Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $\textbf {R}^{4}$
HTML articles powered by AMS MathViewer

by Steven R. Dunbar PDF
Trans. Amer. Math. Soc. 286 (1984), 557-594 Request permission

Abstract:

We establish the existence of traveling wave solutions for a reaction-diffusion system based on the Lotka-Volterra differential equation model of a predator and prey interaction. The waves are of transition front type, analogous to the solutions discussed by Fisher and Kolmogorov et al. for a scalar reaction-diffusion equation. The waves discussed here are not necessarily monotone. There is a speed ${c^\ast } > 0$ such that for $c > {c^\ast }$ there is a traveling wave moving with speed $c$. The proof uses a shooting argument based on the nonequivalence of a simply connected region and a nonsimply connected region together with a Liapunov function to guarantee the existence of the traveling wave solution. The traveling wave solution is equivalent to a heteroclinic orbit in $4$-dimensional phase space.
References
  • P. L. Chow and W. C. Tam, Periodic and traveling wave solutions to Volterra-Lotka equations with diffusion, Bull. Math. Biology 38 (1976), no. 6, 643–658. MR 0481538, DOI 10.1007/bf02458639
  • Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
  • C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J. 33 (1984), no. 3, 319–343. MR 740953, DOI 10.1512/iumj.1984.33.33018
  • Albrecht Dold, Lectures on algebraic topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin-New York, 1980. MR 606196
  • D. M. Dubois, A model of patchiness of prey-predator plankton populations, Ecol. Modelling 1 (1975), 67-80.
  • Steven R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol. 17 (1983), no. 1, 11–32. MR 707221, DOI 10.1007/BF00276112
  • —, Travelling wave solutions of diffusive Volterra-Lotka interaction equations, Ph.D. Thesis, Univ of Minnesota, 1981.
  • Richard J. Field and William C. Troy, The existence of solitary traveling wave solutions of a model of the Belousov-Zhabotinskiĭ reaction, SIAM J. Appl. Math. 37 (1979), no. 3, 561–587. MR 549140, DOI 10.1137/0137042
  • Paul C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR 527914, DOI 10.1007/978-3-642-93111-6
  • R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 335-369. F. R. Gantmacher, The theory of matrices, Vol. 2, Chelsea, New York, 1964.
  • Robert A. Gardner, Existence and stability of travelling wave solutions of competition models: a degree theoretic approach, J. Differential Equations 44 (1982), no. 3, 343–364. MR 661157, DOI 10.1016/0022-0396(82)90001-8
  • Robert A. Gardner, Existence of travelling wave solutions of predator-prey systems via the connection index, SIAM J. Appl. Math. 44 (1984), no. 1, 56–79. MR 730001, DOI 10.1137/0144006
  • Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
  • S. P. Hastings, On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 123–134. MR 393759, DOI 10.1093/qmath/27.1.123
  • Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
  • A. Kolmogorov, I. Petrovsky and N. Piscounov, Étude de l’equation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Math. Bull. 1 (1937), 1-25.
  • J. P. LaSalle, Stability theory for ordinary differential equations, J. Differential Equations 4 (1968), 57–65. MR 222402, DOI 10.1016/0022-0396(68)90048-X
  • J. B. McLeod and James Serrin, The existence of similiar solutions for some laminar boundary layer problems, Arch. Rational Mech. Anal. 31 (1968/69), 288–303. MR 235789, DOI 10.1007/BF00253709
  • Ross McMurtrie, Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments, Math. Biosci. 39 (1978), no. 1-2, 11–51. MR 490056, DOI 10.1016/0025-5564(78)90026-3
  • Akira Okubo, Diffusion and ecological problems: mathematical models, Biomathematics, vol. 10, Springer-Verlag, Berlin-New York, 1980. An extended version of the Japanese edition, Ecology and diffusion; Translated by G. N. Parker. MR 572962
  • J. P. Pauwelussen, Heteroclinic waves of the FitzHugh-Nagumo equations, Math. Biosci. 58 (1982), no. 2, 217–242. MR 661209, DOI 10.1016/0025-5564(82)90074-8
  • William C. Troy, The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii chemical reaction, J. Differential Equations 36 (1980), no. 1, 89–98. MR 571130, DOI 10.1016/0022-0396(80)90078-9
  • T. Wyatt, The biology of Oikopleura dioica and frittilaria borealis in the southern Bight, Mar. Biol. 22 (1973), 137.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K57, 58F40, 92A15
  • Retrieve articles in all journals with MSC: 35K57, 58F40, 92A15
Additional Information
  • © Copyright 1984 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 286 (1984), 557-594
  • MSC: Primary 35K57; Secondary 58F40, 92A15
  • DOI: https://doi.org/10.1090/S0002-9947-1984-0760975-3
  • MathSciNet review: 760975