
transactions of the
american mathematical society
Volume 285. Number I. September 1984

SLICE LINKS IN S4

BY

TIM COCHRAN

Abstract.We produce necessary and sufficient conditions of a homotopy-theoretic

nature for a link of 2-spheres in S4 to be slice (i.e., cobordant to the unlink). We give

algebraic conditions on the link group sufficient to guarantee sliceness, generalizing

the known results for boundary links. The notion of a "stable link" is introduced

and shown to be useful in constructing cobordisms in dimension 4.

1. Introduction. A link in S4 is a smooth oriented submanifold Sf of S4 where

3P= Lx U L2 U ■ • ■ U Ln is the ordered disjoint union of 2-spheres. A link in S4 is

said to be slice (or null-cobordant) if the components of if bound disjoint, properly

(and smoothly) embedded 3-balls in the 5-ball B5. One of the difficult, outstanding

problems in higher-dimensional knot theory is "Is every link of 2-spheres in S4 a

slice link?" [24,9]. Kervaire has shown that all links of one component (zz = 1) are

slice [23]. For zj > 2, very httle is known. If the components of if bound disjoint,

orientable 3-manifolds in S4 (these are called Seifert manifolds), then there is known

to exist a homomorphism <¡>: irx(S4 - Sl°) -> Fn taking a set of meridians of if to

conjugates of generators of Fn (the free group of rank n). In fact these two conditions

are equivalent, and any link satisfying them is called a boundary link [17]. It has been

known for some time that boundary links are slice [17,9] because, since the original

technique of Kervaire involved the modification of a Seifert manifold, his techniques

apply very well to this category of links. For a general link, the individual Seifert

manifolds exist but will inevitably intersect each other.

There are elementary methods of constructing non-boundary shce links (for

examples see §4), but they are ad hoc in the sense that they necessitate using the

rigid geometric construction of the link to geometrically find the slice disks. Aside

from Kervaire's techniques for boundary links, there is no general program for

slicing a link. What is needed is a technique which can solve the slice problem for a

general link.

In this paper we present algebraic criteria sufficient for the solution of the slice

problem:

Theorem 3.6. For S? to be slice it suffices that there exist a homomorphism $:

trx(S4 - £C) -» P where P is an n-component higher-dimensional link group (see
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definition in §2) such that the normal closure of image(<f>) is P and H3(P; Z2) =

H,(P; Z) = 0.

Since any homology-boundary-link (see §4), for example, satisfies these conditions

with P = Fn, this generalizes the known results. This theorem also provides hope

that the shce question can be completely answered simply by knowledge of the link

group. This is significant because higher-dimensional link groups have been "alge-

braically determined" [23] whereas, relatively speaking, we are still very ignorant of

the geometry and homotopy of link exteriors. In §3 we derive necessary and sufficient

conditions of a homotopy-theoretic nature for a link to be a slice link. This is the

only dimension where such has been accomphshed.

Even in higher dimensions it is an open question whether every link (LI,"=152m) ■->

S2m+2 is a slice link, although similar statements hold here for knots and boundary

links ([9]; beware: Lemma 11 and hence Corollary 12 of [18] are incorrectly proven).

Recently Roy Demeo, using techniques of Cappell and Shaneson, has announced a

result entirely analagous to Theorem 3.6 for all even dimensions greater than four

[14]. It is of interest to note that Cappell and Shaneson have shown in all odd

dimensions that the cobordism of links does not reduce to the cobordism of

individual components, indicating that the slice question in even dimensions may be

complex [9]. (Note: In higher dimensions one works in the PL category.)

The primary geometric technique of researchers in this area has been the progres-

sive modification of the Seifert manifolds for the link components. Unfortunately,

one difficulty special to dimension four (caused by the failure of the Whitney trick)

is that of getting 2-disks or 2-spheres embedded in order to perform these modifica-

tions. Many times this can be accomphshed by "stabilizing", i.e., by connect-sum-

ming with copies of S2 x S2. For this reason, in §5 we develop notions of links in

#r(S2 X S2) and of "stably-slice". It is there shown how this device alleviates the

embedding problems with no loss of information.

2. Notation. We will work in the category of smooth, oriented manifolds. The

symbol (G)p will denote the smallest normal subgroup of 7° containing G. The P

will be omitted when it is clear from the context. A smooth, open tubular neighbor-

hood of the submanifold A will be denoted jV(A). The abbreviation S4 - A will

sometimes be used for S4 - Jf(A). The notation A *-» B means that A smoothly

embeds in B. The terms knot group and link group (when not referring to the group

of a specific link or knot) will mean a group isomorphic to the group of a

higher-dimensional link group. We remind the reader that G is a higher-dimensional

zz-component link group if and only if G is finitely-presented, HX(G) = Z", H2(G) = 0

and G has weight zz [23].

A spin-structure a on a compact, smooth oriented manifold B" (zz ̂  3) can be

defined as an equivalence class of triviahzations of its oriented tangent bundle

restricted to the 2-skeleton of B (see [28, p. 202]). Two triviahzations are equivalent

if their "difference" d: B2 -» SO(zj) is null-homotopic. The manifold B will possess

a spin-structure if and only if w2(t(t3Y) = 0 [27,28].

We note that if A is a submanifold of B, then a spin-structure on B, together with

a trivialization of N(A, B) (the normal bundle of A) will induce a spin-structure on
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the submanifold A [30]. If a is a spin-structure on an zz-manifold X and t/ is a

spin-structure on an (zz + l)-manifold If then (X, a) *-» (W, tj) will mean that there

is a smooth embedding F: X ■-» W such that the spin-structure induced by rj on

F(X) pulls back to a. In particular, this defines the notion of (X, a) being the

spin-boundary of (H7, tj). A spin-surgery on a spin manifold (X, o) is one in which

there is a spin-structure on the trace of the surgery which restricts to a on X.

For a CW-complex K, the bordism group ß4pm(/A') is defined to be the set of

triples (X, a, f) where (X, a) is a closed spin 4-manifold and /: X -» ZC, subject to

the equivalence relation that (A', a, /) ~ (Y, u>, g) if there exists a compact

(W5, tj, ZZ) whose boundary, in the obvious sense, is (X, a, f)U(Y, -w, g). Disjoint

union or connected-sum makes this set into an abehan group (see [13 or 10]).

3. The slice conditions. Let Sf be a link of zz components in S4 and G be

7T,(54 - ^V(Sf)), the link group. Let (X#, a) be the unique compact spin 4-manifold

obtained by spin-surgeries on the components of if. Note that A^has the homology

of #„(Sl X S3) (hence has index zero) and has fundamental group isomorphic to

the link group G. The next proposition introduces our basic philosophy which is that

the slice problem is a problem of homology-cobordism of the link complement

(actually we use X<¿) with certain restrictions on how ttx can change over the

cobordism. Cappell and Shaneson used this approach in their study of higher-dimen-

sional link cobordism and were able to call upon their earher work with T-groups

[8,9].

Proposition 3.1. The n-component UnkSf in S4 is a slice link if and only if X is the

boundary of a compact, orientable 5-manifold Wsuch that:

(1) the image oftrx(X) in irx(W) normally generates all of -nx(W),

(2) HX(W) = ®Z,

(3)H2(W) = 0.

Proof. (=>) If if is slice, then, by taking W to be the exterior of the slice discs D¡

in B5, we can easily see that the requirements above are satisfied.

(<=) Assuming that such a W exists, we add the n 2-handles to X = dW which

exactly reverse the surgeries that produced X from S4. This will yield S4 = d(3f), and

the hypotheses on W insure that 3S will be contractible. Since any contractible

manifold whose boundary is diffeomorphic to S4 is itself B5, we have S4 = 3t35 and

the cocores of the 2-handles just added will form slice discs for the components of

se.  D
With the aid of this proposition and some difficult but technical surgery results of

[11], we are now able to give our necessry and sufficient conditions for if to be slice.

Keep in mind that, geometrically speaking, the group P will be the fundamental

group of the complement of the shcing discs in B5.

Theorem 3.2. The n-component link Sf^S4 is a slice link if and only if there is a

homomorphism <¡>from G = irx(S4 - S?) to a finitely-presented group P such that:

(1) <♦(<?)>-P,

(2)HX(P)= ®Z,
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(3)H2(P) = 0,
(4) the element (X, a, f) vanishes in tilpiD(K(P, I)) where f: X -> K(P, I) induces <p

and (X,o) is the result of spin-surgery on SC in S4.

Proof. We shall show that the hypotheses above are equivalent to the existence of

the appropriate Woi Proposition 3.1.

( => ) If Sf is shce then W exists as in 3.1. Letting <p be the inclusion mx ( X ) -> ttx ( W ),

properties (1) and (2) follow immediately. Recalhng the "Hopf exact sequence for

any space K,

*2(K)-+H2(K) ^ H2(ttx(K)) ^ 0,

it follows a fortiori from H2(W) being trivial that H2(P) is also. Finally, the

commutative diagram of groups

wx(W)

<i>î        \id

*i(X)      -      P
</>

induces one of spaces

W

Î      \*
X      -      K(P,I)

from which (4) follows.

(<=) Assuming (l)-(4) above, we shall construct If as required by 3.1. Hypothesis

(4) guarantees the existence of a compact, spin-manifold A of which ( X, a ) is the

spin-boundary and such that the following commutes:

A
7Î        \*

X       -*      K(P,I)

We can cause ^ to be an isomorphism on irx by first connect-summing with S1 x S4

until ^ * is epic, then performing spin-surgery on embedded circles representing the

kernel of ¥. Since P is finitely presented the kernel of ^ will be finitely normally-

generated and thus we need only perform a finite number of such surgeries (see [35,

p. 15]). Note that our sole remaining task is to kill H2(A), for then, setting W = A,

we would be done. This can be accomplished by spin-surgeries on embedded

2-spheres (in A — X) representing elements of H2(A). For this we appeal to a

surgery theorem of [11,10].

Theorem 3.3 (see Theorem 4.3 of [11] and remarks following the proof). Let X be

the spin-boundary of A and let P = ttx(A). If H2(P) = 0 then we can replace A by a

surgered A which satisfies in addition that the map H2(X) -* H2(A) be an epimor-

phism.

Recalling that, in our present situation, H2(X) = 0, it follows immediately that we

kill H2(A).   D
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Corollary 3.4. Let Sf, Sf' be links in S4 and suppose that the exterior of Sf is

homotopy-equivalent, relative its boundary, to the exterior ofSf'. Then Sf is slice if and

only ifSf' is slice.

Note. S. Plotnick has constructed an infinite number of knots K, K' which satisfy

the hypotheses of 3.4, but which have nondiffeomorphic exteriors [31]. Gordon has

constructed inequivalent knots with diffeomorphic exteriors [15].

Proof. The homotopy-equivalence can be extended to one /: Y -* X where X, Y

are the surgeries on if', Sf, respectively. This is covered by a bundle map from v, the

tangent bundle of Y, to £, a trivial stable bundle over X, by defining £ = (/-1)*(z0

where /"Ms the homotopy-inverse of /. Since Y is spin and of index zero, it is

stably-parallelizable so v (and hence |) is trivial. Now assume Sf is slice. Then the

conclusions of Theorem 3.2 hold for some <fV. G -» P, and some <j>*: X -* K(P, I).

Since H2(trx(X); Z2) = 0, the normal map/is normally-cobordant to a self-homo-

topy-equivalence g: X-* X (see [35, Chapter 16]). It follows that (Y,f,oY) is

equivalent to (X, g, ax) in ß4Pin( A) for some spin-structures aY, ox. Letting g stand

for the homotopy-inverse of g, we have that (Y, <p# ° g ° f, aY) ~ (X, <i>* ° g ° g, ax)

in ^in(K(P, I)), and hence that (Y, h, aY) - (X, <?>*, ax) where h = $* ° g ° /.

Since <p is an isomorphism on H\ :Z2), it can be shown that the vanishing of

(X,$*,a), as given by (4) of 3.2, is equivalent to the vanishing of (X,<p#, ax) for

any spin-structure. We shall omit this verification to avoid bogging down in details.

Therefore, (Y, h, aY) - 0 in Qlpin(K(P, I)) for h = <f ° g ° /. Applying Theorem

3.2, it is only necessary to verify that the normal closure of the image of the map

<t> ° g*1 ° /* is P. Since/* and g* are isomorphisms, this is a triviality.   D

In order to analyze the consequences of Theorem 3.2 it is necessary to better

understand the structure of ^'"(.ty). The following lemma says that, to the first

approximation, ßfpin( >K" ) is determined by the homology of the space K.

Lemma 3.5 ([13]; see also [11]). There is a spectral-sequence

Hp{K;ü^p(pt.))^^r(K)

whose E2A_p terms are Hp(K; ß|P_^(pt.)).

Since the groups ß^pin(pt.) = Q^ia are Z, Z2, Z2, {e} and Z for zz = 0,1,2,3 and

4 [27], we have the following

Theorem 3.6. ZTze n-component link Sf will be slice if there is a homomorphism <j>

from G to an n-component higher-dimensional link group P such that

(i) (<t>(G)) = P,

(ii)H3(P;Z2) = H,(P; Z) = 0.

Proof. The E2 terms of the spectral-sequence for ñ|pin(/?) vanish except for £024

which is the image of ñ^1" itself. Since index(A') = w2(X) = 0, the pair (A", a) is

trivial in fl^1" [36], and hence (X,a, f) will be zero in the larger group as required

by Theorem 3.2.   D
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Remarks. Roy DeMeo has proved the analagous theorem for all even-dimensional

links in dimensions greater than four [14]. Notice that Theorem 3.6 proves im-

mediately that boundary links are slice by setting P = Fn, the free group on zz

generators. If one is willing to talk of shce links in homology B5,s then one can

eliminate all of the normal-closure conditions above (retaining an isomorphism on

Hx) and prove all of the analogous theorems.

The next section will discuss new classes of links which can be shown to be shce

via 3.2 and will attempt to give the reader a feeling for the types of groups P one

might encounter.

We close this section with an interesting improvement of Corollary 3.4.

Corollary 3.7. Suppose Sf0 is a link with group G0 which can be sliced by discs such

that the group P satisfies H3(P) ® Z2 = 0. Suppose that Sfx is any link (with group

called Gx). Then forSfx to be slice it suffices that there exist any map f: Xx -» X0 such

that (f*(Gx)) = G0 (where Xx, X0 are the surgeries on the links).

Proof. Since H3(P) ® Z2 = 0, fi|pin(K(P, 1)) is equal to flfpin © N where TV is a

subgroup of H4(P; Z). The image of an element (X0, a, g) in N is well known to be

given by g*([X0]) (see [10, §8]). Since Sf0 is shce "over" P we known g*([A"0]) = 0,

and it follows that (Xx, ox,g°f)~0 in af>ia(K(P,I)). Theorem 3.2 then applies.

D

4. New classes of slice links and some perspective. We shall exhibit three classes of

nonboundary links which can be shown to be slice by Theorem 3.2. These are

"homology-boundary links", hnks whose groups are "arc-groups", and certain

"semi-fibered hnks". We should remark that, although these classes extend the

known results, many examples constructed to fall in these classes could (with work)

be shown to be shce by some more "geometric" arguments, since most construc-

tions are very geometric. This points out a fundamental difficulty with this

subject—namely that very few techniques are available for constructing links in high

dimensions. Spinning and its modifications yield knots and hnks which have

3-dimensional characteristics and hence cannot hope to illustrate the added complex-

ities of higher dimensions. With this in mind, the primary importance of our work

must he not in these new classes of shce links, but in the hope for a global solution

via Theorems 3.2 and 3.6.

First we would hke to give the reader some perspective on the relationship

between the link group G and the group P of the disk complement. We accomphsh

this via some elementary but revealing examples culled from the hterature.

Example 4.1. There are hnks which are not boundary hnks even though their

groups are isomorphic to Fn. The trick is that no isomorphism takes meridians to

conjugates of generators [2, or 32, p. 94]. Even such a simple link as this cannot be

handled by Kervaire's method, although Theorem 3.6 handles it easily.

Example 4.2. More generally it is easy to construct nonboundary links using the

following trivial observation. If ( K, J} is a 2-component boundary link then a hft

of J to the infinite-cyclic cover of the exterior of K must be null-homologous. Thus,
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if K is a fibered knot with fiber a punctured M#r(S1 X S2) and / is some (* X S2),

then {K, J } is not a boundary link. Note that the construction of such fibered hnks

necessitates finding a diffeomorphism of M#r(Sl x S2) with certain algebraic

properties. Some examples with M = S3 are given in [3]. These might then be

connect-summed to any "twist-spun" knot (see [32]) with fiber say M. For more

complicated examples one could employ §3 of [26] which shows how to create

understandable diffeomorphisms via paths in the Kirby calculus.

Example 4.3. There are 2-component slice links for which P cannot be chosen to

be Z * Z. These include many of the hnks in 4.2 and a more interesting one obtained

by "spinning" the arcs in Figure 1 (for a definition of spinning see [32, p. 85]). This

embedding is due to W. Jaco [22] who computes that

77-,(R3+- arcs) = G = {a,b,c\a = [c, a][c, b]}.

This will also be the group of the resultant link in S4, and can be recognized as one

of Baumslag's nonfree parafree groups [4]. As such it possesses no epimorphism to

Z*Z [33]. (Recall that a group G is said to be parafree if f)™=xG„ is trivial and

G/Gn = F/Fn for all n where F is a free group, Gx = G and G„ = [G,G„_X].)

However, it is known that every spun link L is slice since (S4, L) can be defined as

the boundary of (B3, arcs) X D2 (see [32,p. 96]). Thus Example 4.3 (and 4.1) is a

ZJOZ1 boundary slice link. In fact, 4.3 cannot be sliced with P = Z * Z.

Figure 1

Example 4.4. There are link groups with non vanishing H3 and Z/4. The simplest

example is the group of the 4-twist-spin of the trefoil knot, which is isomorphic to

Z X D where D is the binary icosahedral group [16]. Here H3 = H4 = Z120.

Example 4.5. In contrast to 4.3 above, one might ask if there are links which

cannot be sliced with P = G. Many can, including all spun-links, but, interestingly

enough, for a fibered knot in S4 to be slice "over" its own group the fiber must have

free fundamental group [12]. Thus the Cappell-Shaneson-Akbulut-Kirby fibered

knots with fiber (Sl X S1 X S1)0 cannot be sliced over their groups (see [12, §5; 1;

and 7]).

We now exhibit our three classes of links for which there existed no a priori

argument for sliceness but which can be shown to be slice by our algebraic criteria.

Definition. A link Sf of n components is said to be a homology-boundary link if

there is a homomorphism (f>: G -» Fn (free group of rank zz) whose image normally

generates Fn. (This differs slightly from [20].)

Definition. A group G is an arc-group if G = irx(B3 - A) where A is the disjoint

union of properly (and locally-flatly) embedded arcs in the 3-ball.
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Examples of homology boundary links may be found among Examples 4.1 and 4.2

while any spun-link has group isomorphic to an arc-group.

Corollary 4.6. (a) Homology boundary links are slice.

(b) Any link whose group is an arc-group is slice.

Proof. The proof of (b) requires a trivial lemma that the cohomological dimen-

sion of an arc-group is less than or equal to two. (Thus not all knots in S4 fall into

category (b) although they all fall into (a)).

Finally, we introduce a more complex class of links which are neither spun-links

nor homology-boundary links (in general).

Theorem 4.7. Suppose Sf= [K, J) is a 2-component link in S4 where K is fibered

with fiber Vo = M°#r(S1 X S2) and glueing map <¡>. Suppose J is some * X S2 *-* Vo

and that the composite

^(M0) - w¿V*) * ^(K0) - vx(#r(Si X S2))

is the zero map. Then Sf is a slice link.

Remarks. Note that Sf is never a boundary link. The hypotheses will always be

satisfied if irx(M) is normally generated by a set of elements of finite order. The

composite map above is always zero on the Hx-level. If trx(M) is not free then the

group of Sf is not an arc-group because its cohomological dimension will be at least

3. These can be constructed as explained in Example 4.2.

Proof. The surgered XK is diffeomorphic to S1 x ^ V. Choose a V away from

where the glueing is done and note that it inherits a spin-structure a for which

(V, a) = M#r(Sl X S2) is the spin-boundary of (W, tj) where W = W#r(Sl X B3)

and W is 1-connected. For z = 0,1 let W¡ be copies of (W, tj) and form the closed,

spin 4-manifold

N=[w0xJ^0(Vx[0,{])\^^WxUdfV¡(Vxx[ll])].

Vi

Figure 2
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It is then an easy exercise to show that the hypotheses above imply

Lemma 4.8. There is a epimorphism ¥: ttx(N) -» Fr such that

"#i)-^)*f,

is the identity map and

wx(W0) - mx(N) * Fr = *X(WX)

is the composite p °<j>° j: trx(#r(Sl X B3)) -> ^(^(S1 X B3)).

Then the element [N, a, *] in ^/n(K(Fr, I)) is zero by Lemma 3.5, so [N, a, *]

= 3[t3, £, g] where we can assume that g#: 77,(73) -» Fr is the identity. Form the spin

5-manifold A = B/W0 ~ Wx so that dA = XK. A Mayer-Vietoris argument pro-

duces the exact sequences:

HX(V)     *^ld*     HX(V)     -     ZZ^AJ      i      z     -     0

i 7* i 7* i j* i

ZZ^IT)       V1      ^(73)     -*      /^(¿J       -+      z     -+     0

Since <i>* - id* is an isomorphism, the map z0 - ix is an epimorphism between free

abelian groups of rank r, hence an isomorphism. Thus HX(XK) -» HX(A) is an

isomorphism and furthermore irx(XK) -* irx(A) is easily seen to be epic since irx(N)

maps onto trx(B). Since the inclusions z0, ix of irx(W¡) into irx(B) can be shown to be

monic, there is a corresponding exact sequence

H2(*X(B)) - H2(vx(A)) - /^(J^'C^M*))-

Thus H2(ttx(A)) = H2(ttx(B)) = 0.

We can assume that the knot J lies on V0 and bounds a 3-disk A in the appropriate

S1 X B3. Let C = A - jV(&) so 3C = X<¿, as spin-manifolds. Clearly

TTx(C)/{mj)=-nx(A)

so the image 77^ ( X#) -» 7rx(C) normally generates 7rj(C). Since z0 - z'j (above) is an

isomorphism, any element X of H2(A) can be represented by an embedded 2-sphere

in the interior of B. Thus X ■ [A] = 0 so HX(C) = Zx HX(A) = Z X Z, H2(C) =

H2(A) and hence H2(trx(C)) = 0. Applying Theorem 3.2 (using trx(Xj?) -* tz-^C)), it

follows that Sf is a slice hnk.   D

We close this section with a discussion of avenues of future investigation as

regards Theorem 3.6. Can every link be sliced in this way? Can the map $: G -» P

always be chosen to be an epimorphism? Is there a canonical subgroup N oî G such

that any hnk with group G is shce "over" G/N1

In particular, as regards this last question, the candidate N = Ga = C[°txGn is very

promising. For knots, G/Gu = Z so all knots can be sliced in this way. Furthermore,

a link is a homology-boundary link if and only if this quotient is free. In general

G/Gu is known to be parafree [33]. Since finitely-presented parafree groups resemble
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free groups in many ways, it is not unreasonable to hope that they have low

homological dimension. In fact, all known finitely-presented parafree groups have

cohomological dimension less than or equal to 2 [5,4]. Further, it has been

conjectured that H2 of a finitely-presented parafree group is trivial (a proof was even

announced in [19]). The major obstacle to G/N in general is the question of its

finite-presentabihty. Indeed

Question. Given a hnk group G, is there a "naturally" defined quotient G/N such

that

(a)ZZ2(G/7V) = 0and

(b) G/N is finitely-presented?

The only such quotients I know are the trivial ones G and {e}.

5. Stable cobordism. We will now introduce a notion of a stable-link and of a

stably-shce hnk. This will necessitate dealing with links of 2-spheres in an arbitrary

connected-sum of S2 X S2. Our major result is that "stabilizing" does not affect the

"shceness" of a link. This allows us to stabilize whenever we find it useful in

modifying a given link exterior to a simpler one. We hope that other researchers in

this field will make use of this simplification.

We must only consider hnks in #k(S2 x S2) which "look" as if they came from

links in S4.

Definitions. A link Sf = {Lx,...,Ln} in some #k(S2 x S2) is a smooth sub-

manifold diffeomorphic to an ordered disjoint union of 2-spheres subject to the

restriction that the group of the hnk exterior be a (higher-dimensional) link group.

Such a link is said to be slice if there is some #k(S2 X B3)in which the components

bound disjoint, properly (and smoothly) embedded 3-balls.

Note. The restriction on the link group is essential. Without it, besides not

correctly mirroring the S4 case, it is easy to exhibit nonslice links [10, p. 61].

Definitions. The stable n-link Sf induced by the zz-link Sf in #t(S2x52)

(k > 0) is a sequence of links Sf ' *-» #k+, (S2 x S2) (i = 0,1,... ) where Sf°=Sf

and Sf ,+1 is formed from Sf ' «-» #k+j(S2 X S2) buy connect-summing on another

S2 X S2 at some point far from Sf '. A stable-link Sf is said to be stably-slice if some

element in the sequence Sf ' is slice. Thus a link Sf is stably-slice if the stable-link Sf

which it induces is stably-shce.

The power of this approach is provided by the following

Theorem 5.1. A linkSf is slice if and only if it is stably-slice.

Proof. The "only if is clear, so assume Sf •-> #k(S2 X S2) is stably-slice, i.e., if

■H- #k(S2 x S2)#r(S2 x S2) is shce in some W= #k+r(S2 X B3). Clearly A>

= X#r(S2 X S2). We could now prove that Sf is slice via a theorem analogous to

Theorem 3.2 (in fact, this theorem holds word for word with S4 replaced by

#j(S2 x S2)); but this would be unnecessarily repetitive. Instead, having noted

this, we shall prove Theorem 5.1 by relating the question to one which we solved in

earlier work [11].

Lemma 5.2. A linkSf in #k(S2 x S2) is slice if and only if X<¿ embeds in S5 with

one complementary component being I-connected.
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Lemma 5.3 (Corollary 7.2 of [11]). X# embeds in S5 with one complementary

component I-connected if and only if'X##r(S2 X S2) does also.

The proof of Lemma 5.2 is hke that of Proposition 3.1, the only new ingredient

being the fact that if #(S2 X S2) embeds in S5 then each complementary

component is diffeomorphic to #j(S2 X B3). This in turn follows from the 5-

dimensional relative /z-cobordism theorem [29]. This completes the proof of 5.1.

One use of the stability theorem is in realizing "algebraic cobordisms" by actual

ones. Let if be a link of zz components in #k(S2 X S2) (in S4 if k = 0), with group

G.
Definition. A link cobordism from the hnk Sf to another hnk Sf' is a proper

submanifold W of (#k S2 X S2) X I which is diffeomorphic to Ll,n=1(S2 X I) and

such that 3 + W = Sf and 3_ W = Sf'.

Definition. An algebraic cobordism of Sf is a homomorphism from G to an

zz-component link group P such that the image of 4> normally generates P.

We say that an algebraic cobordism of L is realized by a link cobordism if L is

cobordant to L' where the group of L' is isomorphic to P with a meridian set being

given by the images under <i> of a meridian set of G.

Theorem 5.4. Any algebraic cobordism <j>: G -» P of Sf can be realized by a link

cobordism from an element in the stable-link Sf to another linkSf'.

i *
Proof. Since P is finitely-generated, the map <p will factor as G -> G* Z^ -> P

where F^ is a free group, ¥ is an epimorphism and ^(F) c [P, /?]. Since P is

finitely-presented, the kernel of ¥ will be normally generated by a finite number of

elements {yx,...,ym ) in G * F. Now form a 5-dimensional cobordism C by starting

with (#k(S2 X S2) -Sf) x I and adding on jn one-handles and m two-handles (to

3_C) realizing the obvious algebra. Choose the framing on the two-handles so as to

extend the original spin-structure over C. The "new boundary" 3 + C will be a

4-manifold with boundary which has mx = P and looks homologically like

#k+m(S2 X S2) — Sf' whereSf' is a hnk of zz components. In order to make C into

a homology-cobordism, we need to kill the classes looking like the #m(52 X 52)'s

by adding 3-handles. Since H2(P) = 0, the necessary classes are spherical but may

not be representable in 3 + C as embedded 2-spheres. However, after stabilizing the

entire C (add on #j(S2 x S2) x I), we stabilize 3 + C by adding #j(S2 x S2), and

a theorem of Cappell and Shaneson assures us that the desired classes are now

representable [6]. Furthermore, their theorem guarantees that the 2-spheres may be

chosen in a 77,-negligible fashion. Thus, after adding these m 3-handles along 3 + C,

we get a new cobordism C and boundary 3 + C, and C will be a homology-cobor-

dism between the stable-link exterior E_ = d_C = (#k(S2 X S2 - Sf) #jS2 x S2

and E+= 3 + C. The manifold E+ will have zz copies of S2 X S1 as its boundary and

thus is a hnk complement of some sort. It follows from the 77-j-negligibility that

irx(E+) and 77,(C) will be isomorphic to P in the desired manner. When if xZ is

glued into C it becomes an rz-cobordism and hence is diffeomorphic, after stabiliza-

tion, to a product [6]. Thus we have constructed a link cobordism from some element

in the stable-link Sf to a link Sf' with group P.   D
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Remark. Of course, we have control of the meridians of the new link as they

relate to <|> and Sf.

Another stumbhng point in 4-dimensional knot theory is the attempted construc-

tion of a "minimal" Seifert manifold for a given knot or hnk. Recall that a Seifert

manifold for a knot K is an orientable 3-dimensional submanifold of S4 whose

boundary is the knot K. There are various possible notions of minimality, but they

all refer (intuitively) to some measure of complexity. If one could continually

decrease the complexity of the Seifert manifolds (for the link components) via link

cobordisms until they were all 3-disks, then the link would be slice. Given a Seifert

manifold, the only reasonable way to reduce its "complexity" is to look for elements

of its fundamental group which die in the hnk group, and try to perform an ambient

surgical modification along a disk. Of course, such an embedded disc may not exist,

but it does exist after connect-summing with #j(S2 x S2). Therefore, for questions

of cobordism, we hope to use this approach of modifying the Seifert manifolds by

(stable) cobordisms to reduce the shce problem and hopefully solve it completely.
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