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INVERSE PRODUCING EXTENSION
OF A BANACH ALGEBRA WHICH ELIMINATES
THE RESIDUAL SPECTRUM OF ONE ELEMENT

BY

C. J. READ

ABSTRACT. If A is a commutative unital Banach algebra and G C A is a

collection of nontopological zero divisors, the question arises whether we can

find an extension A' of A in which every element of G has an inverse. Shilov

[1] proved that this was the case if G consisted of a single element, and Arena

[2] conjectures that it might be true for any set G. In [3], Bollobás proved that

this is not the case, and gave an example of an uncountable set G for which

no extension A' can contain inverses for more than countably many elements

of G. Bollobás proved that it was possible to find inverses for any countable

G, and gave best possible bounds for the norms of the inverses in [4].

In this paper, it is proved that inverses can always be found if the elements

of G differ only by multiples of the unit; that is, we can eliminate the residual

spectrum of one element of A. This answers the question posed by Bollobás

in [5].

1. Preliminary definitions and statement of the main result. Through-

out this paper, a Banach algebra is assumed to be commutative and to possess a

unit.

If A is a Banach algebra, x E A, then the essential spectrum of x in A is the set

<7e(x) = {X E C: A • 1a - x is a topological zero divisor},

and the residual spectrum of x in A is the set

<7r(x) = {A G C: X • 1a — x is not invertible, but is not a

topological zero divisor}.

Thus our main theorem may be stated as follows.

THEOREM 1. Let A be a commutative Banach algebra, x E A. Then there is

an extension A' of A in which the spectrum of x is precisely the essential spectrum

of x in A.

Before proving Theorem 1, we prove the weaker result stated here as Theorem

2.

THEOREM 2. Let A be a Banach algebra, x E A, and let K be a compact set in

the residual spectrum of x in A. Then there is an extension A' of A, such that the

spectrum of x in A' does not intersect K.

The method used to prove Theorem 2 is to take an open neighbourhood U of

the essential spectrum of x in A, whose closure does not intersect K.   (Such a
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neighbourhood can always be found since the essential spectrum and the set K

are two nonintersecting compact sets in C.)   We then consider the algebra X of

bounded analytic maps U —► A, and give it the supremum norm; this is a Banach

algebra in which A is embedded isometrically as the constant functions.

We then let J C X denote the closed ideal generated by the function h E X,

where
h: U ^ A

: X —► X • 1a - x

(we shall see that the ideal generated by this function is closed anyway).

We shall find that the algebra A is embedded (up to isomorphism) in the quotient

space X/J. But then X/J is an extension of A, and the spectrum of x when

embedded in X/J does not intersect K.

To see this, let pE K, and let us find an inverse for p. ■ 1a — x when embedded

in X/J. Let

Ru: U -+A

: A-(/i-A)"1-l*.

This is a bounded analytic map Í7 —► A (since K and U are a finite distance apart).

So 72^ G X. Also, the element p. ■ 1a — x is embedded in X as the constant function

cu: U^A

: X —► p ■ 1a — x.

Let q: X —► X/J denote the quotient map. Then,

Ru ■ cu: U —► A

: X^((p-X)-1lA)-(filA-x)

= (p- A)"1 • 1A ■ ((p -X)1a + (X1a- x))

= 1a + (p-X)-1-(X-1a-x).

Thus

q(Ru) ■ q{cu) = q{lx) + q{h),

where h: X —» (p. - A)-1 • (A - 1a — x) and

: A-U.

But h is in the ideal J, so q(h) = 0. Thus q(Ru) ■ ç(cM) = q(lx), so the element

p, ■ 1a - x E A has an inverse ç(7?M), when embedded as q(cu) E X/J.

Thus Theorem 2 will be proved.
An important tool in proving Theorem 2 and, later, Theorem 1, is the following

LEMMA 3. Let B be a Banach algebra, x E B, and let U and V be open sets in

C such that
(1) U contains the essential spectrum of x in B,

(2) V contains U, and

(3) every component ofV intersects U.

Suppose we have /(A) = (A - x)g(A) (all X E U), where f and g are analytic

functions f: V —> B and g: U —► B.
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Then there is an analytic extension g: V —► B of g.

PROOF OF LEMMA 3. We can find an open set W C C, such that V -UöW
and W n o-e(x) =0. Each component of W will intersect U, and our problem is to

extend the analytic germs of g from U D W to all of W.

Since

(*) ïvn<re(x) = 0,

we claim that there is an e > 0 such that A G W, a E A implies

(3.1) ||(A-lA-x)-o||>e||a||.

For if not, there are sequences (An)^ C W, and (an)n°=i C A, with each

||an|| = 1, and

||(An - U -x) -an\\ ->0   asn-+oo.

Then {|A„|: n G N} must be bounded, so we may assume (taking a subsequence if

necessary) that A„ —» A G W. Then

||(A • 1A - x) • a„|| < ||(A„ • U - x)a„|| + ||(A - A„)a„||

= ||(A„1a-x)o„|| + |A-A„|

-»0    as n —* oo.

Thus A • 1a - x is a topological zero divisor in A, so A G W C\oe(x), contradicting

our observation (*) that this set is empty. Let us choose an e > 0 such that

condition (3.1) is satisfied.

Now,

/(A) = (A1a-x)-9(A)

which implies that, for each n — 1,2,...,

/<">(A) = (A • 1a -x) ■ s(n)(A) + nffin-l>(A),

where h^ denotes the rth derivative of a function h.

It follows that, if we have an analytic germ of g at some point Ao G W, then

llí;(n)(Ao)||<¿||/(r)(Ao)||^-
r=0

for all n G N.

So if the power series for / at Ao has radius of convergence 6 > 0, then the power

series for ¡7 at Ao has radius of convergence greater than or equal to e • 6.

Therefore this radius of convergence is bounded away from zero on any compact

set in W; hence it must be possible to extend g throughout W, as required. Thus

Lemma 3 is proved.

COROLLARY 4.   Let B be a Banach algebra, c E B, and suppose that

c = (XlA-x)- g(X)    (all X G U),

where g: U —* B is analytic, and U is a neighbourhood of the essential spectrum of

c in B. Then c = 0.

PROOF. The constant function c can be extended to all of C, hence, by Lemma

3, the function g extends to all of C, and the extension is a bounded entire function,

G
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which must be constant. Thus we have c = (X ■ 1a — x) ■ g (all A G C) for some

g G A; therefore c = g = 0.

We now prove Theorem 2.

PROOF OF THEOREM 2. We are given a Banach algebra A, an element x E A,

and a compact set K in the residual spectrum of X in A. We wish to exhibit an

extension A' of A, such that the spectrum of x in A does not intersect K.

Let us choose a bounded open set U c C such that U D oe(x) and U n K = 0.

Let X be the Banach algebra of bounded analytic functions U —* A, with the

supremum norm,

||/: I7-A||x = 8up||/(A)|U.

(Note: we do not demand that such a function have a continuous extension to U;

this is important when we come to prove Theorem l.) Let J be the closed ideal in

X generated by the function h E X, where h(X) = X ■ 1a - x (all A G U).

Consider the isometric embedding j: A —> X sending c E A to the constant

function j(c): X —* c (all A G U).

We wish to show that the morphism tp: A —» X/J obtained by composing j and

the quotient map q: X —» X/J, is still an isomorphism.

Now it is evident that

\\tp(a)\\ < \\a\\    for all a E A;

so we need to check that there is no sequence (c,)^, C A, such that each ||c,|| = 1,

but

I|V'(c1)||jx:/j — 0   ast — oo.

Now J is the closure of the set of all functions 77 G X of form

77: U -^ A

: A-»/(A) ■ (A • U - x),

where / G X. Thus if ||t/>(c,)||x/j —► 0 as ¿ —> oo, there must be functions (ft)°Zi C

X such that

sup ||/t(A) • (A • lA - x) - cl\\A — 0    as i -* oo.
\eu

We have to show that such constants and functions cannot exist. We state this

as a separate lemma:

LEMMA 2.1. If A is a Banach algebra, x E A, and U C C is an open set

containing the essential spectrum of x in A, then there is an e > 0 such that for all

c E A, and all analytic functions f: U —♦ C, we have

sup\\f(X)-(X-lA-x)-c\\A>e\\c\\.
xeu

PROOF OF LEMMA 2.1. Let B be the Banach algebra of bounded sequences

(ai)fjLl C A, with pointwise addition and multiplication, and the norm

||(a1)-1||B = sup||al|U.

Let 7 be the closed ideal of B consisting of those sequences in B which norm

converge to zero. Let 7r be the natural projection 7r: B —> B/I.
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Now, for all (a,)^, G B,

httaJilJWB/i = lim sup ||a¿|U;
l—»oo

and B/I is a commutative Banach algebra with unit 1q/¡ — 7r[(l,4,1,4,1,4,...)]

(the equivalence class of the sequence in B consisting entirely of l's).

A is embedded in B/I by the isometry

<t>: A - B/I

: a —> 7r[(a,o,o,...)].

In fact, our element x will have exactly the same spectrum and essential spectrum

as 4>(x) G 73/7 as it did in A.

Suppose our lemma is false. Let (c¿)°^, be a sequence of norm 1 elements of A,

and (fi)°Zi a sequence of analytic functions U —> A, such that

sup ||/t(A) • (A • 1a - x) - Ci\\ —» 0   as t —> 00.
xeu

Now if W C U is any set which is bounded away from the essential spectrum of

x, then there is an n > 0 such that

||a • (A • U - x)|| > n\\a\\    for all a E A, A G W.

Therefore for all i E N, A G W we have

||/,(A) ■ (A • U - x) - ct\\ > n\\h(X)\\ - IM = n\\h(X)\\ - 1.

Thus there is a uniform bound on the values ||/i(A)|| for all i, throughout W.

However, since the essential spectrum is a compact set within U, we may pick

a suitable set W so that, by the Maximum Modulus principle, each /, approaches

its supremum norm supA€[/ ||/¿(A)|| somewhere on W (we must say "approaches"

rather than "achieves" since U is an open set so the supremum need not be achieved

anywhere).

It follows that the collection (/i)^, is uniformly norm bounded. Similarly, the

collection is uniformly differentiable at any point u G U.

Now consider the map

F-.U-* B/I

■■ A-*((/i(A),/2(A),/3(A),...)].

Since the /¿'s are uniformly bounded, the sequence (/1 (A), /2(A), /3(A),...) is always

in B; and since they are uniformly differentiable, we find that F is a uniformly

bounded analytic map. It is easy to see that for all X E U,

(X ■ 1B/, - <P(x)) ■ F(X) = tt[(ci,c2,c3, ...)}.

Therefore, since U contains the essential spectrum of <p(x) G B/I, we have by

Corollary 4 that tt[(ci ,c2,c3,...)] = 0. Therefore limsup,.,^ ||c¿||,4 = 0, but this

is a contradiction since by hypothesis each ||c,|| = 1. Thus Lemma 2.1 is proved.
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COROLLARY 2.2.   The map ip: A —> X/J is an isomorphism.

By the result of [6], we can put an equivalent norm on X/J so that A is now

embedded isometrically by the map tp. But this proves the theorem, for X/J

contains an inverse to u ■ 1A - x for every p in K, namely the element q(Ru), where

Ru: U -» A

: X^(p-X)~l-lA.

Having proved Theorem 2, we now make some definitions which lead towards a

proof of Theorem 1.

Let fi denote the collection of all countable ordinals. With each ordinal a E fi,

we shall associate a Banach algebra 4(a); the collection {.4(a): a G 0} will be

directed upwards, in the sense that for all a,ß G fí, a < ß, there will be an

isometric embedding

rQ,ß: A(a) - A(ß).

Furthermore, if a, /?, -y G fi (a < ß < -y), we will have Tgn o ra^ = ran.

We now proceed to define our sequence of Banach algebras, using transfinite

induction.

(1) We define 4(1) to be our original Banach algebra A.

(2) Given a G fi and the Banach algebra A(a), we define A(a + 1) as follows:

Let B(a) be the Banach algebra of sequences (a,)°^,, a, G 4(a), with pointwise

addition and multiplication and the supremum norm

ll(Oi)"lllß(a) = SUp||a,||,4(Q),

let 7(a) be the closed ideal consisting of all sequences in B(a) which norm converge

to zero, and let 7TQ denote the natural projection

txq: B(a)-+B(a)/I(a).

We define A(a+1) = 7?(a)/7(a), and the map TQ-Cr+i is the isometric embedding

ja: 4(a) -4(a+l)

: a —» 7Ta[(a,a,a,a,...)].

We must then define t^jQ+i = ja o T$a for each ordinal ß < a.

(3) If a, G fi, i = 1,2,..., then we require that 4((Jt a¿) be the completion of

the direct limit of the collection {4(a,), i = 1,2,3,...} of Banach algebras, which

is directed by the maps tQiiûj (a, < a-,). For ß < \Jl a,, the map

r0.u,ay A(ß)^Ai\JaA

is the direct limit of the maps r^iQi: ß < a,, followed by the map which sends the

direct limit of the algebras 4(at) to its completion, which is A((jt ai).

Now these three conditions define the collection {4(a), a G fi} uniquely, to-

gether with the linking maps 7/3,Q: ß < a.
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LEMMA 5.   If a, ß G fi (a < ß) and a G 4(a), then

(.) inf    (tsMjl)m     inf     (hl
yeA(ß) \ 112/11 /        yo€A(a) \  112/0

PROOF. The left-hand side of this identity is an infimum similar to that on the

right-hand side, but evaluated with the element a E 4(a) embedded in a larger

space A(ß). It is therefore less than or equal to the right-hand side.

The opposite inequality is proved by transfinite induction on /?; the result is

trivially true if ß = a.

If the result is true for ß = ßo, then given y G A(ßo -Y 1) let us say

y«*a[(«)£i]      (yt e 4(/30));

then

IIS/ • Ta,0o + i(a)\\A(ßo+i) = limsup(||2/t • Ta<0o(a)\\A(0o))
i—>oo

W ■ ra,ß0(a)
> limsup \\yi\\ •     inf

y'€A(ßo) \ \\y

Voa
> limsup Hî/,11 •     inf

t^oo yoeA(a) \ II2/0I

(by induction hypothesis)

n n inf   (\\yo«\\\= llylU(/3o+D •    ¿nf     I -rr-j 1 .
yoeA(a) \ H2/0II /

This is the result for ßo -Y 1. But it is clear that an equality such as (*) is

preserved under direct limits and completions. So the result is true for all ß E fi.

We now prove Theorem 1.

PROOF OF THEOREM l. Given a Banach algebra 4 and x G 4, let us choose

a sequence (i/i)°fL, of bounded open sets in C, such that:

(1) For each i, Ui D Ui+Ï.

(2) For each », every component of U% intersects (7I+i.

(3)flSi^ = M4
DEFINITION. A sequence (e¿)™=1 of strictly positive real numbers is said to be

"admissible" for a G fi if, whenever there are bounded analytic functions

Sl: i/t-4(a)        (t = l,2,...,n),

an analytic function /:  Un —* 4(a) and a constant c G 4(a) such that, for all

AGÍ4,
n

c - ]Ti,t(A) + t,,q(A • lA - x) ■ /(A),
1=1

then

|c||a(q) < y"et l ■ sup ||g,-(A)||,4(Q).
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The most important step in proving Theorem 1 is the following

LEMMA 6. There is a sequence (e,)°^j such that, for each n, the sequence

(£i)"=i îS admissible for every a G fi.

PROOF OF LEMMA 6.  It is enough to show the following:

(1) There is an £t, which is admissible, as a sequence of length 1, for every a G fi.

(2) If the sequence (£,)™=1 is admissible for every a G fi and 6 > 0, then there is

an En+i > 0 such that the sequence

(1+6)'1 -ei^l + é)-1 ■e2,...,(l + 6)~1 -£n,£n+i

is also admissible for every a G fi.

Let us apply Lemma 2.1 with 4 replaced by 4(a) for some ordinal a, x replaced

by ti.q(x) a°d U replaced by t/i. We find that there is an e > 0 such that, for all

c E 4(a) and all analytic functions /: {/i —» 4(a), we have

sup ||/(A) • (A • 1A - x) - c\\A(a) > e\\c\\.
Aei/,

Writing </i(A) = c — /(A) • (A ■ 1,4 — x) (A G Ui) we see the value e, a "sequence" of

length 1, is admissible for a.

Denote by £i(a) the supremum of all admissible values of e for a given a. This

decreases with increasing a, since the Banach algebras involved are always getting

larger.

But £i(a) must be bounded away from zero. For if we could find a sequence

(a,)", such that a, G fi and £i(a,) —<■ 0 as i —► oo, then we must have £i((J,^i ai)

= 0, which is impossible.

Thus there is an £i which is admissible for every a G fi. This proves assertion

(I)-
Now suppose that (£¿)"=1 is admissible for every a G fi. Choose a particular

a G fi, and, given 6 > 0, suppose that we cannot find an £„+i such that

(l-Y6)-1el,(l + 6)-1£2,...,(l + 6)-1Sn,en+i

is admissible for a.

Then we must be able to find constants (cJ)°%l in 4(a), and analytic functions

g\j): Ui^A(a)       (i = 1,2.n+ 1; j G N)

and

/<>'>: Un+i -> 4(a)        (J6N),

such that, for each j, \\c3\\ = 1, and for all A G Un+i,

n+l

cJ = ^2g{l3)(X) + TUX-lA-x)-f^(X),
i=i

but
n+l

1> (Í+S) X] sup ̂ ^(A)!!+ 2^-    sup    WgHliWl
~~\xeu, xeun + ¡

Extracting a subsequence from (ck)'k'=l, we may assume that

sup ||ff!J)(A)||,4(Q) — t]x    as j' -> oo, 1 < i < n,
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where
n

(*) (l + ô)-^^1   r?, < 1.

»=i

But now, for each i < n and A G (/,, define

Gl(X)^na[(g{ll)(X),gl2)(X),...,g¡3)(X),...)}.

Define also, for A G Un+i,

F(X) = wa[{fWW, f(2)W, ■ - -, /(J,(A),.. •)] G 4(a + 1).

These functions are analytic by arguments similar to those used in the proof of

Theorem 2.

Then, for every A G Un+i,

n

^G¿(A) + (A- 1a(q+i) -T.,a+,(x))-F(A) = 7ra[(c1,c2,c3,...)].

1=1

Therefore, by Lemma 3, we can extend F to Un (this being the domain of

definition of Gn), and so, since (£¿)"=1 is admissible for a + 1, we must have

n

1 = IK((C1,C2,C3,...)]|| < Y, SUP HG»(A)II ■ £t_1-

But sup^g^ ||Gi(A)|| < t]i so, by (*), we have a contradiction.

Thus, for each a G fi, there is a suitable £n+i > 0 so that

(l + 6)-lei,(l + 6rls2,...,(l + SrlSn,en+u

is an admissible sequence for a. Let £n+i(a) denote the supremum of possible

values of £n+i for a given a.

By the transfinite induction argument of part (1) of this lemma, infQen £n+i(a)

>0.
Thus there is an £n+i such that

(l + ¿)-1£1(l+¿)-1£2,(l + ¿)-1£3,...,(l + ¿)-1£n,£n+1

is admissible for every a G fi. Thus Lemma 6 is proven.

Let (£¿)°Í, be a sequence such that (£i)"=1 is admissible for each n and a G fi.

Assume each £, < 1. Let Z be the algebra of all analytic functions taking values in

4, which are defined on a neighbourhood of oe(x).

For each g E Z, define

í N
N|(1)=inf    ||C|U+ ££-'■ sup ||i/t(A)|U:

I t=1 W>

(X-1A- x)f(X) -Y g(X) = c + ¿ 9l(X) (all A G UN) \
i = l )

(this is a seminorm on Z)\ and

\\g\\™ =        sup       (||<//i||(1)/INI(1))-
r»€Z,|ln||(»#0
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We shall see that || • ||'2' is also a seminorn on Z\ it is always finite, and has the

algebra norm property that Hffi^ll'2' < ||ffi||(2) ■ Héf2||(2) for all gx,g2 E Z.

First, we claim that 4 is isometrically embedded in (Z, \\ ■ ||'2').   For, by the

definition of || • ||(1', we see that for all c G 4, h G Z.

k-/ill(1)<IM¡ |/i||(1);

thus ||c||(2) < ||c||4. However,

N

\c\\^ =mî {WdU + Y^1 ■ MV \\9iM\\a:
A€í/,

N -,

c = (A • 1A - x)f(X) + d + Y ff.(A) (ail A G UN) \
i=i )

>inf{||d|U + ||C-d|U} |c|U-

since (Ei)í=1 is admissible for every N. So

I(2)>IIc1aII(1)/II1aII(1) = qU;

therefore 4 is indeed embedded isometrically. Next, we show that there is an inverse

to p ■ I a - x in (Z, || • ||'2') for all p ÇÉ oe(x)\ and to do this we must show that the

function Ru: X —> (p. — A)-1 ■ 1A has finite norm ||7?M||(2'. But this is true of any

function g E Z. For if g is defined on a neighbourhood of <re(x), then for some n it

will be defined and bounded on Un. Then, if h E Z, let us say S > 0 and

M

h(X) = (X-x)k(X) + c + Ye;1 sup ||jfc(A)|U-6,
7TÍ       Aet/,

with

Then

M
Id) > llclU + X)^"1 sup ||fli(A)|| - 6

t=i A€(/,

M

gh(X) = (A - x)gk(X) + ^»/¿(A) + cg(X)        (XeUmn Un)

and

\\gh\r><     sup ||g(A)||
Aet/„

c||+¿sup||ffí(A)||    -£;

r=l
Ag(/

M

E sup ||gi(A)||
a eu,

Hence

t = n+ 1

<£-' sup ||<j(A)||(||/i||(,>+¿)    (for each ex < l).
Ae<;„

|g||«2» <£„-'■ sup ||9(A)||.
Aef/„
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The third remark we make about || • ||'2' is that is has the algebra norm property

that

I|gi92ll(2)<ll9ill(2,-Il32||(2)

for all gi,g2E Z.

For

■—-■ 3 cm
||fc||<'>#0

(*) /Il9i92^||(1)    \\92h\\^\

h7z   V M(1) ' \\h\\^ )■
INI(1Vo

Il92h||(1)^0

It is legitimate to restrict our attention to functions h such that Híte^ll'1' ¥" u

since if ||g2^||11' = 0, then the expression (*) is certainly zero for this function h:

thuS\\gig2\\W<\\gi\\W-\\g2\\W.

Now, let 7 be the ideal in Z consisting of all functions g whose seminorm ||g||'2' is

zero. Let 4' denote the completion of the quotient space Z/I. Then 4' is a Banach

algebra in which 4 is embedded isometrically, just as it is embedded isometrically

in (Z, || ■ ||'2'). But for all p £ oe(x), there is an inverse for the element p ■ 1A - x

in Z, hence also in 4'. Thus 4' is an extension of 4 in which the spectrum of x is

precisely the essential spectrum of x in 4.

This concludes the proof of Theorem 1.
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