceding calculation,

exp(/Y[Am+1 - h„])e\2e„ = exp(zi^Vi)exp(z7^+2) • • • exp(zY^+?)e112e//

= exp ir¿ Z'/+J\e\2en.
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A similar calculation gives

e112e//exp(-zr[Am+1 - h„]) = e}2e/7exp -zY £ í'Uj-iY

Combining these last two results, we then have

exp(/r[Am+1 - A„]) • e\2eriexp(-it[hm+x - Aj)

= exp it £ (thj - &+J-i)\ ■ e\2e„.

Denote the coefficient on e\2e„ by c,(t).Then

l|exp(iY[Am+1 - A„])el2exp(-z'r[Am+1 - Aj) - e^ll

£ [exp(zi[Am+1 - AJ) ■ e\2eu ■ exp(-zY[Am+1 - Aj) - e\2eu\

(8)
£ (C/(0 - l)e\2e„

/ejf

<\e nil EMO-iK

max {1^(0 - 1|),

where the last equahty follows from elementary spectral theory, using the fact that

the en are mutually orthogonal projections. Using the condition of the lemma one

sees that for fixed t, sufficiently large n, and all / g J, c¡(t) can be made arbitrarily

close to 1, so that Ad(exp(zY[Am+1 - hn]))(e\2) converges uniformly to e\2, for n, m

large. From (6) it now follows immediately that (Ad(exp(zYA„))(e}2)) is a uniformly

convergent sequence.

A similar argument shows that for any k g N, the sequence (Ad(exp(zYAn))(eí:2):

n g N} converges uniformly: taking adjoints, the same holds for e2X. In addition,

Ad(exp(zYA„))(e*) = e£,

since A„ and ek he in the m.a.s.a. of 91 generated by the diagonal elements. Hence,

{Ad(exp(z'z*An))(e* )} is uniformly convergent for all matrix units e*. One then easily

extends these results to polynomials in the matrix units e¡¡, whence a straightforward

approximation argument shows that (exp(zYA„) • x ■ exp(-zYA„)} is norm convergent

for all x g 91, t g R. Therefore, the automorphism group {/?,: t g R) extends to 91,

so that 8A has a generator extension to 9Í as asserted.

3. A necessary condition for extendability. In this section we show that Condition

C is necessary for a generator 8A on 91° (A e y^) to have a generator extension to

91. The following lemma is the main tool used to obtain this result. First we

introduce some notation required for the lemma.

For indices / and p, 0 < / < p, let Ef be the projection in 91° defined as in the

previous section. For 1 < k < p and 0</<p-l, we define Ffp to be the

projection in 91° consisting of the sum of all diagonal elements in 91^, of the form

-<i<i ek-l ,Zc + l

'k-l'k-l   '* + !'* + !
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where / of the subscripts ix,.. .,ik-X, '*+!»•• ■»»» are equal to 1. Then one observes

that the following identities hold (see also (2)):

(9) Eg = ek2Fk-",

Ef = e* F,*f + ek2Fk>r,       1 < / < p - 1,

FP = Pk Fk'P
^p      enrp-i-

Note that Ffp commutes with all matrix units ef¡ g Bk.

Lemma 3.1. Let A = (hk) be a sequence in£fm, i.e., hx = 0, and

A*+i - hk = £ Eftfefr1,   tf g R,       and      #_i = £* = 0.
/=o

Let ß, = ßf, r G R, ¿e iAe group of automorphisms on 9t° generated by 8A.

Then

(i)ßt(ek) = ek,k^W,and

(ii) for positive integers m > n + 1,

/        n-l \ /       m-1     7-1 \

ßAeii'eiV1) = exp -it £ Egi?   ■ exp it   £     £ F,»*1^/ - €/+1)e¿+1
\        / = 0 / \     y-n-t-l   / = 0 /

•exp zY £ F/n+1-%m   -(e.V1 ■ ef2+1).

Proof. Part (i) has already been obtained in (5).

To prove (ii) we begin by noting that since e2xlex2+l g 91° +1, a calculation

similar to (3) gives

A(e£+1*5+1) = exp(iYAm+1)(e2V1eir1)exp(-zYAm+1)

= exp(zYAm+1)(e2V1er2+1)exp(-zY[Am+1 - Aj)exp(-zYAj.

Moreover,
(m \

-itZErUTe^1
1=0 i

m

= El expí-iYF^^n^)
1=0

m

= n (U - Wi+1] + exp(-zY^r) ■ wr1),
/=o

so

er2+1exp(-<Y[Am+1 - hJ) = e^\

and therefore,

A(«n ^ñ*1) = exp(zYAm+1) • e£+1e5+1 ■ exp(-zYAj

= exp(zYAm+1) • e,"/1 ■ exp(-zYAj • ef2+ »

- exp(zY[Am+1 - A„])exp(zYA„)e2V1exp(-iYA„)exp(-zY[Am - A„])er2+1

= exp(zi[Am+1 - Aj)e2"1+1exp(-z7[Am - hn])e?2+\
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(Note exp(-zYAr) g 9ír and thus commutes with etf1, r g N.) Therefore,

ß,(eii+1e?i+1) = exp(zY[Am+1 - hn])e"2X+xexp(-it[hm - h„])e^

m       J m-1     J

exp it £   £ Efijeit1  e^exp -it £   £ F/l/etf1   • cß+1
\     7 = n   / = 0 / \        7 = «   1=0 I

I m j \

exp it £ EwrMerH-'^WiV1
y-B+l /=o / \     /=o

■exp -zyÏ    Í E/^eii1) ■ e[Tl
\       j=n+l   1=0 j

= expf-zY £ Egg)exp zY   £     £ F/É/etf1 e,"*1
\       1=0 I        \    f-n+l  1=0 j

■ exp
I        m-l      j \

-it   £     ZEfâeiï1   '*5+1
\       j = n + \   1=0 j

= exp(-zY£F/^|exp [it   £     £ E/frÜ1 U+1
\    j=n+l   1=0 }

exp

1=0

m-\

it   E     LEfäeti1   -eJS+1.
7-n+l   /=1 /

Using (9) (and recalling |j_ x = £y = 0, ally) a straightforward calculation gives

m-l       7 m-l       7

exp iY   £     £ F/É/etf1  e^exp -<Y   £     £ F/É/efr1
\    j=n+\   1=0 j-n+1   1=1

I       m-l    7-1

exp [it   £     Ef,"+1'W
\    7-n+l   /=0

/ m-l    7-1 Ï

e"2X+lexp\-it   £     £ FFWJeÜ1
\       j=n+\   1=1 )

I       m-l     7-1 \

exp zY   £     Er1J(í/-í/+iH+1   -«ï1.
\    7=n+l   /=0 /

and therefore,

/ n \ /       m-l    7-1 1

A(^i+1<2+1) = exp -it £ Ftf," exp ft   £     £ F,"+lJ(tí ~ &iK+l
\       7 = 0 / \    j = n + l   1 = 0 j

■ exp it £ F/wífe1M1+ »  e2",+ "eg+1 -
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Finally, one has

exp it £ Er^n+1  eä+1eS+1 = exp ft £ £/»#■  e^1«?^1

= exp ft £ F,B+1'%m e^ej"/1,

from (9). Combining this with the previous equation gives the desired form for

ßt(e2X+leX2+1). This completes the lemma.

Suppose 8 is a generator on 9Í with one-parameter group {ßt: t g R} extending S^.

Then it is straightforward to verify that A| 0 = ßf. We consider ß,(e\2). F°r fixed "

we may write (see [5, Lemma 2])

ß,{e\2)=   £   e\h---e»Jxu{t)),
I,JeJ

where ./is the set of/z-tuples/ = (ix,...,in) with i r g (1,2), and xu(t) g (91„)c. By

Lemma 3.1(i),

{e\i)ß~t{e\2){e\2) = ^{e\x)ßt{e\2)ßt{e\2) = AKtó) = A(«k).

so we may assume that z, = 1 and jx = 2. Similarly, ß,(e\2) commutes with the

projections e\ k   • • • ek k , and as an easy observation we conclude that xu(t) = 0

unless i2 = j2,..., in = jn. Combining we have,

(10) AWa)-   Le\2ef2h---e»Jxr(t)),
JeJ'

xr(t) g (9Í„)C, J' is the set of (n - l)-tuples (i2,...,i„), with all iT either 1 or 2.

Using [5] again, let <bn, n g N, be the conditional expectation of the trace t from 91

onto 91 „. Then

^{ß,{e\2))=  E e\2e\h---egniri-c,(t),

where c7(i) = r(x,(t)). Using the strong continuity of {ß,}, it follows that for

0 < e < 1 and for a fixed interval [-s, sjçR, there exists zz sufficiently large so that

ll*,(A(«Í2))-A(eÍa)ll<«A   allí g [-*,*].
But

\^{e\2)]*ßt{e\2) = ß,{e\xe\2) = Â(42) = e\2,

from Lemma 3.1 (i), so

*>llk(Â(ei2))K(Â(ei2))-e22ll

£ (MOI2-i)*2Ä •••</,

na*= max{|(|c,(0|2-l)|}.
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Therefore,

\{\c,(t)\- 1)| <e,   all / g J', ail t g [-a, s].

This estabhshes the first two parts of the following lemma.

Lemma 3.2. Let A g y^,, and let 8A generate the one-parameter group {ß,: t g R}

on 91°. Suppose {ß,} extends to a one-parameter group [ß,\ t G R} of automorphisms

on 91. Then for e > 0 and positive jeR there exists n e N and constants cf(t)

(I g J' the set of(n - X)-tuples (i2, ...,i„)) such that:

(i) I.M0|-1|<*.   allt<=[-s,s], allies'.

(Ü) A(*i2)- E e1124---e",c/(0'2'2

ley

< e/2,    a//r G [-í,s].

7272
(in) For any m > zi, í g [-5, s], az?ri any projection P of the form P = e2

«/-îi-i' w/!<?re¿ = 1 or 2,

IIÂ(^i2)F - ^^(011 < e/2,   where J = (j2,... ,j„) G J'.

Proof. Only (iii) remains to be shown. Multiplying the expression in (ii) by P we

have

e

2> ß,{e\i)P-   E ^¡eh--e'g,cl{t)P
i&j1

= \ßt{Ai)P - Cj(t)e\2P\.

This completes the argument.

Finally, we may combine our results to provide a necessary condition for a

generator 8A (A g y^,) on 91 ° to extend to a generator on 91.

Lemma 3.3. Let A = (hk) g y^, 8A and ßt, t g R, be as in Lemma 3.1. Suppose 8A

has an extension to a generator 8A on 91 (equivalently, {ßt: t g R} extends to a group of

automorphisms {/?,} o/91). Then Condition C o/§2 must hold.

Proof. For a fixed positive integer k > 2, choose e such that

0 < e < (|exp(i/2*) - l|)/2,

and choose zz sufficiently large so that conditions (i)—(iii) of Lemma 3.2 hold with

s = I. Choose any finite strictly increasing set {/■: I <j^q} of positive integers

with n < /,, and let m be any integer greater than / + 1. Finally, let r be an integer,

0 < r < /,, and consider any projection P of the form

P = e'2'2   '"'   e>i1hie22       '"   e22.

with r = # {zt: ik = 1, 2 < zc < lx}. Let x g 91 ° be the operator

r = Ji+1Ji+1   . . .     '«+1 .     m + 1   m + 2   . . .      m + q.
x      e2X   e2x e2x       eX2   eX2 eX2    ,

we observe that

(11) ßXx*)ß,(e\2)Pß,(x) = fr{e\2)b(x*)Pfr(x)

= ß,(e\2)ß,(x*Px) = ßt{e\2)x*Px,
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where ß,(x*Px) = x*Px follows from Lemma 3.1(i). Since ||x|| = 1, we have, com-

bining (11) and Lemma 3.2(iii),

||/3,(x*)[el2Pc,(0] A(*) - e\2x*Pxc,(t)\\

4ßt(x*)[e\2PcI(t)]ßt(x)-ßt(x*)[ßt(e\2)p]ßt(x)\\

+ \\ß,{e\2)x*Px - e\2x*PxC[(t)\\

< ||«i2*Y(0 - Ai'izH + \\h{e\2)x*Px - e\2x*Pxcr(t)\\

< e/2 +\\ßl(e\2)x*Px - e\2x*Pxc,(t)\.

Next note that x*Px is a projection satisfying eux*Px = x*Px, where eu = ef¡

■ ■ ■ e" j, so another application of Lemma 3.2(iii) yields

\\ßt{e\2)x*Px - e\2x*PxcI(t)\\^\\ßt(e\2)en - e\2enc,(t)\\ < e/2,

and therefore

|A(**)[«i2^/(0] AU) - «12**^^/(01 <«.    for/G [-1,1].

But clearly \cf(t)\ > 1/2 by Lemma 3.2(i) and the choice of e, so

(12) \\ßt{x*)e\2Pßt(x) - e\2x*Px\\ < 2e,        (6 [-1,1].

We now compute ß,(x*)e\2Pß,(x), beginning with

A(4+1'5+1)«Í2ÍA(4+1«5+1)-

By Lemma 3.1(h),

/       m-l     7-1 ^

A(4+1«i"+1) = exp ft  £    E^Mtf-tf-iH*1
y'-/j + l  /=o

'i-i

exp -ft £ Ej*# exp (ft £ F^^Ae'^e^1.

Noting that

Ad
/ m-l     7-1

exp -ft   £     Z F>^J{k¡ - iUMV
\    7-/1+1 z=o

(«12^) = «12^.

our expression simphfies to

A(4+1«a+,)«î2JA(4+1«5+1)
m-l(ill 1 \ ( *1 * 1

-ft£ F/' + 1-%" exp ft £ F/'¿{> Ul2
z=o /        I     /=0 /

fl-1

'1-1

/=0

m-l

Z=0

Z, + l
•pexp -ft £ f/'# exp ft £ F/'+'-^r 4+1«r2+1-

/=o
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But recalling the expression for P, we have

exp it £ Effl  e\2efih ■ ■ ■ eke'j?1 ■ • • e2m2exp -it £ Efâ
\   1=0 I \     1=0 j

= exp{it&x)e\2Pexp{-it&) - exp(ft[#+i " Ii1]) ■ e\2P.

Continuing (and using similar calculations) we have

A(«12+1«r1)«Ï2^A(«21+1«1m2+1)

m-l

Z=0

= exp(ft[&i - e])4+^2mi+1exp -ft £ F^^e]

■Fexp ft £ F/'+1-%m Ie^+1e5+1

12

/=0

= exp(ft[#+1 - e])exp(-zY[^+i - ^M^eiT^Pe'^e^

= exp(ft[#+i - 0])exp(-ft[C+i - er"])

■ P1 P2      . . . ph    ph + ̂ ph + 1  . . .  pmpm + l
eUei2i2 %'/,   H       22 e22e22      ■

To complete the calculations we write ß,(x*)elx2Pß,(x) as

hß,(£Wj) '«ia? nA(4+1«5+o.7=1   v ']      Ly-i .

and using successive calculations similar to the one above, we arrive at

ß,(x*)e\2Pßt(x) = nexp(ft[0+,-#+,_i])
7 = 1

n«p(-»[€r"+7_l-€r"+y--i1])
7 = 1

e\2x*Px.

From (12) we obtain

n exp(ft[io+.-#+,_j) n ^xp(-it[ir:rx -r+y-i1])
.7-1 JL7 = 1

-1 <2e.

Now (recalling the condition on e),

(13)    |exp(i/2*) - 1| > 2e

> exp ife-M-fe"1-^1))

all t g [-1,1]. Using (13) a straightforward argument now shows that for any finite

increasing set {If. I < j < q } of integers with lx > n, 0 < r < lx, and for m > lq + 1,

e (&, - íívi) -(w_1 - csy-v)
7 = 1
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But this last inequality imphes that Condition C must hold (since k may be chosen

arbitrarily), and this completes the proof of the lemma.

4. Existence of nonextendable derivations to the CAR algebra. We may now

combine the results of the previous section to obtain necessary conditions for 8A,

/|Gy0, to extend to a generator on 91. Using some of the results in [3] on

derivations commuting with compact abelian group actions, we may apply our

results to show (Corollary 4.1) that there exist generators on 91° admitting no

extensions to closed »-derivations on 91.

Theorem 4.1. Let A = (hk) g y0 ¿>e a sequence of operators—i.e.,

Ai = 0,       hk+x-hk=Y,Eky,keki+\   Y,* 6 R,       Y**-i - j£,
1=0

8A the corresponding generator on the GICAR algebra 91 °. For k G N, 0 < / < k, let

£z* = y i ~ yí- Then 8A admits an extension to a generator on the CAR algebra 9t only

if Condition C (on the numbers £k) o/§2 holds.

Proof. First suppose that 8A admits a generator extension 8A on 91. Set A' = (h'n)

where

A'n = A„+£Víi,   and   Xk = -ykZ¡,       k g N.
k = l

Applying Lemma 2.4, 8A,, must also have a generator extension. Moreover,

h'      — w = h       — h   — Mnpn+l
"n+l        "n        "n + l        "n        Znell

= E Eg(yg - yg)e"xx+i = £ £,"(ffK+1,
/=o /=o

so that A' g y^ (note ^_j = k"n = 0). Therefore (Lemma 3.3) Condition C holds.

Corollary. Let A = (hn) Gy^ be a sequence for which 8A has no generator

extensions to 9Í. Then there are no densely-defined closed *-derivations on 91 extending

^-

Proof. Suppose there exists a closed »-derivation 5 on 9Í extending 0^; i.e., D(8) is

a dense »-subalgebra of 91, D(8) d D(8a), and 8\D(Sh) = 8A. By Lemma 3.1(i),

ßf(egt) = e,1 (z = 1,2, zz G N), so eg, g D(8a) (c D(8)), and clearly 8(egt) = 8A(egt)

= 0. Since 8 is closed it is immediate that #c D(8), where #is the maximal abehan

subalgebra of s/ generated by the diagonal elements eg¡, and that 8,v = 0. In

particular, 8[Vn(6)] = 0 (see §2). Hence if x g D(8),

Ad(Vn(6))(x) <= D(8)    and   8[Ad(Vn(9))(x)] = Ad(Vn(6))(8x).

Recall from (1) that

ae(x) = hmAd(Vn(e))(x)
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(respectively,

ae(8x) = hm Ad(Vn(6))(8x) = limrj[Ad(F„(0))(;c)]).
n n '

Thus ae(x) g D(8), by the closedness of 8, and 8(ae(x)) = ae(8x). But 8 also

enjoys the property that its restriction 8A to the invariant subalgebra 91° is a

generator, and therefore [3, Theorem 3.1] 8 is itself a generator on 91, contrary to

hypothesis. This contradiction yields the result.

Remark (Condition C and uniform convergence of ( A'„) g y^,). Suppose A' = ( A'„)

is a sequence in y^ (as in Definition 2.1) such that (A'„:zzGN}isa uniformly

convergent sequence of operators. Then it is straightforward to show that 8A extends

to a generator 8' on 91 with one-parameter group {/}/} given by

A' = limAd(exp(zYA'J).

Thus, by Lemma 3.3, Condition C must hold. In fact, one sees that Condition C

holds also. This may be shown directly as follows. Using Definition 2.1 (ii') we have

(for m > n)

(14) 0 = lim||A'm+1 - A'JI = hm
m     Zc-1

E    E#tf«n+1
k = n   1=0

Arguing as in the proof of Lemma 2.5, one may show that

m     Ar — 1

E Ef^Íi+1
Zc = n   Z=0

= max
íejf

m     k-l

>n- E £^H+1
Zc = n   /=0

where^is the set of (m + l)-tuples (ix,.. .,im+x), ij = 1 or 2, e„ = e)¡

Then, arguing as in the proof of Lemma 3.3,
''/n + l'm+r

m     ZV-1

• E E F/W1
k = n   1=0

II E &,-!
7 = 1

where r = #{j: ij = 1,1 <y « ¡t}, and, with n ^ lx < ■ ■ ■ < lq < m, {If. 1 <y <

q) is the set of indices / such that z'/+1 = 1. But then combining this last result with

(14) obviously imphes Condition C.

On the other hand, we have been unable to determine whether Condition C

imphes uniform convergence of the sequence (A'„) g y^ (or even whether Condition

C is a necessary condition for the extendability of a derivation 8A (A g y^) to 91).
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