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INVERSE PRODUCING EXTENSION
OF A BANACH ALGEBRA WHICH ELIMINATES
THE RESIDUAL SPECTRUM OF ONE ELEMENT

BY
C.J. READ

ABSTRACT. If A is a commutative unital Banach algebra and G C A is a
collection of nontopological zero divisors, the question arises whether we can
find an extension A’ of A in which every element of G has an inverse. Shilov
[1] proved that this was the case if G consisted of a single element, and Arens
[2] conjectures that it might be true for any set G. In [8], Bollobds proved that
this is not the case, and gave an example of an uncountable set G for which
no extension A’ can contain inverses for more than countably many elements
of G. Bollobéas proved that it was possible to find inverses for any countable
G, and gave best possible bounds for the norms of the inverses in [4].

In this paper, it is proved that inverses can always be found if the elements
of G differ only by multiples of the unit; that is, we can eliminate the residual
spectrum of one element of A. This answers the question posed by Bollobis
in [5].

1. Preliminary definitions and statement of the main result. Through-
out this paper, a Banach algebra is assumed to be commutative and to possess a
unit.

If A is a Banach algebra, z € A, then the essential spectrum of z in A is the set

o.(z) ={) € C: A-14 — z is a topological zero divisor},
and the residual spectrum of z in A is the set
o.(z) ={A€C: A 14 — z is not invertible, but is not a
topological zero divisor} .
Thus our main theorem may be stated as follows.

THEOREM 1. Let A be a commutative Banach algebra, £ € A. Then there 1s

an extension A' of A in which the spectrum of x is precisely the essential spectrum
of = in A.

Before proving Theorem 1, we prove the weaker result stated here as Theorem
2.

THEOREM 2. Let A be a Banach algebra, x € A, and let K be a compact set in
the residual spectrum of x in A. Then there is an extension A’ of A, such that the
spectrum of ¢ in A’ does not intersect K.

The method used to prove Theorem 2 is to take an open neighbourhood U of
the essential spectrum of z in A, whose closure does not intersect K. (Such a
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neighbourhood can always be found since the essential spectrum and the set K
are two nonintersecting compact sets in C.) We then consider the algebra X of
bounded analytic maps U — A, and give it the supremum norm, this is a Banach
algebra in which A is embedded isometrically as the constant functions.

We then let J C X denote the closed ideal generated by the function h € X,
where

h:U—- A
A=A ly4—z2

(we shall see that the ideal generated by this function is closed anyway).

We shall find that the algebra A is embedded (up to isomorphism) in the quotient
space X/J. But then X/J is an extension of A, and the spectrum of z when
embedded in X/J does not intersect K.

To see this, let 4 € K, and let us find an inverse for u - 14 — z when embedded
in X/J. Let

R, U—-A
A= (=271 14
This is a bounded analytic map U — A (since K and U are a finite distance apart).
So R, € X. Also, the element y1- 14 — r is embedded in X as the constant function

cu: U— A
Ao p-lsa -1z
Let ¢: X — X/J denote the quotient map. Then,

R, ci: U A

A= (k=271 14) - (p-1a—2)

SN (TEP YRS VRN ((7EPIES VSN CES VIEE)))

=1la+@p-A)"1- (A 14 -2).
Thus

q(Ry) - q(cu) = q(12) +q(h),
where h: A = (u—A)"!-(A-14 —z) and
1,: U—- A
A= 14

But h is in the ideal J, so g(h) = 0. Thus g(R,) - g(c.) = g(1z), so the element
p-1a — z € A has an inverse g(R,), when embedded as g(c,) € X/J.

Thus Theorem 2 will be proved.
An important tool in proving Theorem 2 and, later, Theorem 1, is the following

LEMMA 3. Let B be a Banach algebra, z € B, and let U and V be open sets in
C such that

(1) U contains the essential spectrum of = in B,

(2) V contains U, and

(3) every component of V intersects U.

Suppose we have f(A) = (A — z)g()) (all A € U), where f and g are analytic
functions f: V — B and g: U — B.
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Then there 13 an analytic extension g: V — B of g.

PROOF OF LEMMA 3. We can find an open set W C C, such that V =UUW
and W No.(z) =3. Each component of W will intersect U, and our problem is to
extend the analytic germs of g from U NW to all of W.

Since
(*) W Noe(z) =2,
we claim that there is an € > 0 such that A € W, a € A implies
(3.1) (A~ 14 — 2) - al| 2 €llal.

For if not, there are sequences (A\,)3%, C W, and (a,)3%, C A, with each
llan|l = 1, and
l(An-1a—2)-an]| =0 asn— oo.
Then {|A\|: n € N} must be bounded, so we may assume (taking a subsequence if
necessary) that A, = A € W. Then

(A 14 = 2) - an|l < [|(An - 14 = Z)an|| + |(A — An)an]|
=[[(An - 14 — 2)an|| + [A = A4
—0 asn— oo.
Thus A-14 — z is a topological zero divisor in A4, so A € W No(z), contradicting
our observation (*) that this set is empty. Let us choose an ¢ > 0 such that

condition (3.1) is satisfied.
Now,

fA)=(A-14-12)-9g(})
which implies that, for eachn =1,2,.. .,
FP0) = (- 14 = 2) - g™ () + ng™D (),

where h(") denotes the rth derivative of a function h.
It follows that, if we have an analytic germ of g at some point Ao € W, then

n ] n—r
900l < 21720015 (3)
r=0 :

for all n € N.

So if the power series for f at Ag has radius of convergence § > 0, then the power
series for g at Ao has radius of convergence greater than or equal to ¢ - é.

Therefore this radius of convergence is bounded away from zero on any compact
set in W; hence it must be possible to extend g throughout W, as required. Thus
Lemma 3 is proved.

COROLLARY 4. Let B be a Banach algebra, c € B, and suppose that
c=(A-14-2)-g(A) (all xeU),

where g: U — B 13 analytic, and U 13 a neighbourhood of the essential spectrum of
cinB. Thenc=0.

PROOF. The constant function ¢ can be extended to all of C, hence, by Lemma
3, the function g extends to all of C, and the extension is a bounded entire function,
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which must be constant. Thus we have ¢ = (A-14 ~ z)-g (all A € C) for some
g € A; therefore c = ¢ =0.

We now prove Theorem 2.

PROOF OF THEOREM 2. We are given a Banach algebra A, an element z € A,
and a compact set K in the residual spectrum of X in A. We wish to exhibit an
extension A’ of A, such that the spectrum of z in A does not intersect K.

Let us choose a bounded open set U C C such that U D o.(z) and UNK = Q.
Let X be the Banach algebra of bounded analytic functions U — A, with the
supremum norm,

[If: U — Allx = sup [|f(A)]a-
AeU

(Note: we do not demand that such a function have a continuous extension to U,
this is important when we come to prove Theorem 1.) Let J be the closed ideal in
X generated by the function h € X, where h(A\) = A-14 —z (all A € U).

Consider the isometric embedding j: A — X sending ¢ € A to the constant
function j(c): A — ¢ (all A € U).

We wish to show that the morphism ¢: A — X/J obtained by composing j and
the quotient map ¢: X — X/J, is still an isomorphism.

Now it is evident that

l¥(a)ll < lla|| for all a € A;

so we need to check that there is no sequence (¢;)?2, C A, such that each ||c;|| = 1,
but

lv(ci)llx/g — 0 asi— oo.
Now J is the closure of the set of all functions H € X of form
H U—- A
LA f(0) (A 1a - 2),

where f € X. Thus if ||1(c;)|x;s — 0as 2 — oo, there must be functions (f;)%2, C
X such that

sup || fi(A)-(A-1a—x)—ci]jla — 0 asz— oo
AeU
We have to show that such constants and functions cannot exist. We state this

as a separate lemma:

LEMMA 2.1. If A is a Banach algebra, £ € A, and U C C is an open set
containing the essential spectrum of = in A, then there is an € > 0 such that for all
¢ € A, and all analytic functions f: U — C, we have

sup [|f(A) - (A-1a —z) —clla 2 €llc].
reU

PROOF OF LEMMA 2.1. Let B be the Banach algebra of bounded sequences
(@)%, C A, with pointwise addition and multiplication, and the norm

(a:);2411l8 = sup |la;|| -
€N

Let I be the closed ideal of B consisting of those sequences in B which norm
converge to zero. Let m be the natural projection m: B — B/I.
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Now, for all (a;)$2, € B,

m((a:)21)llB/1r = limsup [la;| a;

1—00

and B/I is a commutative Banach algebra with unit 15,; = 7[(14,14,14,...)]
(the equivalence class of the sequence in B consisting entirely of 1’s).
A is embedded in B/I by the isometry

¢: A— BJI

: a — w((a,a,a,...)].

In fact, our element z will have exactly the same spectrum and essential spectrum
as ¢(z) € B/I as it did in A.

Suppose our lemma is false. Let (c;)?2, be a sequence of norm 1 elements of A,
and (f;)?2, a sequence of analytic functions U — A, such that

sup || fi(A)-(A-1a—2z)—ci|| =0 asz— oo.
A€U

Now if W C U is any set which is bounded away from the essential spectrum of
z, then there is an n > 0 such that

la-(A-1a —2z)|| > nlla|| forallac A, AeW.
Therefore for all : € N, A € W we have

1£:(A) - (A~ 1a = 2) = eill 2 nll (A = llesll = nll f(A)] - 1.

Thus there is a uniform bound on the values ||f;(A)|| for all 7, throughout W.

However, since the essential spectrum is a compact set within U, we may pick
a suitable set W so that, by the Maximum Modulus principle, each f; approaches
its supremum norm supy¢y || fi(A)|| somewhere on W (we must say “approaches”
rather than “achieves” since U is an open set so the supremum need not be achieved
anywhere).

It follows that the collection (f;){2, is uniformly norm bounded. Similarly, the
collection is uniformly differentiable at any point u € U.

Now consider the map

F: U—- B/I
A W[(fl(’\)nf?()‘)’ f3()‘)7 )]

Since the f;’s are uniformly bounded, the sequence (f1(A), f2(A), fa(}),...) is always
in B; and since they are uniformly differentiable, we find that F is a uniformly
bounded analytic map. It is easy to see that for all A € U,

(A-1gy1 — @(z)) - F(A) = m((c1,c2,¢3,...)]

Therefore, since U contains the essential spectrum of ¢(z) € B/I, we have by
Corollary 4 that 7[(c1,c¢2,¢3,...)] = 0. Therefore limsup,_, |lcilla = 0, but this
is a contradiction since by hypothesis each ||c;|| = 1. Thus Lemma 2.1 is proved.
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COROLLARY 2.2. The map ¥: A — X/J is an isomorphism.

By the result of [6], we can put an equivalent norm on X/J so that A is now
embedded isometrically by the map 1. But this proves the theorem, for X/J
contains an inverse to u- 14 — z for every p in K, namely the element g(R,,), where

R.:U— A
:/\—>(p—A)—l~lA.

Having proved Theorem 2, we now make some definitions which lead towards a
proof of Theorem 1.

Let 2 denote the collection of all countable ordinals. With each ordinal « € {1,
we shall associate a Banach algebra A(a); the collection {A(a): a € 1} will be
directed upwards, in the sense that for all a,3 € 1, a < 3, there will be an
isometric embedding

Ta.5: A(a) — A(B).
Furthermore, if o, 8,7 € 1 (a < 8 < 7), we will have 73, 074 8 = 7o 4.

We now proceed to define our sequence of Banach algebras, using transfinite
induction.

(1) We define A(1) to be our original Banach algebra A.

(2) Given a € 1 and the Banach algebra A(a), we define A(a + 1) as follows:

Let B(a) be the Banach algebra of sequences (a;)2,, a, € A(a), with pointwise
addition and multiplication and the supremum norm

1(a:)211lB(a) = sup lla:ll a(a)s
iEN

let I(a) be the closed ideal consisting of all sequences in B(«) which norm converge

to zero, and let 7, denote the natural projection

7o: Bla) — B(a)/I(a).

We define A(a+1) = B(a)/I(a), and the map 74 o+ is the isometric embedding

Ja: A(a) = A(a+1)

:a — 7mal(a,a,a,a....)).

We must then define 73 411 = Jo © 73,4 for each ordinal 8 < a.

(3) If a; € 2,7 =1,2,..., then we require that A(|J, ai) be the completion of
the direct limit of the collection {A(e;), ¢ = 1,2,3,...} of Banach algebras, which
is directed by the maps 74, q, (a; < aj). For B < |, a:, the map

T8,U,a, - A(,B) — A (U ai>

1

is the direct limit of the maps 73.4,: 8 < oy, followed by the map which sends the
direct limit of the algebras A(a;) to its completion, which is A(lJ, o).

Now these three conditions define the collection {A(a), a € (1} uniquely, to-
gether with the linking maps 75.4: 8 < a.
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LEMMA 5. Ifa,B €0 (a < p) and a € A(a), then

(*) inf < "Ta»ﬂ(a’) N y”> - inf (”ayon> .
yEA(B) llyll w€A() \ |lyoll

PROOF. The left-hand side of this identity is an infimum similar to that on the
right-hand side, but evaluated with the element a € A(a) embedded in a larger
space A(B). It is therefore less than or equal to the right-hand side.

The opposite inequality is proved by transfinite induction on (3; the result is
trivially true if 8 = a.

If the result is true for 3 = [y, then given y € A(Bp + 1) let us say

y=7al(y:)i21]  (v: € A(Bo));
then
1y - Ta.go+1(a)lla(Bo+1) = limsup(|ly; - 7a,80(a)l| a(80))

Yy - 7a.s (a)ll>
> hmsu LA e R A
piing ly:ll - 'eA(a ) ( 'l

. ) all
> limsu |l - inf <”—y0—>
m Sup lly:|l woier \Twol

(by induction hypothesis)

. ||3/oa||)
f _— .
= lvllago+n) - eA(a)( lloll

This is the result for §p + 1. But it is clear that an equality such as (*) is
preserved under direct limits and completions. So the result is true for all 3 € §).

We now prove Theorem 1.

PROOF OF THEOREM 1. Given a Banach algebra A and z € A, let us choose
a sequence (U;){2, of bounded open sets in C, such that:

(1) For each ¢, U; D Uj41.

(2) For each 1, every component of U; intersects U; ;.

(3) N2 1 Ui = 0e(2).

DEFINITION A sequence (g;)7_, of strictly positive real numbers is said to be
“admissible” for a € 1 if, whenever there are bounded analytic functions

gi: U,~—+A(a) (i=l,2,...,n),

an analytic function f: U, — A(a) and a constant ¢ € A(a) such that, for all
A € Unp,

c—Zg, )+ Tra(A-1a—x)- f(N),

then

n

llell aa) < Z - sp [lg:(N)lace)-
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The most important step in proving Theorem 1 is the following

LEMMA 6. There is a sequence (€;)S2, such that, for each n, the sequence
(€:), 1s admissible for every a € (1.

PROOF OF LEMMA 6. It is enough to show the following:

(1) There is an €,, which is admissible, as a sequence of length 1, for every a € (1.

(2) If the sequence (g;), is admissible for every a € (2 and 6 > 0, then there is
an £,41 > 0 such that the sequence

(1 +6)_1 €1, (1 +5)_l “€9,...,(1 +5)—l “€nyEnti

is also admissible for every a € f).

Let us apply Lemma 2.1 with A replaced by A(a) for some ordinal a, z replaced
by 71.o(z) and U replaced by U;. We find that there is an ¢ > 0 such that, for all
¢ € A(a) and all analytic functions f: U; — A(a), we have

sup [|f(A) - (A-1a — ) = cllaga) = €llcll-
AelU,

Writing g1(A) = c— f(A)-(A- 14— ) (A € Uy) we see the value €, a “sequence” of
length 1, is admissible for a.

Denote by €, (a) the supremum of all admissible values of ¢ for a given a. This
decreases with increasing a, since the Banach algebras involved are always getting
larger.

But £;(a) must be bounded away from zero. For if we could find a sequence
(@,)%2, such that o; €  and €;(a;) — 0 ast — oo, then we must have &; (U ; a:)
= 0, which is impossible.

Thus there is an £, which is admissible for every a € ). This proves assertion
(1).
Now suppose that (g;)"_, is admissible for every a € {l. Choose a particular
a € 1, and, given § > 0, suppose that we cannot find an €, such that

(14+6) e, (1+8)Yea,...,(14+8) ten, ent1
is admissible for a.
Then we must be able to find constants (c;)$2, in A(a), and analytic functions
g U, — A(a) (i=1,2,...,n+1; jeN)
and _
JO): Unpr — Ala)  (F€N),
such that, for each j, ||c;|| = 1, and for all A € Un 41,

n+1

;=397 (N) +mialA 14— 2)- fO),
1=1

but
n+1 ) ) )
1> (1+6) Y sup [lg?’ (V) +2 sup g}, (NI
i=1 €U1 )\eun+l

Extracting a subsequence from (cx)$2 ,, we may assume that

sup 197 (M)l aa) — m asj—oo. 1<i<n,
AeU,
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where
(*) (1+86)- Z -1 < 1.

But now, for each i <n and A € Ui, deﬁne
Gi(N) = mal(g (X, 6 (A, g (V). . ).
Define also, for A € U, 41,
F(A) =mo[(fPA), fAW),.... fDN),...)] € Ala+1).

These functions are analytic by arguments similar to those used in the proof of
Theorem 2.

Then, for every A € Up 41,

ZGi()‘) + (A laga+1) = Tra+1(2)) - F(A) = ma(cr,c2, €3, - .)]-

i=1
Therefore, by Lemma 3, we can extend F to U, (this being the domain of
definition of G), and so, since (g;), is admissible for a + 1, we must have

1= ||ma[(c1,e2,¢3,.. )] < ngg 1G] -7
i= :

But sup, ¢y, |G:i(A)|| < #: so, by (), we have a contradiction.
Thus, for each a € (), there is a suitable €,,; > 0 so that

(1+8)7 er,(1+8) ez, (1+68) e, ns,

is an admissible sequence for a. Let €,4;(a) denote the supremum of possible
values of €, for a given a.

By the transfinite induction argument of part (1) of this lemma, inf,ecq €nt1(a)
> 0.

Thus there is an €, such that
(1+8)ter(14+6)tea,(1+6) tesy.. ., (1 +6) e, ens1

is admissible for every a € ). Thus Lemma 6 is proven.

Let (£:)32, be a sequence such that (e;)7, is admissible for each n and a € Q.
Assume each ¢; < 1. Let Z be the algebra of all analytic functions taking values in
A, which are defined on a neighbourhood of o.(z).

For each g € Z, define

N
gl = inf {IICIIA + EE{‘ ' sup llg:(M)lla:

(A-1a=2z)f(A) +g(A) —c+Zg1 (allAeUN)}

=1

(this is a seminorm on Z); and

lg® = sup  (llghll™®/[IAII™).
heZ, RN %0
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We shall see that || - ||(?) is also a seminorn on Z; it is always finite, and has the
algebra norm property that ||g1g2[|® < ||g1 ]| - ||lg2]|® for all g;,92 € Z.

First, we claim that A is isometrically embedded in (Z,|| - ||(¥)). For, by the
definition of || - ||(!), we see that for all c € A, h € Z,

lle- R < flella - A1

thus ||c||® < ||c||a. However,
llefl” = inf {IldHA +Z€ - sup llg:(A)lla:

N
c=(A1a-2)f(N) +d+ D g(N) (all/\eUN)}

> inf{||d||a + [lc — d||a} = |Ic] a-
N

since (¢;);%, is admissible for every N. So

el > fle - Lal ™ /L4l = Jle]La:

therefore A is indeed embedded isometrically. Next, we show that there is an inverse
tou-1a—zin (Z.]|-||®) for all u ¢ o.(z); and to do this we must show that the
function R,: A — (u— A)~! - 14 has finite norm ||R,||®). But this is true of any
function g € Z. For if g is defined on a neighbourhood of o.(z), then for some n it
will be defined and bounded on U,,. Then, if h € Z, let us say 6 > 0 and

h(A) = (A - +c+Ze ‘sup lg:(Mlla =6,
with
Y
RIY > el 4 + e ! su (M) = 6.
R* > lella ; ; Aeg llg: (M)l
Then
gh(A) = (A - z)gk(A +ng, +cg(d)  (AeUnNUn)
and
llghl|™" < { sup llg(A)]} - HPII+ sup llg: (M)l
/\6“71
+ £, ~!su i
Z sup flg:(2 II}
1=n+1
< e, sup llgMI(IRIM) +8)  (for each €, < 1).
Aell,
Hence

gl < ;' - sup [lg(A)]l.
A€U,
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The third remark we make about || -||(?) is that is has the algebra norm property
that

llg1g21l® < llgall® - llg2ll®
for all ¢g1,92 € Z.

For
(1)
2) _ llgig2hll )
1 g2 = Ssup TR
”gl g ” hez ( “h“(l)
Al #0
(*) — <nglgzhu<”-ngzhn“))
heZ llg2hlIV) IRV
[Ih]1¢") 5£0
llg2h|l (") 5£0

It is legitimate to restrict our attention to functions h such that ||g2h|/‘V) # 0
since if ||g2h||(!) = 0, then the expression (*) is certainly zero for this function h;
thus [l91g2[|® < flg1[|® - [lg2l|®.

Now, let I be the ideal in Z consisting of all functions g whose seminorm ||g||(?) is
zero. Let A’ denote the completion of the quotient space Z/I. Then A’ is a Banach
algebra in which A is embedded isometrically, just as it is embedded isometrically
in (Z,]-|‘®)). But for all 4 ¢ o.(z), there is an inverse for the element - 14 — r
in Z, hence also in A’. Thus A’ is an extension of A in which the spectrum of z is
precisely the essential spectrum of z in A.

This concludes the proof of Theorem 1.
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