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FINITE TIME ANALYTICITY FOR THE TWO- AND
THREE-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY

BY

C. SULEM AND P. L. SULEM

ABSTRACT. The Rayleigh-Taylor instability refers to the dynamics of the

interface between two ideal irrotational fluids of different densities superposed

one over the other and in relative motion. The well-posedness of this problem

is considered for two- and three-dimensional flows in the entire space and in the

presence of a horizontal bottom. In the entire space, finite time analyticity of

the interface is proven when the initial interface has sufficiently small gradients

and is flat at infinity. In the presence of a horizontal bottom, the initial

interface corrugations has also to be small initially but it is not required to

vanish at infinity.

1. Introduction. A fluid of constant density p_ and horizontal velocity w_

superposed over a fluid of constant density p+ and velocity u+ parallel to U-

corresponds to a stationary solution to the Euler equation. But this configuration

is linearly unstable for any perturbation of the interface of wave number k in the

direction of the flow with modulus [1]

11      l-a2(u+-u^)2'

The coefficient a = (p+ — p-)/(p+ + p_) is generally called the Atwood ratio; g

denotes the gravity field. When the two fluids have the same density (a = 0), the

problem is often referred to as the Kelvin-Helmholz instability. In this case, small

corrugation of any wave number is amplified exponentially. As a consequence, the

linear problem is well posed only for an analytic initial interface, and thus generally

only during a finite time [2]. In contrast, for the water wave problem where the

lower fluid is much denser than the upper one (a — 1), the interface is linearly

stable, suggesting that nonanalytic initial free surfaces may be considered.

Well-posedness for the nonlinear water waves has been investigated by many

authors. Existence during a finite time has been established in spaces of analytic

functions [3-6], and also in Sobolev spaces and Holder spaces [7-9]. They either

transform the fluid region on a simple domain by means of a conformai mapping

(two-dimensional problem) or follow the evolution of the free surface in Lagrangian

coordinates. The Rayleigh-Taylor problem (a ^ 1) in two-dimensions has been con-

sidered in [10] where a finite time analyticity result is presented. The proof, which

in places is only sketched, uses scales of spaces of analytic functions à la Ovsjannikov

[11]. The present paper also deals with the well-posedness of the Rayleigh-Taylor

problem and extends to it an analysis previously done for the Kelvin-Helmholtz
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problem [12]. Both two- and three-dimensional flows are considered and a class of

analytic initial conditions larger than in [10] is permitted. In addition, periodicity

is not required. In §§2 and 3, we derive for two- and three-dimensional flows, a

close system of equations for the interface and the vorticity density. This is done

by writing the momentum equation for inhomogeneous flow in the sense of distri-

butions. When the densities of the two fluids are different (a ^ 0), the equation for

the vorticity density is of Fredholm type. In §4, we adapt to this problem Nishida's

formulation [13, 14] of an abstract Cauchy-Kowalevski theorem in scales of Banach

spaces [11, 15]. In §5, this theorem is used to prove analyticity during a finite time

for the Rayleigh-Taylor problem in the entire space, under the condition that the

interface gradients are sufficiently small initially. When the interface is not periodic,

it is assumed to be flat at infinity. The effect of a horizontal bottom is considered

in §6. In this case, the initial corrugation has also to be sufficiently small but is not

required to vanish at infinity. This is due to a faster decay of the Green function of

the Poisson equation at large distances. Finally, a few open problems are discussed

in §7.

2. Equations of motion of the interface in two dimensions. We consider

a fluid of density p_ superposed on a fluid of density p+. The flow is irrotational

in each of the domains where the fluid is homogeneous but a velocity discontinuity

at the interface is permitted. The momentum equation reads:

(2.1)
-Qt (H + X] ¿j¡T" ^u'u) + Vp - pg = 0,

(b)    div « = 0

where g = (0,—g) is the gravity field.

The jump conditions across the interface are easily derived from the equation

satisfied by Curl(pw) in the sense of distribution. We denote by tp(r, t) a vectorial

test-function perpendicular to the plane of the flow. It will be sometimes identified

with its unique component. We assume that tp has a compact support which does

not intersect the possible bottom. We have

(2.2)
r\ /» r\ n

(a) pu Curl —— df dt + I puiU Curl —— drdt — g I p Curl tp drdt = 0,
dt J dxi J

(b) f(u-V)ipdr = 0.

For simplicity, we shall consider in this section the case of a two-dimensional flow.

The three-dimensional problem is considered in §3.

The interface is represented by the equation

(2.3) r = r(X,t),        X G R,

or when cartesian coordinates are used

(2.4) x = x(X,t),    y = y(X,t).

N = (—yx, xx) is a vector normal to the interface, n and t are normal and tangent

unit vectors, respectively. The vorticity density fi(A,£) on the interface is a vector
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perpendicular to the plane of the flow defined as

(2.5) / ip(r) Curl u(r, t)dr= f ip(r(X, t))Ü(X, t) dX,

where ip(r) is a scalar test function.

The velocity in a point exterior to the interface is given by the Biot-Savart

formula

¿(r, t)= f VG(r, r(X', t)) A Ü(X', t) dX',

where G is the Green function of the Laplace operator in the domain. In the absence

of boundaries and when the velocity vanishes at infinity,

G(r, r') = ~ In ^(x - x')2 + (y - y')2.
¿IX

in the presence of a horizontal bottom,

rw>--I1T1   (x-x')2 + (y-y')2
l'   '        2x    I/ (x - x')2 + (y + y')2 '

If the interface is sufficiently smooth, the velocity u has limits u (X, t) when r tends

in an arbitrary way from one or the other side to a point r(X, t) of the interface. In

addition,

(2.6) V(X,t) ^ U++2U~(X,t) = ^VG(r(X,t),r(X',t))AÜ(X',t)dX',

where / indicates that the integral is taken in the sense of Cauchy principal value.

We rewrite each integral in (2.2) and (2.5) as the sums of integrals in each of

the two subdomains separated by the interface, and apply the Green formula to

the different terms. In each of these domains, the flow is homogeneous and irrota-

tional and the Euler equation is satisfied in a classical sense. The only remaining

contributions thus come from the interface. We denote by [/] = f+ — f~ the jump

across the interface of a function defined on one and the other side. (2.2)(b) and

(2.5) imply

,27) (a)    [u]:N = 0,

(b)    [u] A N = n

and (2.2) (a) is rewritten in the form

f([pu\ AN)-^dtdX+ f([puxu] AN)-^dXdt

(2.8) J r J r
+ / [Cuñ(puiu)} ■ Ni<p dX dt - [p] / (g A N) ■ <p dX dt = 0.

In the first term of (2.8), we make the replacement
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where d/dr = (1/||./V||)3/<9A. We rewrite the second term of (2.8) in the form

(2.10)     f({pUlu}AN)-^dXdt= f(V -n)([pu}AN)-^dXdt

+ j{(V.r)[pu)AN + ([u}-r){(m)++2{(M)~ AN\.^dXdt.

In the third term, we use

[Curl (puiu)]Ni =Ni[Vul A pu]

dV \ ,    , /     dV
n'Jx [pu] -n+ (t- —j [pu] -T

+ H M+ t M" • *» + ¿(M • r)i(M)+ + M"

After integration by parts, (2.8) becomes

(2.12)

/{4(WAiV) + |((|-y).rMAn

a ^(pM)+ + (pM)-   \    /   av\,  ,
-M-r^^-2-rj + ^n.—JH-n

+ (r.f)H-r + (M.,)(H+ + (H--n+[p]gA7v}^

where the vectors perpendicular to the plane of the flow are identified with their

unique component.

(2.12) is satisfied for any test function <p; the coefficients of ip and d<p/dn in

(2.12) thus vanish. Expressing (pu)+ ± (pu)~ in terms of V and fi one finally

obtains

PROPOSITION 2.1. // during a period of time, the interface between two two-

dimensional ideal fluids of different densities superposed one over the other remains

a smooth curve T(t) = {r = r(X, t), X G R} with a vorticity density fi(A, t), we have

(a)    (rt-V)-n = 0,

(2'13) (b)    §i^ + c^-rx)} + ^{^{{y-rt)-r>)(^+a(y-rS)}

a r n2     \v\2}
-adx\WxT2^^\ + a9yx = 0-

In (2.13) subscripts denote partial derivatives and n is a unit vector normal to

T. If no boundary is present and the fluids are at rest at infinity

<2"> ^•'» = ¿/ma,o-"^OI'a"(V-')'"'-
In the presence of a horizontal bottom (r = (x,y), f = (x, —y))

f-9 1-iï    V(Xt\-   l    fíA^lLllí^A.        r(X,t)-f(X',t)   \/,nLVt]dy
(2.15)   V(\,t)--J I |r(A t)_r(A# t)|a - |r(A,t)_,(AV)|2j An(A,*)dA.
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If p and p+ are the densities of the upper and lower fluids, respectively, a —

(p+-p~)/(p++p-).
The system (2.13), (2.14) simplifies when the interface can be resolved in the

form y = y(x,t). It becomes

(a)    yt - V2 + yxVi = 0,

(2'16) <b> |{?+^+^)} + ¿{^(?+^+^:

/    n2       \v\2

In the entire plane

Vl(xt) = -±¿_y(x,t)-y(x',t)_
(217) 1(,)        2irJ(x-x>)2 + (y(x,t)-y(x>,t))2U{X't]dX'

V^t] = h-í(x-x>)2 + (y¡xXt)-y(x',t))2Ü{^t)d^

in the presence of a horizontal bottom,

y(x,t) -y(x',t)

Q(x',t)dx',

-x')2 + (y(x,t)-y(x',t))2

y(x,t) +y(x',t)

,01fi, (x-x')2 + (y(x,t)+y(x',t))2

1    /■/ x-x'
V2(x,t) = -J   [,x_x,)2 + fy,Xjt)_yfx,jt))2

x — x'

~(x-x<)2 + (y(x,t)+y(x',t))2

Computing the time derivative in (2.15)(b) and using (2.15)(a), one obtains

PROPOSITION 2.2.    When the Rayleigh-Taylor problem is considered in R2 and

the interface can be resolved in the form y — y(x, t), the equations of motion become

(a)    yt - V2 + yxVi = 0,

(2.19) ian      ,r .an   dF   n
(b)   2m-aA{y}m+lJx- = ^

where

(220Ï A'y] dU(x) -  Í y{x't] ~ y{x''t] ~{X~ X'ÜX(X^ dn(x> t)dx'
(2.20) A{y}m(x)-J     {x_x,)2 + {y{^t)_y{x,>t))2    Qt^^dx

and

(2.21)

Vi and V2 are defined in (2.17).
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When a horizontal bottom is present, the equation for the vorticity density reads

(2-22) dJl+B{y}dft=S{n,y}

with

(2.23)

+

d  /„ n       \V\2     a   Ü2

1   d    /",,, , ,, , ,.„, ,../ x — x'

S{V,y}=   -^z(Vi-+al-^- + ^^T^+agy

j(V2(x')-yx(x')Vi(x>))
2ndxfy¿y   '     yxy   '  1V   " \(x-x')2 + (y(x,t)-y(x',t))2

'Q(x',t)dx'
\x~x')2 + (y(x,t) + y(x',t))2

and

dû _  a   f /y(x) + y(x') - yx(x)(x - x'
(2.24)    B{y}-dt      2tt J   V (x - x')2 + (y(x) + y(x'))2

y(x)-y(x') - yx(x)(x - x')\ dû.,.^,

(x - x')2 + (y(x) - y(x'))2 ) dt

Let us assume that y(x, t) fluctuates around some mean value h. To isolate the

linear contribution in the right-hand side of (2.24) we write

(2.25) y(x,t) = h + n(x,t).

(2.22) becomes

(2-26) -^+J {x _ xl)2 + 4h2^(x') dx> = -Ch{V}^ + S{ù,y}

wi th

,___. -, r .an    Dr ,an    r        2/1       an,      ,
(2.27) Ch{n}^=B{y}--l _-___(a/)<to'.

The linear operator acting on âû/ât in the left-hand side of (2.26) is easily inverted

by taking the Fourier transform of the equation. We finally obtain

PROPOSITION 2.3. When the Rayleigh-Taylor problem is considered in the half-

plane y > 0, and the interface can be resolved in the form y — y(x, t) = h + n(x, t),

the equations of motion read

(a)    Vt~V2+ r,xVi = 0,

(2-28) dû dû

tOTÍ/l

(2.29) A{r?}^=C,{r/}^+|^(x-x')(c7,{r?}^(x')) d*',

(2.30) F{n, ry} = S{Û, y} + f 9(x - x')S{Ü, y}(x') dx'.
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The kernel Q is given by

ae-2fc|fcl

(2.31) £(*) = /_ e'ikxYf^=m\dk^

and thus decay like \x\~2 when x —> ±00.   Vi   and V2 are defined in (2.17) with

y — h-r-n; Ch and S are given in (2.27) and (2.22).

3. Equations of motion of the interface in three dimensions. The inter-

face is represented by the equation {f= r(X,t), X = (Xi,X2) G R2}. The vorticity

density Û(X, t) is defined by

/ <p(r) Curl u(r,t)dr= -f(3.1) / ip(f)Curlw(r, t)dr=j p(r(X, t))û(X, t) dX,

where ¡p is a test function. Like in dimension 2, when the interface is sufficiently

smooth, we have

(3.2) V{X,t}= (X,t) = - / VG(f(A,í),f(A' ,i)) AÛ(X' ,t) dX',

where u^ are the limits of the velocity u(r, t) when f tends from one or the other

side to a point r(A, i) of the interface and G is the Green function of the Laplace

operator. When the problem is considered in R3,

(3.3) G(r,r') = —T=^.
4tt \r — r'\1 '

When it is considered in half a space,

1   ,

with f = (xi,x2,z) and f = (xi,x2l— z).   a normal vector N to the interface is

N = dr/dXi A dr/dX2. Using a Green' formula, (2.2) is rewritten as

(3.5)

f([pu] AJV)-^ dXdt + f(\putu] AN)-^dXdt

+ / [Curl (pu,.u)} ■ (Ni<p) dXdt + [p]     (g A N) ■ <pdXdt = 0.

Proceeding as in [10], we obtain the following system of equations:

(3.6)
(a) (rt-V)-N = 0,

(b) -^(HAJV)

+ f" Í-1V+1 — Íw A N f* -* ^ --1
,tí     dxA ii^ii2 \dt,dx~/ ) \\N\2 (¿¿AA/ ^M'

+ [Vtti A pu\Nl + ag A N = 0.
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In (3.6)(b), the subscript j is 2 if j = 1 and 1 if j = 2; (o,6,c) denotes the triple

scalar product a ■ (b Ac). Furthermore,

1      / d
{^AN)^AN=jk(v^N)[pu]AN

\\N\\2   ^(3.7) "    "    v     ]        /l h    il    \ 3

Na*)a<h^L

and [10]

(3.8) [Vu, A pu] = IWI ( [g] A (*0+ + ("0- + ^ a W)

We also express (pu)+ ± (pu)- in terms of [u] and V, and notice that

We thus obtain

PROPOSITION 3.1.   If during a period of time, the interface between two ideal

fluids of different densities superposed one over the other remains a smooth surface

S(t) — {f = r(X,t) with X = (Ai,A2) G R2} with a smooth (vectorial) vorticity

density fi(A,i), one has

(3.10)

(a) (y-|).tf = 0,

(b) Kj+^AAO

2

aA[||*||2^     dt'dx-/

û
+ VÍ-1V + 1— i — ¡V-- — N\+ Z^  L>     ß\ ) ha/IP   v     at:d\~:    '

d\i V 2        8   / dX--

where the jump of the velocity through the interface is given by

dr \   dr(3.") H-jJpD-r^) axf

and V defined in (3.2).
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This system simplifies when the interface can be resolved in the form z — z(x, t)

with x — (xi,x2). (3.10) becomes

, .     dz     Tr       dz Tr       dz Tr
a     — - V3 + jr—Vi + 7—V2 = 0,

(b)    KS+dfAj»

with

<9r M  dV

■a—i
adxj \

(3.13)
d    (\V\2      [u}2\   dr

Let us first consider the problem in R3. Developing â(V A N)/dt, (3.12)(b) is

rewritten in the form

3

(3.14) d^+aYdBl3{z}d^f- = El{Û,z}        (i = 1,2,3).
dt    ' "f-j-vi-j  dt

3 = 1

The right-hand side of (3.14) is given by

(3.15) E = S + I + J

with, for i = 1,2,

(3.16) 3 4n{     '      dx-J |r(x)-r(f')|3

x {(x2 - x^n^f ) - Û2(x!)(xi - x'i)}dx*,

Q_^_d_ f dz(x)/dt - dz(x')/dt

(3.17) 3 "      4»¿J ¿>x, 7  "      |r(f)-r(f')l3

and

J

x {(i, - x,j)n3{x*) - ilj{x*){z{x) - z(f))} eff

a    f dz(x)/dt-dz(x')/dt

(3.18)
/47T y |r(x) — r(x')|3

x {3m^wh[n{^ '(r(i) "r{*))] "n(ä°} ̂

In the left-hand side of (3.14),

m,>gg=- -1 f [(n(x) • r(g) -^ ^ ™m
4irJ  H |r(f)-r(x')|V  dt (   '

(3'19) -    ̂ -^    (V(f) - ̂ (f A 1 dr'
|r(f)-r(x')|3 V       '    dt[   ')}

For a given z, B can be viewed as a linear integral operator acting on dû/dt.

Let Bij be the matricial elements of this operator. The kernels of B^j (j = 1,2,3)
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will be "small" of the interface gradients are "small". The kernels of Bi3 and B23

which operate on âû/dt have contributions which are independent of Vz. In these

terms, we make the replacement

(3.20) ^ = _a¿B3A+ÍMn,2}.
i=i

The resulting operator acting on âûj/ât is then "small" with Vz.

PROPOSITION 3.2. //, during a period of time, the interface between two ideal

fluids of different densities superposed one over the other is a smooth surface z =

z(x,t) with a smooth vorticity density û(x, t), one has

dz     Ir       dz ,r       dz T,
a V3 +—Vi +—V2 = 0,

,0 91 \ vt dxi dx2

(b)    d^+aAJ{z}d^=F{û,z}        0 = 1,2,3)
dt Ji ' dt

with (no summation)

(3.22) F0{û,z} = E,{û,z} + (1 - 63J) j     ^_ ^l)?E3{Û,2}(f ) dx1

for j= 1,2,

(3.23)

(a)    A.,ZX™__± f_1
r(x) — r(x')\c

z(x) - z(f))^/(f) + (Xj - x3)B3{z} — (^) \ dx1
,9Û,,,.      . . _  , , dû
i-gf(£') + (xJ^xJ)B3{z} —

(b)    A3{z}dÛ/ât = B3{z}âû/dt

and

(3.24) V(x) = - i- f   "ff ~ ̂ ,3 A n(f ) dx'.
4-7T J   \r(x) - r(x')|3

For simplicity, the temporal argument has been omitted.

When a horizontal bottom is present at z = 0

where r(x) = (xi,x2,-z(xi,x2)). When d(VAN)/dt is developed to write (3.12)(b)

as a Fredholm equation, we get

(3.26) dû/dt + aB{z}dÛ/dt = E{Û,z},

where

(3.27)
B{z}™ --i-/ ¡N(x) ■ (JWZIPL -   r(x)~f(x')  \ dû

X]dt  '      4tt 7  \    [  !    \\r(x) - r(x')\3      \r(x) - f(x')\3 )  dtK   '

dû       \ \r(x)-r(x>)        r(x)-r(x>)   \ j

1[X>    dt[   ') \\r(x) - r(x')\3    \r(x)-f(x')\3)]
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and

(3.28) E = S + I + J

with

(3.29) -S = £{vj(j+aVAN'S) + (%-+a(v-
dx.

<^L- a— (^- - ^l\\—     a   AN
dxj        dxj \   2 8  / J dx-.

For j = 1,2

^ «fl    T  - ZÜí-iV'+i A /" (dz{x)ldt-dz(g)ldt _ dz(x)/dt + dz(x>)/dt\
l**^    h      47rl   ij      a¡c._y  ^       |r(f)-r(x')|3 ]r(f)-f(x')|3       /

x ((x2-x^)n1(x,)-n2(x')(x1 -a;i))df

and

(3.31)

Q V   g    / f(dz{x)/dt-dz{x*)/dt     dz(x)/dt + dz(x!)/dt\

3~ ~4^^dx~ J   (\       |r(f)-r(f')l3 \r(x) - f(x')\3       J

x(Xj - tyilsWixj - x'jn^x*)

(dz(x)/dt - dz(x")/dt)(z(x) - z(x'))

\r(x) - r(x')\3

(dz(x)/dt + dz(x')/dt)(z(x) + z(x'))

\r(x) — f(x')|3

(3.32)

Ûjix1)] dx!,

_q   r dz(x)/dt - dz(x")/dt

br J   '      |r(x)-r(f')l3

x {3|rrff-rr((g)|3(n^) • «*> - K*)) - n^\

dz(x)/dt + dz(x')/dt f    r(f)-f(x')

|r(f)-r(f')l3 I   |r(i)-r(f)|
(n(f)-(r(f)-r(f))-n(f))L

Assume that z(x, i) fluctuates around some mean value h. As in two dimensions,

we isolate the linear contribution by writing

(3.33) z(x,t) = h + n(x,t).

For the two first components of B{z}dQ/dt, we write

(3.34)
z(x) + z(x') 2h (  z(x) + z(x') 2h

|r(f)-r(x')|3      {(x-x')2+4h2}3/2     \\r(x)-r(x')\3      {(x - x' )2 + 4/i2}3/2

and, like in the case of the whole space, we make the replacement

(3.35) dû3/dt = E3{Û, z} - B3{z}âÛ/ât
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in the term which does not contain the interface gradient. We obtain

tr. ™x     dûj f 2h dû, ....   , ., ,   .  . dû      _, ,_    ,
(3-36) "ärW {(f-fo2+4h2}vinr^dx = ~aA^m + *><"•«>

for j = 1,2 and

(3.37) ôn3/3i + ¿3{z}dn/dt = F3{ft, z}.

For j = 1,2

(3.38)

fj{ü,Z}=eáü,Z}+¡^:^i)? - v^:^E3{n,z}(*)d¿,

(3.39)
1

ji^öi  "      47r7   ^|r(x)-r(f )|3      |r(x)-f(x')|3

^w^-^m-ta-^m
an^J     z(x)-z(f) an,
oíl3:j|      |r(x)-r(x')|3  oí(-/-^w^) +i3S£S4^w

+ \|r(x)-F(x')|3      {(x - x')2 + 4/i2}3/2 J    oí  l   ;

and

(3.40) ¿3{z}an/ai = 53{2}an/dí,

(3.41) F3{n,z} = í;3{n,z}.

The linear operator acting on dû/dt in the left-hand side of (3.36) is inverted by

taking the Fourier transform of the equation (see Appendix). We finally obtain

PROPOSITION 3.3. When the Rayleigh- Taylor problem is considered in the half-

space z > 0 and the interface can be resolved in the form z = z(x, t) = h + r¡(x, t),

the equations of motion read

dz     ,,       dz ,,       dz T,

(a)     cTt-V3+dx-iV> + dx-2V> = 0>

(3-42)    (b)    ^ + a9(x)*(Aj{z}^j=9(x)*Fj{Q,z},        j -1,2,

/   x      dû3 a    r   1 dû „m     -,

(c)   "ai +  3{z}~dt= s{ '2}'

2/ifcJ0(fc|x|)
where

P.43) Sl^f^S*
belongs to Ll(R2) (see Appendix) and where the operators A and F are defined in

(3.38)-(3.41).

4. A Cauchy-Kowalewski theorem for a nonlinear problem of Fred-

holm type. Let B = {Bs} for 0 < s < so be a scale of decreasing Banach spaces,

i.e. for any 0 < s' < s < so

BSCBS,,     || IL, < Il IL.
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Consider in S2 = {B2} the initial value problem for X = (Xi,X2) of the form

(aGR)

dXi/dt + aA(t,X2)dXi/dt = Fi(t,X),    dX2/dt = F2(t,X),

Xi(0) = x[°\    X2(0) = X¡0).

We assume that x{0) and X{20) are in BSo with ||XÍ0) ||8 < r[0) and ||xf] \\s < R{2Q).

We define

£s(Ri,R2) = {XGB2s, \\Xi\\s<Ri, ||X2||s<ñ2}

and assume the following hypothesis on F = (Fi,F2) and A. For some positive

numbers Rr, > 2R01], R2 > 2R{02) and T, let (t,X) -> F(t,X) be a continuous

mapping of [-T, T] x £s(Ri, R2) into B2, satisfying for any 0 < s' < s < sn and all

X,X G £s(Ri, R2)

(HI) ||F(i,X) - F(t,X)\\s, <-°*L-\\X- X||s,
s — s'

where Cf is a constant independent of i, X, X, s, s': but possibly dependent on Ri

and R2. In addition, for 0 < s < sç,

(H2) sup \\F(t,xM)\\a < -¥-.
\t\<T Sç, - S

In (HI) and (H2), the norm in JB2 is defined as

mi. = 11^111.+ 11^11.  forr = (y1,y2)Gß2.

Let A(t,X2)Yi be a continuous mapping of {X2,\\ G Bs, with ||X2|| < R2} into

Bs, linear in Yi and satisfying, for any 0 < s < so and all X2,Yi,X2,Yi G Bs, with

||X2||a < R2 and ||X2||5 < R2,

(H3) sup \\A(t,X2)Yi-A(t,X2)Yi\\s < CA\\Yi - Yx\\s,
\t\<T

(H4) sup \\A(t,X2)Yi - A(t,X2)Yi\\s < C'A\\Yi\\s \\X2 - X2\\s,
\t\<t

where Ca and C'A axe constants independent of t,X2,X2,Yi,Y2,s but possibly

dependent on R2.

THEOREM 4.1. If there exists a constant c* < 1 such that (HI) and (H4) are

satisfied with |a|C,4 < c„, then there is a positive constant a and a unique function

X(t) which, for every s G (0, so), is continuously differentiable in (—a(so — s),

a(so — s)), valued in B2 with

sup       \\Xi(t)\\a < Ri    and sup       ||X2(i)||., < r?2
|t|<a(«o —s) |t|<a(so-s)

and satisfies (4.1).

REMARK 4.1. If (H3) can be replaced by

(H'3) \\A(t,X2)Yi-A(t,X2)Yi\\s < CA\\X2\\S ||Yi - Yi||,s,
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the smallness condition on the constant Ca is replaced by a constraint on the initial

data, namely IqIC^HXj   ||s < 1, so that the coefficient of dXi/dt is not 0.

REMARK 4.2 If, in addition to (H1)-(H4) with t complex, F and A satisfy the
assumption:

If 0 < s' < s < s0, and X holomorphic for t G C, \t\ < T valued in Bs, then

t -> F(t,X(t)) and t -> A(t,X2(t))Yi(t) axe holomorphic functions for |i| < T

valued in B'g and Bs, respectively, then X is a holomorphic function of t with

values in (Bs)2.

Proof of Theorem 4.1. Baouendi and Goulaouic's proof [14] of the Cauchy-

Kowalewski Theorem as formulated by Nishida [13] for (4.1) with A — 0 is easily

extended to equations of Fredholm type.

For every a > 0, Ea denotes the Banach space of functions u(t) which for every

s G (0, so) are continuous for |i| < a(so — s), valued in Bs and satisfy

( 1*1       \1/2
(4.2) HMIU = SUp ||u(í)||s(s0-s)     1-:-r < 00.

!t|<o(s0-s) V O.(S0-S)/

The space Ea is equipped with the norm ||   |||a.

Denoting

(4.3) Y = (Yi,Y2)=dX/dt,

one has

(4.4) X = UY = (XÍ0) + fYi(T)dT,X{20) + /"V2(r)dr)
Jo Jo

and (4.1) is rewritten as

(4.5) Yi+aA(t,W)Yi = Fi(t,'HY),        Y2 = F2(t,MY).

Straightforward adaptation of Lemmas 1-3 of [14] to the case of nonzero initial

data leads to

LEMMA 4.1. Leta>0, s G (0,s0) and \t\ < a(s0 - s). If X G (Ea)2, one has

the following properties:

(4.6) (i)    PY||s<||X(°>||s + 2a|||y|||a.

*W$k¿r<fJ™   I    «*(4.7) (ii)      fJo   s(t) - s s0 - s y a(s0 -s)- \t\

with s(t) = j(l + s - \r\/a).

(iii) If Y G (Ea)2 with \\\Yi\\\a < Ri/8a,  \\\Y2\\\a < R2/8a and Y G (E)2a)2

with |||Fi|||2a < Äi/16a and \\\Y2\\\2a < R2/16a, then, under hypothesis (HI),

(4.8) \\F(t, MY(t)) - F(t, M(t))\\s <C f   l|F(r)     r(r)l|s(T) dr
Jo s- s(t)

where s(t) is any continuous function on (0, i) satisfying s < s(t) < A(s+So~lrl/a)

UY(t) is defined in (4.4) and

(4.9) X(t) = MY(t) = (x[0) +|'y1(T) dr.X™ +jo Y2(r)d^j .



RAYLEIGH-TAYLOR INSTABILITY 141

(4.1) is rewritten in the form

(4.10) Y = G(Y)

with

(4.11) Gi(Y) = Fi(t,XY)=aA(t,)iF2(t,M))Yi,        G2(Y) = F2(t,UY).

Let b G (0,T). If for |t| < b(s0 - s) and s G (0,s0), Y G Eb and |||F|||b < R/2b,

one has

\\G(Y(t))\\s <\\F(t, UY(t)\\. + \a\ \\A(t, XF2(t, )IY))Y, ||.

(4.12) <\\F(t,W(t)) - F(i,X(°))||s + ||F(i,X(°))||s

+ \a\\\A(t,XF2(t,'HY))Yi\\s.

Lemma 4.1 and hypotheses (H1)-(H3) imply

(4.13) ||G(r(i))||s < ^||jy|||t.M8°     S)     + JL. + \a\CA\\Yi\\s,
so - s y o(x0 - s) - \t\      s0 - s

(4.14) |||G(y)|||6 < 86c|||Y|||b + M + |Q|GA|||yi|||6.

This inequality insures that, for a G (0,T/2), Y G (Ea)2 with |||Y¿||| < Rl/8a

and Y G (E2a)2 with |]|y|||2a < Ri/16a (i = 1,2), G(Y) and G(Y) are in (Ea)2.
Furthermore,

\\G(Y(t))~G(Y(t))\\s< — \\\Y-Y\"
so — s y a(so — s) — \t\

(4.15) :
+ \a\CA\\Yi(t)-Yi(t)\\s

+ HC^HViCOlU \\XF2(t,MY) - MF2(t, W)\\s

with

||Wa(t, W) - XF2(t, m)H. <  I \\F2(r. W(t)) - F2(t. HY{T))\\,dT

(4.16) Jo      \Jo s-s(t')

<G8a^Y-Y^f\!a^-S\-ldr
so- s     Jo  V a(s° " s> ~ \T\

< i6Go2|||y-y|||a.

Substituting in (4.15) we obtain

(4.17) |||G(Y)-G(Y)|||<K|||Y-Y|||a

with

(4.18) K = a(8C + 2\a\C'ACRi) + \a\CA-

The constant K will be smaller than 1 if |a|C^ < C < 1 and

a < a, = (1 - C,)/(8C + 2|a|C^Cfii).
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Let E denote the closure of Ea of the ball

ß2a = {Y G E2a, \\\Yl\\\2a<Rí/16a, ¿=1,2}.

E is a complete metric space contained in {Y G Ea, |||Yi|||a < Ri/16a (i = 1,2)}.

Under the conditions |a|G^ < G, < 1 and a < inf(T/2,a*,a»,) with

(l-C.)Äi Ä2_  •     r

1 l6{CsapiRi + M) '  16(Csupl Rt + M)J'

G is a contracting mapping of E into itself. Hence G has a unique fixed point Y in

E which is a solution of (4.1).

If (H3) is replaced by (H'3), the constant Ca is replaced by

GA(||X^0)||s + 16Go2|||y|||a + aM)

in (4.14) and (4.15). The constant K in (3.16) becomes

K = a I 8c + 2\a\C   C'ARi + CA sup R, J + \a\M \ + \a\CA\\X(2(0),

The conditions which insure that G is a contracting mapping of E into itself are
(0
2

(1-G.l

now |q|G/i||X^0)||.s < G» < 1 and a < mf(T/2,at,a,t) with

a.

a», = inf

8G + 2\a\C(CARi + CaSupRt) + |a|Af '

(l~C,)Ri R2

16(GsuPiäi + M)(1 + qGaÄi)' ie(CsupRl + M) J '

5. Finite time analyticity for the Rayleigh-Taylor problem in the en-

tire space. We look for solutions of systems (2.16), (2.17) and (3.21) such that

{û,y,yx} in two dimensions and {Û, z, Vz} in three dimensions are analytic func-

tions defined in

(5.1) b, = {(£,<?), xGRd, \a\ < s},        d = 1 or 2,

with the additional condition that Û and yx or Vz belong to L2(Rd + io) (|er| <

s, d = 1,2). We defined the norms

|u|s =    sup    |m(x + icr)\,
x-\-ia£b.H

. \u(x + io) - u(x' + io)\

,5.2)    M-M~\:^.       ix-xr-•    0<a<1-

p /  H:sJRä
\\u\\Í2 = sup   /     \u(x + itr)\¿dx,     \\\u\\\s = \\u\\s + \\u\\L2.

\o-\<sJr*

BÍ    and ß.i    are, respectively, the spaces of analytic functions u defined in bs such

that ||?i||.s and |||w|||s arc bounded.

a.   Two dimensional flows.   For |Imyx|s < 1 (so that the denominator is not

cancelled in (5.3)), V and A are continued analytically to the strip bs in the form

(5.3)

Vi{û,y}(x + lo) = -±- f7-^ + ^)-^/ + ^) n(x'+ie)dx',
1     yiK 2ir J   (x-x')2 + (y(x + io) - y(x'+ to))2    v ;
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(5.4) V2{û,y}(x+ïo) = lf{x_ x>)2 + (y(;+"^ _ y{x, + zg))2»(*'+*) ^,

(5.5) (A{y}^yx + i<T)

_ -1   f y(x + ¿g) - y(s' + ¿<r) - yx(x + io)(x - x')       , ,

~ 2-K J '    (x - x')2 + (y(x + ia) - y(x' + io))2 [    +    '      '

Vi, V2 and A satisfy

PROPOSITION   5.1.   If y G ßi1'  and yx,û,£ G B^  with llmy^s  <  k <

L   Wî/xllls < ^2, o,nd similar conditions for y,yx,Û,ç], then the analytic contin-

uation of V and and A to complex values of the space variable satisfies

(5.6)
ll|Vi{n,y} - Mo,¿r}|||s < G(i + -R22)(|||yxll|s |||fi - ñ|||a + Mom, my* - fciiu),

(5.7) |||y2{f],2/}-y2{ñ,o}|||s<G(i + JR22)(|||n-ñ|||s + |||ñ|||s|||2/l-^|||s),

(5.8) \\\A{y}i - A{y)l\\\a < efcimi + R22)\\\i - l\\\s,

(5.9) \\\A{y}t: - A{y}i\\\s < C(l + A22)|||ç|||s |||fe - MU

where C is a numerical constant.

PROOF.  Inequalities (5.6) and (5.7) are established in [12] with an additional

term \y — y\s in the right-hand side.   One can actually avoid the introduction of

this term by modifying in the estimate of |Vi{f2,y} — Vi{f2,j/}|£2 the contribution

of the term

(5.10)
x  2

, ,Jû(x' + io) - û(x' + io))(y(x + io) - y(x' + io)) \

/*/*
b=     dx\  / dx'cWIx-x'

(x - x')2 + (y(x + io) - y(x' + io))2

where ö2(|x|) = 1 — #i(|x|) and 0i is a smooth function with compact support equal

to 1 in a neighborhood of x = 0. We write

(5.11)

|6| < [fi - fil», J dx (| dx'92IJX_x^] j* \yx(Xx + (1 - A)x')|2 <¿a)

<\û- ñ|ij / dxd-l^ß- f dx' f   dX\yx(Xx + x')\2 dX

<c|n-n|ij|ïteiij.

The inequalities (5.8) and (5.9) are easily obtained by noticing that

(5.12) A{y}^ = Vi{y,^} + yxV2{y,0

and using (5.6) and (5.7).

Using that an analytic function in 6S satisfies

(5.13) |||V/|||S, < -J-
s — s
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for s' < s, one easily checks that the system of equations

(114) *>+«,„,)«»_,,        g-V2 + toV,=0,

d dV2      d .   TrN     „

with initial conditions

(5.15)
n(x,0) = n0(a:)€ß(2),     y(i,0) = «,(i)6 5<1),     !/x(i,0) = fc,0(i)eß(2',

satisfies the hypothesis of Theorem 4.1. Since only |||yx|||a (and not |||y|||s) appears

in the right-hand side of (5.8), the condition for existence of a solution will be

\a\ |||2/i,o|||s sufficiently small. We thus obtain

THEOREM 5.1. There exists a constant ko, such that for initial conditions

(yo,dyo/dx,ûo) whose analytic continuation belongs to B\ ' x Bs x Bs with

the conditions \\m(dyo/dx)\Sa < k < 1 and \a\ \\\dyo/dx\\\So < ko, there exists a

constant a, such that for \t\ < a(so — s), the system (5.14) has a unique solution

(y, dy/dx, Û) which is an analytic function of t with value in Bs    x Bs    x B3   .

b. Three-dimensional flows. For |Vz|5 < k < 1, the operators entering in (3.21)

are analytically continued to the strip bs according to the following procedure: if

(5.16) P(x)= f   P(x,x')dx"
JR2

then

(5.17) P(x + io)=        P(x + i¿T,x'+ io)dx'.
Jr2' r

One has

PROPOSITION 5.2. If z G BÍ1] and Vz,H,£ G B{s2) with |ImVz|s < K <

1, |||Vz|||s < R2 and similar conditions for z, Vz,0,£, then the analytic continua-

tion to bs of the operators defined in (3.24), (3.13), (3.16)-(3.18) and (3.23) satisfies

(0 < s' < s)

(5.18) ||pv{fi,2}-v{û,~z}\\\s <G(Ä2)(|||n-ñ|||8 + Hiñiiu[||Vz-v¿\

(5.19) \\\s{û,z} - s{ñ,z}\\\s> < j^-(\\\n -ñ|)|. + |||ñ|||, |||v2 -s\\

(5.20) |||/{n,z} -i{ù,z}\\\,, < j^dlin- ñ|||a + |||ñ|||a |||Vz- vs|

(5.21) |||J{fi,z}- J{ñ,¿}|||s, < ^^(|||n-ñ|||s + |||ñ||||||Vz-Vz|

(5.22)        ipíWé - ajUK\\\ < g(ä2)iiivz|||s m - m*

(5.23) \\\A3-{z}t - M~z}t;\\\ < G(Ä2)|||e|||5 IIIVz - V¿|||

\s),
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PROOF. One uses the following inequalities proved in [10]:

: cKx1 + io) dx'1/
(5.24)

|r(x + io) — r(x' + io)\3

-  J \f(x + i¡)-f¿' + lo)\3 &* + lS) dX

< (1 + C(R2)){\\\Z - Cilia + RMiWU |||Vz - Vz|||s},        i = 1,2,

and

(5.25)
z(x + io) - z(x' + io)I £(x' + io) dx'

\r(x + io) - r(x' + io)\3

<{l+.C(Ra))\\\Vz\\\.(\\\t-i\\\-+

!

z(x + io) - z(x' + io)   ~ . .  , ,
-}z¡—Tz^r—=r=—q^ai + io-) dx
r(x + io) — r(x' + io)\6

where

(x + io) = (xi +ioi,x2 +icr2,z(x + io))

and

r(x + io) = (xi +oi,x2 +ío-2,z(x + íct)).

C(R2) denotes a constant depending on R2.

To prove (5.21), we also use (3.21)(a),

(5.26)

*(*+*)-*(* + ») = (x-f )-v[ (v3 - f^Vi - ¿) (Af+(l-A)xVA

and (5.13). This leads to

THEOREM 5.2. There exists a constant ko such that, for initial conditions

(zo,Vzo,Oo) whose analytic continuation belongs to Bs x BSo x BSo with the

conditions |ImVzo|So < K < 1 and \a\ |||Vzo|||So < fco, there exists a constant a

such that for \t\ < a(so — s), the system (3.21) has a unique solution (z, Vz, fî)

which is an analytic function of t with values in Bs' x Bs ' x Bs '.

6. Local analyticity for the Rayleigh-Taylor problem in half a space.

We shall show in this section that the systems (2.28) and (3.42), for the Rayleigh-

Taylor problem in half a space, in two and three dimensions, respectively, satisfy

the hypothesis to the Cauchy-Kowalewski Theorem given in §4.
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(6.2) A{y}t:(x + io) = Ch{n}i(x + io) + j Q(x - x')Ch{n}í(x' + io) dx'

with

(6.3) Ch{vH(x + ia)

n(x + io) + r¡(x' + io) — n2(x + io)(x — x')-f2nJ2tt J   (       (x - x')2 + (y(x + io) + y(x'+ io))2

(r¡(x + io)+n(x' + io))(y(x + io) + y(x' + io) + 2h)
+2h

\(x - x')2 + (y(x + io) + y(x' + io))2] [(x - x')2 + 4/i2]

n(x + io) — r¡(x' + io) — nx(x + io)(x — x')

(x - x')2 + (n(x + io) - r¡(x' + io))2

x£(x' + io)dx',

§(x) given in (2.31) and y(x + io) = h + n(x + io).

The denominators do not vanish if |Imyx|s < K < 1 and \r¡\s < 7/1, where 7

is a positive number smaller than one. We shall see that the introduction of the

L2-norm of the functions yx and û can be avoided because the kernels of Vi and

V2 decrease at least like |x — x'|~2 at infinity.

PROPOSITION   6.1.   For ri,r¡x,u,i and r),r)x,U,Í in Bsl)  satisfying \\r¡\\s  <

lh, Hi/zll < R2, \\myx\ < K < 1 and similar conditions for fj and rjx, we have the

following estimates:

(6.4)
\\Vi{Û,z}-Vi{û,~z}\\s

< g(7,ä2) { (* + %üi) lin - ñ. + ||ñ||. (^* + M^hh

(6.5)

\\v2{û,z}-v2{û,~z}\\s < c(~¡,r2)|||n-ñ||s + ||ñ|U (^r^ + hx~hvAs

(6.6) \\ch{vH - Chisel < «G(7, R2)(n + \\vAs)U - ih,

(6.7) \\Ch{VH - Ch{r¡}th < oC(i, R2)U\\X (fc_2]U + llÜLZlbk^ )

where C(-/,R2) is uniformly bounded for 7 G [0,70] with 70 < 1 and R2 < R,  R

arbitrary.

PROOF. We shall estimate the two terms of Vi, referred as V* and Vf sepa-

rately. We also separate the contribution of short and large distances and write

ViA{û,y} = U{i1){û,y} + U{i2){û,y},

where (i = 1, 2)

uíHn,y}(x + io) = ̂ f ({y[x^\7{í+^,V^x-xlVd*'-
2ir J   (x - x'y + (y(x + io) - y(x' + io)y
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where C(i,R2) is uniformly bounded for 7 G [0, 70] with 70 < 1 and R2 < R,  R

arbitrary.

PROOF.   We shall estimate the two terms of Vi, referred as Va and V¡B sepa-

rately. We also separate the contribution of short and large distances and write

ViA{û,y} = Uii1){Û,y} + u[2){Û,y},

where (i = 1,2)

(6.8)

uilUû v\(x + «ri - - — /   (y(x + ™)-y(x' + l°))(x' + t°)  e(\x __ x>\) dx>
Uy  {U,y}(x + i<T)-    2i:l (x-x')2 + (y(x + io)-y(x' + m))2^X    ^^

0i is a G°°-function with absolute value smaller than one and compact support in

[-2h,2/i], 02 = 1 - 0i. It is shown in [10] that

(6.9) liefen, j,} - u[1]{û,y}\\s < g(i + Ä|)(||yx|| lin - ñ||¿ + ||ñ||. \\yx - yx\\s).

The introduction of the L2-norms of n and y in the estimate of the contribution

from large distance is avoided by writing

(6.10) |t/i2){n,y} - u^)i{ù,y}\s < c j^|n - ñ|s + |ñ|.(i + R$)iï-j^}

and

(6.11)

|v^2){n,y}-VL/(2){ñ,y}|s<G(i + i.:22){^|n-ñ|s + |ñ|sfc^J.

To estimate Vj  we proceed as above and write

(6.12) ViiR){n,y} = Uii1){Û,y} + ui2){Û,y},

where

re i3)   uil)m «1 - — / M»+ »*) +yfr'+ »"))"(»'+ »0 e(lx _ xn)dx>
(b.U)       IV,     {»,î/)-27ry    (X-Xi)2 + (y(x + t(T) + y(x> + l(T))2^X      * " U%

with ¿>n = n — n, oy — y — y, 6r¡ = n — fj; we have

U^{Q,y}-U^{n,y}

2W
...   y(x + io) + y(x' + io)6û(x' + io)        .

dx
2tt J (x — x')2 + (y(x + io) + y(x' + io))2

[ at\-       ,A^y(x + io)+6y(x' + io))û(x' + ÍO-)     ,
(6.14) + J v*{\x    x\)(x_x,)2 + iy(x + ia) + y(x, + w))2ax

+ (6(\x - x'\)^X + "^ + ^X' + iff))^3Íx + ia) + 6rl(x' + icr))
[(x — x')2 + (y(x + io) + y(x' + io))2]

x ((y + y)(x + io) + (y + y)(x' + io))û(x' + io)

\(x - x')2 + (y(x + ia) + y(x' + io))2]

For \r)\s < 7/1, the denominator

(6.15) D+ = (x - x')2 + (y(x + io) + y(x' + io))2

dx.
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is bounded from below by

(6.16) \D+\ >/i2(l-7)2

is the integral containing 0i and by

(6.17) \D+\> (x-x'f -\~i2h2

is the integral containing 02. Consequently, for ||?7||s < 7/1 and \r)\a < 7/1,

(6.18)

and

(6.19)

\u[2){u,y}-U[2){ñ,y}\s

< g {mu/ _ * w + mi. n. / ^—^.

+ |n|s/i2|r5r?|.
/./ x-

472/i2

dx'

/|x-x|>2/l[(^-^)2-472^]2j

The constants

Mni^    and    \ ( J^     - In * + ^
7      1 — 7 73 \ 1 — 72 1 — 7

are uniformly bounded for 7 G [0,7o] with 70 < 1.

To estimate the difference

(6.20)      A = (ViB{Û,y}-ViB{Û,y})(x + io) - (VB{û,y}VB'{û,y})(x' + io),

we first notice that

„.«^ «/        •  x       /■+°°   2j/(x + t'tr)n(a:-l-ttr)     .
6.21 7TÛ(x + io)= yV '   ^ /.</<?.

7-00   (x-<7)2-r-4í/2(x + íí7)

The equality is obvious in the real domain. It extends to the complex domain

because of the uniqueness of the analytic continuation. We then compute the

difference A. Denoting

(6.22) D+{y}(x + io, q + 10) = (x - q)2 + (y(x + 10) + y(q + io))2

and

(6.23) D0{y}(x + 10, q + 10) = (x - q)2 + 4y2(x + io)2

we write

222
(6.24) A = ¿ A« + A2 + ¿ A« + A4 + ¿ A{5l) + A6,

i=l 1=1 i=l
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where

(6.25)    Ai° = ¿y$M-g|)

2tt y
0i(\x

(y(x + io) + y(g + io))6û(q + io)

D+{y}(x + io,q + io)

2y(x + io)6û(x + io)

D0{y}(x + io,q + io)

(y(x' + io) + y(q + io))6û(q + io)

D+ {y} (x' + io, q + io)

2y(x' + io)6û(x' + io)

D0{y}(x' + io,q + io)

dq

dq,

(6.26) A2 = -^(6Û(x + io) - 6û(x' + io)),
2n

(6.27)    A« = ¿|0t(|x

th

(6y(x + io) + 6y(q + io))û(q + io)

D+{y}(x + io,q + io)

26y(x + io)û(q + io)
dq

D0{y}(x + io,q + io)

Í (6y(x' + io) + 6y(q + io))Û(q + io)

\ D+{y}(x' + io,q + io)

26y(x' + io)û(q + io

D0{y}(x' + io,q + io)

1 ( 8r¡(x + io)     8r¡(x' + io)'

dq,

(6.28) A.
2 \ y(x + io)        y(x' + io

(i)        1    f    .. f {y(x + io) + y(q + irr)){8r){x + io) + 6r¡{q + io))
A5 = 7T /9i x ~9  i-ftttt—r~-—r~1-° 2tt J ( D+{y}(x + ia, q + ia)

„((j/ + y)(* + 'g) + (v + y)(i + i"))r,,    ,  ■ *

D+{y}(x + io,q + zcr)

" 29) _  8j/(x + ia)ér}(x + ¿<r)(^ + j/)(x + io)Q(x + ¿rr) I

A){î/}(x + ¿(7,9 + ¿cr)£>0{5}(x + ¿<t, g + ¿rr)     I

+ 2^J8MX  -ql){-D
?j(g + icr))(6n(x' + ¿er) + ¿??(<? + ¿<t))

{j/}(x' + ia,q + ia)

Ain 4- >/rV, .

-Q(f/ + io)
((y + y)(x' + io-) + (y + y)(q + io)) -,_  ,   ._,

£>+{;/} (x' + irr, q + ¿er)

8j/(x' + ¿<t)6t/(x' + io)(y + y)(x + ¿rr)f!(x + ¿<r)

Do{y}(x + ia,q + ¿cr)D0{Ö}(x' + io, q + io)

y(x + io)6r¡(x + io)(y + y)(x + io)Û(x + io)

Do{y}(x + io,q + io)D0{y}(x + io,q + io)

y(x' + io)6n(x' + io)(y + y)(x + io)û(x' + io)

<'</

(6.30)    A6 = 8 f

Î'iÎt1 -V- rn\f)ri('r' -t- rn\(n -V- i~i\(nr 4- irr\Q.(r' -1- irr\  I

dq.
D0{y}(x' + io,q + io)D0{y}(x' + io,q + io)
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Let us first assume that |x - x'| < 2/i. In A* ', we split the integration domain into

the ball E = {q, \x - q\ < 2\x - x'\} and its complement ñ2\E. Let 6^ and 6j

be the corresponding contribution. We have

(6.31) \è[l)] + \ôi1]\ + |#>| < C\x - xT(||«í||s + ||n||B||Ä»i||s//0

and

(6.32) loi1'! + lé^l + l^l < C\x - x'\a(\]8Û\\s + ||ñ|| \\6n\\s/h).

On the other hand,

(6.33) |A[2)| + |A<2)| + |A<2)| < |x - x'\° (\\Sn\\B + Ä)

T

7      1 — 7      73 \ 1 — 72 1~7,
j_ r      ■   pdp i    r padp

'  14 k\>ih (M2 - l)3      75-« JM>ih (M2 - I)3

p2dp     t      1      f p2+adp

if-, (m2 -1

1   f p2dp 1      f
75 JM>ih (M2 - I)4     75"Q JM>1/

4

Ai)When |x - x'| > 2/i, the two terms of A^-    (i = 1,2, j = 1,3,5) are bounded

separately and we obtain the same upper bounds. On the other hand, we have

(6.34) |A2| + |A4| < G(||0n||s + ||ñ|| ||^||s/(l - i)h)\x - x'\a.

Noticing finally that

,„nr, . 1 fû(x + io)c   .        . .      û(x + io)c   . .     . .\
6.35 A6 = --       ;       . [8ri(x + io) -   /,     . [Sr, (x' + io)\,

2 \y(x + io) y(x'+io) )

we obtain

(6.36)       \]vB{û,y} - vB{û,y}\\s < G(7) Í lin - ñ||8 + fc^||n||sl,

where C(7) is uniformly bounded for all 7 in [0,70) with 71 < 1.

Let us now turn to the estimates for V2. As previously, we write

(6.37) V2{Û,y} = U(2l){û,y} + U?]{iî,y}

with

(6.38) U(2l){û,y}(x + io) = ^J0l(\x-x'\)

x — X

[x — x')2 + (y(x + io) — y(x' + io))2

x — x'
û(x' + io) dx'.

(x - x')2 + (y(x + io) + y(x' + io))2

of U2    separately, we get, proce

(6.39)  \\U^l){û,y} - U^{Û,y}\]s < C(7) (\\6û\\s + l^]\û\\s + ]\6V\\S \\û]

Estimating the two terms of U2    separately, we get, proceeding as previously
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where G(7) is uniformly bounded for 7 G [0,70], 70 < 1- For the contribution

at large distance, we have to deal with the two terms of U^ together in order to

avoid the introduction of L2-norms:

(6.40) U2i2){û,y}(x + io)

1_ f _ 4(x - x')y(x + io)y(x'+ io)û(x'+ io) ,

- 27r J   V2{\X      X\>D+{y}(x + i^xi + ia-)D_{y}(x + i^xl + ia) '

where

D-{y}(x + io,x' + io) = (x - x')2 + (y(x + io) - y(x' + io))2,

and D+{y} is defined in (6.22). We have

(6.41) U{2){Û, y}(x + io) - U{22){Û, y}(x +10) = (di +d2 + d3 + d4+ d5)(x + io)

with

(6.42) di(x + io) = U{2){6Û,y}(x + 10),

(6.43)
1    / 4(x-x')6r¡(x + io)y(x'+ io)Û(x'+io) ,

d2(x + 10) = — 1 02(\x — x )——¡——.-:-;-r^rr;—r^T,-:-;-^r dx ,
y '     2-K J      Vl uD+{y}(x + io,x' + io)D„{y}(x + io,x' + 10)

(6.44)
1    f 4(x - x')y(x + io)6n(x'+ io)Û(x'+ io)      ^

d3(x + l0) = - J  02(\x-x])D+{y}ix + ^xl + m)D_{y}{x + ia^ + m)dx,

(6.45)

,_J_   fnn   _   ,,-4(x - x')y(x + ia)y(x' + ia)Ù{x' + ia){Sr¡(x + ia) + 6r¡(x' + ia))

a4(x+ia) - 2v J (Mix   cm r>+{y}(z + «T,x' + ùr)D+{y}(ï + «r,z' + iff)

x (fa + ^?)(x + ia) + fa + y)(x' + ia)) dx,
D- {y}(x + ia, x' + ia)

(6.46)

d&(x+io) = —  [ 92(\x   x'\)4(-X ~ X'^X + ia^X' + ia^(x' + ia)(8r,(x + ia) - 6r,{x' + ia))

2-K j      Vl D+{y}(x + io,x' +ia)D-{y\(x + ia,x' + ia)D+{y}(x + ia,x' + ia)D-{y}(x + ¿<r, x' + ¿c)

((r)-r-¿,)(x + ¿<T) - (r, + ¿?)(x' + ¿<r))
rfx.

D-{y}(x + ¿er, x' + ¿ct)

For |Imyx| < K < 1 and \rj\s < 7/1 (7 < 70 < 1), we have

(6.47) |rfi| + |d2| + |d3| < G (]6Û\S + |í1lM) \ ln(l - 72)

and

(6.48) \dA\ + \d5\ < C\Û\J-^ ^ ln(l - 74) + ^ In(l - f)) •

Thus,

(6.49) \U^}{û,y} - í/2(2){ñ,y}| < G(7) {||íí - ñ||s + J!Mí||ñ||8 J ,
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where C(i) is uniformly bounded for 7 G [0,70], 70 < 1. To estimate the difference

di(x + io) — dl(x' + io) (i = 1,2,..., 5), we write

(6.50)  di(x + io)=±- Í02(\x-q\)í      4(*-ï)»(* + *)¥(ï + *XP_(ï + i<r)
2n J [ D-fj+{y}(x + ia,q + ia)D~{y}(x + ¿er, q + ia)

4(x - q)y2{x + ia)6Q(x + io)

+

)

ia) — y(x + ia)SQ(x +

{y}(x + ia,q + ia)

1    f Ao n Ax-q)y2(x + io)Sn(x + io)
-j402(\x-q\y

Do{y}(x + ia,q + ia)(x - q)2(l + y%(x + io))

—  f AP 1   _   \ f (x ~ l)y(x + ia)y{l + io)6Q(q + ¿cr) - y{x + ia)6U(x + ia) 1

2-ïï J \ D+{y}(x + ia.q + io)D-{y}(x + ia,q + ¿cr) /

D_{j/}(x + ¿cr, g + ¿cr)

(j/(x + ¿cr) - y(q + ¿rr))(3y(x + ia) + y(q + ttr))

D0{y}(x + ia,q + ia,q + ia)D+{y}(x + ia,q + ia)

+ ¿/402(|x-g|)-

tlq

y2(x + ¿cr)<5Q(x + ia)

2-ir J '" (x — q)Do{y}{x + ia,q + io)

, (0 - g)yx(x + ia) - (y(x + ia) - y(q + ia)))

D-{y}(x + ia,q + ia)

((x - q)yx(x + ia) + y(x + ia) - y(q + ia))
dq

(l+tfKs + MT))

and similar expressions for e£2,..., d5.

When estimating dr(x + io) — dl(x' + io), we separate, as previously, the contri-

butions |x — x'| < 2h and |x — x'| > 2/i and proceed as above. We obtain

(6.51)

]\U(2){ü,y} - UJ2){Ù,y}\\. < G(7) |||n - n||s + U*||ñ||a + ||^||.||ñ||

This concludes the proof of (6.4) and (6.5).

Let us now turn to the operator A.   Noticing that the kernels Ç and dQ/dx

belongs to LX(R + io), it is sufficient to estimate the operator Ch{n}£,.   Let us

rewrite Ch{r¡} m the form

(6.52)
/-,  f  w        ■  \       a    Í V(x + i°) + »7(9 + i°) n       •  ^ 1
Ch{r,}(x + io) = —       „   ,   x. '     .nH      . \í(q + 10) dq

2-K J   D+{y}(x + io,q + io)

r\(x + io) — n(x' + io)SD_{y}(x + io,q + io)
£(q + io) dq

a    friu(ri(x + io)+v(x' + io))(2h + y(x + io)+y(x' + io))c/n ,   .^ ^

+ 2nJ2h D+{y}(x + io,q + io)((x-q)2+4h2) ^9 + «r)äq

+ ^L  fr, (x I io) Hxq)y(x + io)y(q + io)gq + io)
2tt J   lxy 'D+{y}(x + io,q + io)D_{y}(x + io,q + io)

Using the upper bounds of Vi and V2 obtained previously, we get, for ||?y||s < 7/1

and || 17a;|| < R2,

(6.53) \\Ch{r,}t - Ch{ri}t\\. < aC^R^U - Ilia + ||fe||. U - ¿II,},

(6.54) \\Ch{VH - Ch{i¡H\\s < aG(7,ß2)||c||a ̂ LlJÉl + M^M

where C(^,R2) is uniformly bounded for 7 G [0,70],  70 <  L and R2 < R,  R

arbitrary.
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THEOREM 6.1. There exists a constant ko, such that for initial conditions

(y0 = h + rio,dyo/dx,û0) whose analytic continuation belongs to (Bso )3 with

the conditions ]lm(dyo/dx)\s < K < 1, \\dyo/dx\\s < 7/1, 7 < 70 < 1 and

0(7 + Hdt/o/ctalls) < fco, there exists a constant a such that, for ]t\ < a(so - s),

the system (2.28) has a unique solution (y,yx,û) which is an analytic function oft

with value in (73s ')3.

b. Three-dimensional flows. The operators V and A defined in (3.25), (3.39)

and (3.40) are analytically continued to the strip 61 = {(x + io), xG R2, |0| < s}

by replacing x and x! by x + io and x! + io in the formulas (3.25) and (3.38)-(3.40).

The denominators will not vanish if |ImVz|5 < K < 1 and \n\s < 7/1, where 7

is a positive number strictly smaller than one.

PROPOSITION 6.2. For r¡,Vri,u,£, and r),Vrj,û,£, in B¡^ satisfying \\r¡\\s <

7/1, ||Ví7|| < R2, |Im|, V?7|s < K < 1, and similar conditions for rj and V17, we

have the following estimates (z = h + ri, z = h + rj) :

\\V{Û, z} - V{û, ~z}\\s < C(n,R2)(l + \\z\\s/h + \]VV]]s/h]]Û - û]]s

+ ||n||a{||»?-^l|./Ä + l|V(f?-^)||./Ä},

(6.56) WMzH - A3{z}as < C^R^ + \]VV]]S)U - às,

(6.57) WMzH - AjimU < G(l, R2)H\\* (\\V - Vh/h + \\V(r, - ij)\\./h).
Let us define

(6.58) D±{z}(x + io,x',o) = {(x-x1)2 + (z(x + io)±z(x' + io))2}3/2,

(6.59) D0{z}(x + io,x' + io) = {(x - x1)2 + 4z2(x + io)}3/2.

To estimate V, we separately consider the operators

(6.60) uf{Û,z}(x + io)

yw-âH){ xi

D+{z}(x + io,x' + id)

_      xj ~ xj

D+{z}(x + io, x' + io)

J0i{\2-*\)\£

û(x + io)dx"',

(6.61)    W{iî{û,z}(x + id

z(x + id) - z(x' + id

. {z}(x + id,x' + id)

z(x + id) + z(x! + io)
û(x" + io) dx'

D+{z}(x + id,x' + io)

where the functions 0¿ defined in (6.8) separate the contributions at short and large

distances. Like in two dimensions, the two terms of [/■ (j — 1,2) and of W^1'

and W^ are estimated separately. We have

(6.62)   iic^in,*}-^1^,*}!!,

< G(7) { (ilfi + ») lin - ñ||s + MslliHfiiu'+ UAH. Iivo,]].,}.
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The first term of W^l\ denoted by w[1', is estimated like in [10]:

(6.63)    \\W{il){û,z}-W{1l){Û,z}\\s

<G(Ä2){(» + M)||n_o||s

%Z^ + h-W./h)}.h

In the second term of W^l\ denoted by W2, we use for |?7|s < 7/1,

(6.64) D+\ > (l-7)3/i3

in W2    and
(i)
2

(6.65) |D+| > ((f-f)2-472/i2)3/2

in W2(2). We thus get

(6.66)    \W2W{n,z}-W¡l){U,z}\

\z
#^mi. + T7^rini.}

and

(6.67)

|w<2){n,z} - M/2(2){ñ,5}|s < G{|r5n|s|z|s + ini-l^l-}/    (/?2_4^42)|3/2

7P>2^ (/92 - 472/i2)3/2

G /"k„i   l2U,mi  l^l^^(i-^)i/aV^i'X + |n|'-s-J

+ 7*    ini'^
(1-72)2       a '

To estimate the difference,

(6.68) A = (w¥){U,z}-W¡l\u,z})(x + id)-(W2ií\u,z}-W2[l){u,¿})(x* + id).

We notice that

,„0^ i°° 2z(x + id)û(x + id)     ,       n  _,_     ._.
6.69 /      , 9V    , 9A v .^...'pdp = 2nû(x + id).

Jo    (p2 + 4z2(x-r-io))3/2F

We then rewrite the difference A like in (6.24):

222

(6.70) A = ¿ A(/> + A2 + ¿ A« + A4 + ¿ A<" + A6,
»=i ¿=1 ¿=1
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where

(z(x + io) + z(q + iff))8û(q + id)
(6.71) A^/éMIx-gDJ1

*).?(£ 4- i.d\8n(n A- rd\   1       _^
dq

D+{z}(x + id,q + id)

2z(x + iff)8n(q-\- id)

D0{z}(x + io, q + id)

in n*     ^^ Í (z(x' + io) + z(q + io))8û(q + ¿g)
¡0i(\x     q]) | D+{2}(x'+îV,q + i<r)

2z(x' + io)8Û(q + irr)

D0{z}(£' + <t, <f -firr)

(6.72) A2 = -7r(6n(x + io) - 8û(x" + id)),

(6.73)     A«=|0t(|x-9|)
(r5z(x + ¿<r) + r5z(<f + io))û(q + io)

D+{z}(x + io,q + id)

28z(x + id)û(x + io)

- J0i(\x-q\)

D0{z}(x + io, q + io)

(8z(x' + io) + 8z(q + id))û(q + io)

D+{z}(x' + io,q + io)

28z(x' + id)û(x + id)

da

D0{z}(x' + id, q + io)
dq,

,'8r¡(x + id) ~,_     ._.      8ri(x' + io) ~,        . ,
6.74 A4=    -^—7^-û(x + io)-')--—!-û(x + io

1   z(x + io)     y '      z(x' + io)     v

(6.75)   Ail)=  ¡ei(\x-q\){{~z{x + ia) + z{q + io))( * _
J \ \D+{z}(x + ia, q + iff)

1
n(g + ia)

D+{z}(x + iff, q + iff)

- 2z(x + id) (-—-
\Do{^}(x + iff,q + iff)

--^-7^j^LT^^——)ñ(x + ia)\ dq
D0{z}(x + ia,q + ia) / J

[8i(\x* - q\) {{z(x* + iff) + z(q + iff)) ( , *  ...  -^ ^
J I \D+{z}(x' + ia,q + ta)

Û(q + ia)
D+{z}(x' 4- iff,q + iff)

-25(f + iff) (
Do{z}(x' + iff,q + iff)

1

Do{z}(x' + iff, g + iff)
n(f + iff) \ dq,

/r. -,/.\ a Û(x + io)c   ,_      . û(x' + io).   ._      ._.       .   ,_
6.76 A6 =    x       .'8r,(x + io) - -A--rj-8ri(x + io) - 8n(x + iff).

z(x + io) z(x'-rio)
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.10)

jA2)m    w-,.-       fan-   ^  (Xj-x'J)(D-.{z}-D+{z})(x + io,x' + id)
U) '{û,z}(x+io) =  / 02( x-x ) _,   ,  , .1-^-—-._ ^   ,  w_-:—-—

3 J D+{z}(x + io,x' + id)D_{z}(x + io,x' + io)

We obtain

(6.77) ||W2{n, z} - W2{û, ¿}||s < G(7, RvWvh + \]û]]s]\8V]\s/h),

where C(^,R2) is a constant uniformly bounded for 7 G  [0,70],  70  <  1, and

R2 < R, R arbitrary.
( 2)

To estimate U-   , we write

(6.78)

)/o   \t^-\      (0 n-   ^ (x3-x'3)(D.{z}-L
;{n,z}(x+icr) =   / 02( x-x ) _,    f  ./_-^-—-—

J D+{z}(x + id,x' + 10

x n(f + iff) dx1
and we use

(6.79)
\D+{z} - D_{z}\       2 {2|x - x7]2 + 2h2 + G|x - x'|Qx - x'\2 + 4h2)1/2}

|D+{z}D_{z}|    -     " |x-x'|3(|x-x'|2-472/i2)2

Thus

(6.80)

icf W.H < cmy {l>2k w^m+«ff>a ^^
f pdp 1

Similarly,

(6.81)    ]Uf\û,z}-Uf\û,~z}]a

<C(R2)\(l\2{l_i2    lS + {1_l2)3/2    r + (l-72)2    If-

To estimate

(U¡2){U,z}-U{J2){u,~z})(x + i^)-(U¡2){u,z}-UiJ2){u,z})(x' + iff),

(2)
we rewrite (/     {n,z}(x + iff) in the form

(6.82)

U(2){û,z}(x + io)

-  Í0J\r    nl]í  (x3-<lj)(D-{z}-D+{z})(x + ™>Q + i(>)       (x      a.)n(£ii&)
-J02(\x    ,|) jD+{z}{s+ ^ ff+ ig)D_{z}{S + ¡g,i+ ^     (*J    <oM* + ̂ )

< {|x - rJl3(l + (x - q)/|£ - fl ■ \¡z(x + io))3'2 - D0{z}(x + id,q-rid)} \ ^

D0{z}(x + id,q + id)\x-q\3(l + (x-q)/\x-q]-Vz(x + id))3/2     J    9'

where the last integral vanishes by symmetry.   After lengthy but straightforward

calculations, we get

(6.83)        Wf\û,z} - Uf\û,~z}]]s < c{l,R2) {lin - ñ||s» »j .

This completes the proof of (6.55).
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The kernel Q, defined in (3.43), and its gradient belong to Ll(R2 + io). It is

thus sufficient to estimate the operators Aj{z}£ for j = 1,2,3. These estimates

follow from those on V{û, z}. Thus,

(6.84) PJ{z}ç-AJ{z}ê||s <aC(1,R2)('1+Wf1\\a)U-i\\a,

(6.85) \\AÁzH - A3{~zH]\s < «C{1,R2)M\U (^ + ÖL_Ä) .

To estimate the second term of (3.42), we proceed as in §5 and get the same

estimates (5.19)-(5.21) with the norm ||| • |||s replaced by the Holder norms || • ||s.

This leads to

THEOREM 6.2. There exists a constant fco such that for initial conditions (zo —

h + n + O, Vzo,no) whose analytic continuation belongs to BSo' x (BSo )2 x (BSo )3

with the conditions |ImVzo|s < K < 1,  ||r/o||s < lh, 7 < 70 < 1, and

a{1+\\Vri\\s}<k0,

there exists a constant a, such that for \t\ < a(so — s), the system (3.42) has a

unique solution (z, Vz, n) which is an analytic function oft with values in BSo   x

(sic1') x (b£>)*.

REMARK. In the presence of a bottom, the initial interface perturbation is not

required to vanish at infinity as it is the case when the Rayleigh-Taylor (or the

Kelvin-Helmholtz) problem is considered in the entire space. The reason is the

faster decay of the gradient of the Green function of the Poisson equation which

relates a divergence free velocity and vorticity. This insures integral-convergence

without additional assumptions. A similar situation is encountered in the proof of

existence in the large of a unique solution to the two-dimensional Euler equation

with smooth initial data (Holder continuous vorticity) (Wolibner [16], Kato [17]).

In the entire space, the initial vorticity is required to be bounded in L1 (R2) (Bardos

and Benachour [18]). This condition is relaxed when the flow is considered in half

a plane or a strip (Sulem [19]).

7. Open problems. The existence theorems presented in §§5 and 6 assume

an initial interface with sufficiently small corrugations. One can, however, notice

in two dimensions that, defining p(x,t) as a primitive of n(x, i), (2.19)(b) may be

written in the form

^t(x,t) + a J ^(x,x')^(x',t)dx' = F(x,t).

When the problem is considered in the real domain, the operator

has all its eigenvalues with a modulus strictly larger than one. This property is a

consequence of the irrotationality of the flow in the two domains separated by the

interface [20, 21]. For a < 1, the operator 1 + aA is thus invertible. However,

the property is not necessarily preserved when the equations are continued to the

complex domain if the norm of a A is not smaller than 1.
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Another questions concerns the shallow water limit [22] for the Rayleigh-Taylor

problem in the presence of a horizontal bottom. It corresponds to the situation

where t = e-^H, y(x,t) = ey^(x,t) and û(x,t) = el'2û^(x,t) with e -> 0. One

can show that if y^ and n(e> tend uniformly to 77(0) and Q(°\ then Vx = e~1/2Vi ->

n(0> and V2 = e~3'2V2 -» d(Û^y^)/dx + y^dÛ^ /dx. The equations of motion

then reduce to

(7.1)   ^ + |,n<o.v<o.),0, !^ + ̂ (iÇ! + ̂ ro™)=0,
dt        dx dt        dx \    2 a + 1 J

where, in the shallow water limit, n'°) identifies with the rescaled horizontal com-

ponent of the velocity jump e^1/2^] across the interface.

Similarly, in three dimensions, if z^(x,y, t) = ez(x,y,t) and û^eS)(x,y, t) =

ex'2û(x,y,t) have uniform limits z<°) and û^ when e -> 0, then V, = exl2Vi ->

-n(°), V2 = -e'/2V2 -» û[0) and

<L/„(oWoA À ,(o)^20)  ,   d  ijo)n(Q)\ , c(o)^(i0)|
dy\ l   ) dy    \ '

^3 = £"/V3 -Wíx (^ñ + zi0)Jt+ i (z{0)n^)+ zi0)-

Noticing that in the shallow water limit û[     — \u2  ] and û2    = -\u\   ] with

u,     = lim£^o£_1//2wi, u2    = lim£^o£~1/'2M2I and taking into account that the

flow is irrotational in the two subdomains, we recover the Saint-Venant equations:

a*(°)
^|r + v.([/<0V0>) = o,

(7-2)        |.r/(0) + í/(0).Vr/(0) + JoL v(o)=0
dt a + 1

with t/<°> = ([u[0)],[40)]).

However, we did not succeed in proving uniform convergence of the solution of the

Rayleigh-Taylor problem when e —> 0. Indeed, estimates (6.4), (6.5) and (6.55) do

not lead to uniform estimates for U2 = e~3'2V2 in two dimensions or V3 = E~3'2V3

in three dimensions in terms of the Holder norm of n^e' = e_1/2n. Uniform

estimates have only been obtained in terms of the gradient of n. The Cauchy-

Kowalewski Theorem concerning first order systems Vn must be considered as an

additional unknown. But the equation for Vn introduces higher order derivatives

such as VVz (or yxx in two dimensions) as additional variables inside a first order

operator and the hierarchy can probably not be closed. Clearly, the difficulty

originates from the necessity of considering the equation for the interface gradient

(yx or Vz) to prove well-posedness of the Rayleigh-Taylor problem.

These two difficulties disappear for a = 1 (water waves problem) in two dimen-

sions when the approach of Ovsjannikov [3] and Kano and Nishida [4] is used.

This method is based on a conformai mapping of the flow domain on a strip. It

is, however, unclear how to extend this method, even in two dimensions to the

Rayleigh-Taylor problem where the coupled dynamics of the two fluids must be

considered.
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Appendix.    Large distance behaviour of the Green function of the

equation:

2h_

?2 ijx-x'|2-|-4/i2)3/2-

The solution is obtained by taking the two-dimensional Fourier transform (F.T.)

of (A.l) and noticing that the F.T. of the kernel is equal to e~2hk. One obtains

(A.2) /(£)= fg(x*)S{x-x*)d2r

with (x = |x|)

(A.3) Q(x)=        i  , „.-ikh dk = /     T~Z—=2khdk-JR2 1 + oe  iKn J0    1 + ae ¿Kn

The asymptotic behaviour of Q(x) when x —> oo is obtained by using iteratively

the following procedure:

(i) Make the substitution

(A.4) Jo(fcx) = -¿(fcJ1(xfc)).
x dk

(ii) Integrate by parts,

(iii) Make the substitution

(A.5) J1(fcx) = ---£j0(fcx).
x dk

Defining

(A.6) f(k) =
1 + ae'2hk

and

/a -x /,x      # 4ah2e-2hk
(A-7) ff(*) = 3k -

we have

dfc      (1 + ae"2^)2

(A.8) /     f(k)kJ0(kx)dk=-        f(k)-^(kJi(kx))dk
Jo x J0 dk

1   f°°— - I     g(k)kJi(kx)dk
x Jo

1    f°° d
= —x I     kg(k) — Jo(kx) dk

x2 J0 'dk

(A.9) =-4/     jr(kg(k))J0(kx)dk
x¿ Jo    dk

=irá(^(t»)w)u,(M,tt
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with

'(i)-'éÜé(M;))}
and

(A.ll) g(X/x) = ahe~2h(x'x^/(l + ae-2h{x/x)2).

F(X/x) is uniformly bounded in x and A; Ji(A) ~ A when A —> 0 and Ji(A) ~ A"1/2

when A —> oo. It follows that the integral in the last term of (A.9) is bounded. As

a consequence, Q(x) G Ll(R2).
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