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FINITE TIME ANALYTICITY FOR THE TWO- AND
THREE-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY

BY
C. SULEM AND P. L. SULEM

ABSTRACT. The Rayleigh-Taylor instability refers to the dynamics of the
interface between two ideal irrotational fluids of different densities superposed
one over the other and in relative motion. The well-posedness of this problem
is considered for two- and three-dimensional flows in the entire space and in the
presence of a horizontal bottom. In the entire space, finite time analyticity of
the interface is proven when the initial interface has sufficiently small gradients
and is flat at infinity. In the presence of a horizontal bottom, the initial
interface corrugations has also to be small initially but it is not required to
vanish at infinity.

1. Introduction. A fluid of constant density p_ and horizontal velocity u_
superposed over a fluid of constant density p; and velocity uy parallel to u_
corresponds to a stationary solution to the Euler equation. But this configuration
is linearly unstable for any perturbation of the interface of wave number k in the
direction of the flow with modulus [1]

4a g

[kl > 1—a? (uy —u_)?

The coefficient a = (p4+ — p-)/(p+ + p—) is generally called the Atwood ratio; g
denotes the gravity field. When the two fluids have the same density (o = 0), the
problem is often referred to as the Kelvin-Helmholz instability. In this case, small
corrugation of any wave number is amplified exponentially. As a consequence, the
linear problem is well posed only for an analytic initial interface, and thus generally
only during a finite time [2]. In contrast, for the water wave problem where the
lower fluid is much denser than the upper one (a = 1), the interface is linearly
stable, suggesting that nonanalytic initial free surfaces may be considered.
Well-posedness for the nonlinear water waves has been investigated by many
authors. Existence during a finite time has been established in spaces of analytic
functions [3-6], and also in Sobolev spaces and Holder spaces [7-9]. They either
transform the fluid region on a simple domain by means of a conformal mapping
(two-dimensional problem) or follow the evolution of the free surface in Lagrangian
coordinates. The Rayleigh-Taylor problem (a # 1) in two-dimensions has been con-
sidered in [10] where a finite time analyticity result is presented. The proof, which
in places is only sketched, uses scales of spaces of analytic functions & la Ovsjannikov
[11]. The present paper also deals with the well-posedness of the Rayleigh-Taylor
problem and extends to it an analysis previously done for the Kelvin-Helmholtz

Received by the editors November 8, 1983.
1980 Mathematics Subject Classification. Primary 76E30.
Key words and phrases. Raleigh-Taylor instability, analyticity, well-posedness.

©1985 American Mathematical Society
0002-9947/85 $1.00 + $.25 per page

127
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problem [12]. Both two- and three-dimensional flows are considered and a class of
analytic initial conditions larger than in [10] is permitted. In addition, periodicity
is not required. In §§2 and 3, we derive for two- and three-dimensional flows, a
close system of equations for the interface and the vorticity density. This is done
by writing the momentum equation for inhomogeneous flow in the sense of distri-
butions. When the densities of the two fluids are different (a # 0), the equation for
the vorticity density is of Fredholm type. In §4, we adapt to this problem Nishida’s
formulation [13, 14] of an abstract Cauchy-Kowalevski theorem in scales of Banach
spaces [11, 15]. In §5, this theorem is used to prove analyticity during a finite time
for the Rayleigh-Taylor problem in the entire space, under the condition that the
interface gradients are sufficiently small initially. When the interface is not periodic,
it is assumed to be flat at infinity. The effect of a horizontal bottom is considered
in §6. In this case, the initial corrugation has also to be sufficiently small but is not
required to vanish at infinity. This is due to a faster decay of the Green function of
the Poisson equation at large distances. Finally, a few open problems are discussed
in §7.

2. Equations of motion of the interface in two dimensions. We consider
a fluid of density p_ superposed on a fluid of density p;. The flow is irrotational
in each of the domains where the fluid is homogeneous but a velocity discontinuity
at the interface is permitted. The momentum equation reads:

o @) Gylm) + 32 5 (o) + V=1 =0,

(b) divu=0

where § = (0, —g) is the gravity field.

The jump conditions across the interface are easily derived from the equation
satisfied by Curl(pu) in the sense of distribution. We denote by ¢(7,t) a vectorial
test-function perpendicular to the plane of the flow. It will be sometimes identified
with its unique component. We assume that ¢ has a compact support which does
not intersect the possible bottom. We have
(2.2)

(a) puCurl %‘f dFdt + / pusu Curl gf_ dFdt — § / pCurl pdFdt = 0,

(b) /(u -V)pdr=0.

For simplicity, we shall consider in this section the case of a two-dimensional flow.
The three-dimensional problem is considered in §3.
The interface is represented by the equation

(2.3) r=r(\t), AER,
or when cartesian coordinates are used

(2.4) T = SL‘(/\,t), y= y(’\at)'

N = (—yx, ) is a vector normal to the interface. n and 7 are normal and tangent
unit vectors, respectively. The vorticity density {2(),t) on the interface is a vector
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perpendicular to the plane of the flow defined as
(2.5) / (r) Curl u(r, t) dr = / DO )2, £) dA

where 9(r) is a scalar test function.
The velocity in a point exterior to the interface is given by the Biot-Savart
formula

r,t) =/VG(r,r()\’,t))/\Q(A’,t) dx,

where G is the Green function of the Laplace operator in the domain. In the absence
of boundaries and when the velocity vanishes at infinity,

G(r,r") = -—%ln\/(a:—:c')2 +(y—y)2.

in the presence of a horizontal bottom,

n_ 1 (z-2)2+y-y)?
G(r,r') = _2_ln\/(x—a:’)2+(y+y’)2'

If the interface is sufficiently smooth, the velocity u has limits u* (), t) when r tends
in an arbitrary way from one or the other side to a point r(),t) of the interface. In
addition,

defu +u”

(2.6) vy

(At) = ][VG(r(,\,t),r(,\',t)) AQUN t)dN,
where [ indicates that the integral is taken in the sense of Cauchy principal value.
We rewrite each integral in (2.2) and (2.5) as the sums of integrals in each of
the two subdomains separated by the interface, and apply the Green formula to
the different terms. In each of these domains, the flow is homogeneous and irrota-
tional and the Euler equation is satisfied in a classical sense. The only remaining
contributions thus come from the interface. We denote by [f] = f* — f~ the jump
across the interface of a function defined on one and the other side. (2.2)(b) and
(2.5) imply

(@) [u]-N=0,

@7 (b) [ AN=Q

and (2.2)(a) is rewritten in the form
/ lou AN).- ‘0 dtd) + /([puiu] AN). % dxdt

(2.8)
+ /[Curl(puiu)] - N;pdXdt — [p] /(g AN)-pdrdt =

In the first term of (2.8), we make the replacement

oo eeon= - (5)F- (5 )%
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where /91 = (1/||N|)0/0A. We rewrite the second term of (2.8) in the form

(2.10) /([puiu]/\N)~§f d/\dtz/(V~n)([pu]/\N)~g—id)\dt

. + —
+ /{(V~T)[pu]/\N+ ([u] T)M /\N} : g—fd/\dt.
In the third term, we use

[Curl (pu,u)|N; =N;[Vu,; A pu]

<n %){pu]-m(r%‘g)[pu].f

(pw)* + (pu)” A (pu)* + (pu)”
+ [u,] 5 n+ a/\([u] 7) 5 T.
After integration by parts, (2.8) becomes

(2.12)

[l e () i)
<

e (B (0 Y

+ (T-—Z—K)[pu]~T+([u]'T)w'n"’[/’]g/\N}"P

+{<V—%> “nlp u]/\N} gfl 0,

where the vectors perpendicular to the plane of the flow are identified with their
unique component.

(2.12) is satisfied for any test function ; the coefficients of ¢ and dp/dn in
(2.12) thus vanish. Expressing (pu)™ + (pu)~ in terms of V and (1 one finally
obtains

PROPOSITION 2.1. If during a period of time, the interface between two two-
dimensional tdeal fluids of different densities superposed one over the other remains
a smooth curve L'(t) = {r = r(\,t), A € R} with a vorticity density (A, t), we have

(a) (r,—V)'n—O

(2.13) 1

(b) —{Q+a(V T)\)}+ 0 {|T |2((V—Tt)-r)‘) <%+Q(V.T)\)>}
8 (02 VP B
—aa{w—7}+agy,\—0.

In (2.13) subscripts denote partial derivatives and n is a unit vector normal to
I'. If no boundary is present and the ﬂuids are at rest at infinity

— t) ’ /
(2.14) V(A t) = o / PN D) = r( /\, e AQN t)dN.
In the presence of a horizontal bottom (r = (z,y), T = (z,—y))

(2.15) V(A.t) = 1/( rL ) —rVLY A8 =LY )/\Q(/\’,t)dX.

r(A ) = r(X 012 Ir(A ) =7V, )
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If p~ and pT are the densities of the upper and lower fluids, respectively, o =
(bt —p7)/(p* +p7).

The system (2.13), (2.14) simplifies when the interface can be resolved in the
form y = y(z,t). It becomes

(a) y:—Va+yV1 =0,

B9 ) 2 amisnm) o 2 (v (2o me)

+o L —'V'2+ =0
s1+y2) 2 ') =%

In the entire plane

= “i y(z,t) — y(xl’ t) / /

(2.17) Vi(z,t) = o ] @—2)2 + (y(z,t) — y(@, )2 Qz',t) dx’,
. 1 T — IL" ) .
N § = ex e L

in the presence of a horizontal bottom,

1 y(z,t) —y(2',t)
Vi(z,t) = 2ﬂ/<(z~x')2+(( t) - y(a,t))?

_ y(z,t) + y(2',t) , ,
(- 2')? + (y(z,t) + y(o, t))2> («',t) da’,

1 z -z’
Vg(z,t) = % / ((ZE — z;)z + (y(IL‘, t) — y(zl,t))2

_ r—1
(z —2')? + (y(z,t) +y(a',1))?
Computing the time derivative in (2.15)(b) and using (2.15)(a), one obtains

(2.18)

> Qz',t) dzx’.

PROPOSITION 2.2. When the Rayleigh- Taylor problem is considered in R? and
the interface can be resolved in the form y = y(x,t), the equations of motion become

(a) ye—Va+yVi =0,

(2.19) 160 an aF

where

00, | [yt~ y@ ) - (- Pala,) 00,
eo) A - [ ST a0

and
(221) 2 2
F(‘.’B, t) =%Vl(zv t)ﬂ(z,t) t o <|V(2; t)l + 8(1?‘ :f/zz’(‘i)v t)))
+a / (z - ’”I()n(z', t)(Va(',t) — ya(z, )V (', 1))

dz' + agy = 0.

T - xl)2 + (y(m’t) - y(zla t))2
Vi and V, are defined in (2.17).
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When a horizontal bottom is present, the equation for the vorticity density reads
N

(2.22) 5 T Bl }at = S{0,y}
with
(2.23) ,
S{Qy}——§< aVT % L +agy)
10 -1
ﬂa—/< 2(7') - (z—w+ zt)—y(z',t))2>
r—T
‘((x—x')2+<y<xt R e
and

y(2) + y(&) — ye(z)(z - o)
220) Bl = 27r/ ((z—x')2+<y(x>+y(z'))2
u(z) — y() — ge(z)(z - )\ 00
@ 2)2 + lz) — (@) )at( )’

Let us assume that y(z,t) fluctuates around some mean value h. To isolate the
linear contribution in the right-hand side of (2.24) we write

(2.25) y(z,t) = h +n(z,t).
(2.22) becomes

a0 2h o0 L,
with

~ o 00, , .,
eI G =B - /mat( =) dz

The linear operator acting on 9€1/dt in the left-hand side of (2.26) is easily inverted
by taking the Fourier transform of the equation. We finally obtain

PROPOSITION 2.3. When the Rayleigh- Taylor problem is considered in the half-
plane y > 0, and the interface can be resolved in the form y = y(z,t) = h+n(z,t),
the equations of motion read

(a) -Va+ nle =0,
(2.28) ag
0) 2+ Ay = F(e,n)

with

02 A = + [ G- (ch{n} 7)) do

(2.30) FiQ,n) = S{0,y} + / Sz — )S{0,y) () da’
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The kernel G is given by

too e 2hIK
and thus decay like |z|=2 when T — +oo. Vi and Vs are defined in (2.17) with
y=h+n; C, and S are given in (2.27) and (2.22).

3. Equations of motion of the interface in three dimensions. The inter-

face is represented by the equation {7 = r(X,t), X = (A1, A2) € R2}. The vorticity
density (2(),t) is defined by

—

(3.1) / o(F) Curl u(7, £) dF = f o(r( )R, 1) d,

where ¢ is a test function. Like in dimension 2, when the interface is sufficiently
smooth, we have

(3.2) Vit = ———
where u* are the limits of the velocity u(7,t) when 7 tends from one or the other

side to a point 7(},) of the interface and G is the Green function of the Laplace
operator. When the problem is considered in R3,

DN |
(3.3) G(r,7") = w7
When it is considered in half a space,
1 1 1
34 G(rr')=— - =
(34 =4 (771 )

with ¥ = (z1,29,2) and 7 = (z1,z2,—2). a normal vector N to the interface is
N =0r/0A1 A Or/0X2. Using a Green’ formula, (2.2) is rewritten as

/([pu] AN). %% dxdt + /([puiu] AN).- gf dx dt

(3.5)
+ /[Curl (puin)] - (Nip) dXdt + [p] /(g AN)-pdXdt=0.

Proceeding as in [10], we obtain the following system of equations:
(3.6)
(@) (r=V)-N=0,

() — o (lou] AN)

- 41 0 J[puAN [Or Or 1 or
+;(_1) Ha_’\j{ |V (5’8—,\;’]\[) ~ N (a—/\}/\N)[WfU]} ,

7

+ [Vu; A pu]N; + ag A N = 0.
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In (3.6)(b), the subscript j is 2 if j = 1 and 1 if 7 = 2; (a, b, c) denotes the triple
scalar product a - (b A ¢). Furthermore,

1 or 1 or
__ ___/\N i /\N: V,—,N /\N
EE (aAj )i[”““] n ||2< % >“’“]

_ ([u] A ;T:) A (pu)* ‘12’ (pu)~

(3.7)

and [10]

(38) [V ] = wu([gg]A@u_):r(p_w ov

P%
.
+
/'—/H
u
o5
»i?
>
=
N———
>
=
|+
I
£

<.
I
—

We also express (pu)* + (pu)~ in terms of [u] and V, and notice that

or 1 or

(3.9 u - < ,N, Q)

) 5y, = v

We thus obtain

PROPOSITION 3.1. If during a period of time, the interface between two ideal
fluids of diﬂerenﬁ densities_‘superposed one over the other remains a smooth surface
S(t) = {F = r(\t) with X = (A\1,A2) € R?} with a smooth (vectorial) vorticity
density Q(X, t), one has
(3.10)

(a) (V—%)-N:O,

(b) %<%+QWANO

2
1 or Or )
17+ V-_—_ - N i
+Z 1) {”NH2( 3t’3)\]-’ )(2+a‘/ /\N)}

J=1

- 1 or or ov
_1\y+1 L ~
(=1 {2||N||2< N”) <V axj>}ax;

., 0 (V? [u]2 or
R VA 3 S A e B s —
+ a—1) 8)\]«( >8A ag AN =0,

where the jump of the velocity through the interface 1s given by

2
or \ Or
J+1 —_
(3.11) ‘ ( BAj> 8/\;’

and V defined in (3.2).
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This system simplifies when the interface can be resolved in the form z = 2(Z, t)
with & = (z1,z2). (3.10) becomes

% oz 0z

319 ( ) It -V3+ 8:1: Vl az2V2 =0')
(' ) 6 Q
(b) 3t E‘FO(V/\N =S
with
2
0 [y (9 N O AN 4
-S—.Ea—z,-{VJQMVAN)} (3o}
(3.13) I=t
+a6 H—M +agAN.
oz; | 2 8 6]

Let us first consider the problem in R3. Developing 8(V A N)/dt, (3.12)(b) is
rewritten in the form

of,;

(3.14) o

AN Bz} (=1,29)

The right-hand side of (3.14) is given by
(3.15) E=S+I1+J
with, for 2 = 1,2,

I - a( i+ 9 0 [ 02(Z)/0t—0=(Z")/ot
(3.16) 7T 4 Oz; Ir(&) —r(@)®

x {(z2 - 93'2)91(-’3') - Qo(Z')(z1 — 21)} AT,

_ 0z(%)/ot — Bz(:c )/ot
(3.17) ="t Z 1 Oz Ir(Z) — r(@")I3

X {(% — 2;)Q3(Z) — (&) (2(2) — 2(2))} d’

and

02(Z) /0t — B2(T') /Ot
47r/

@ -~ x'>|3

r(@) - T(x
{3|r(*) Fp )
In the left-hand side of (3.14),

For a given 2z, B can be viewed as a linear integral operator acting on 92/0t.
Let B;; be the matricial elements of this operator. The kernels of B3; (j = 1,2,3)

(3.18)

&11

) (@) Q(a’:")} iz,

(3.19)
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will be “small” of the interface gradients are “small”. The kernels of Bi3 and Bas
which operate on d2/0t have contributions which are independent of Vz. In these
terms, we make the replacement

003

20,
(3.20) = = -aZnga—tf + E3{Q, 2}.
1=1

The resulting operator acting on 9();/0t is then “small” with Vz.

PROPOSITION 3.2. If, during a period of time, the interface between two ideal
fluids of different densities superposed one over the other is a smooth surface z =
z(Z,t) with a smooth vorticity density Q(Z,t), one has

(a.) _(9_Z__V3+(9 Vl"l'ﬁVQ—O
ot 0zy 0z
(3.21) o0 50
_J - _— = ] =
(b) 3t + aAJ{Z} at F{sz} (] 1’253)
with (no summation)
(3.22) Fi{Q, 2z} = E;{Q, 2} + (1 - é3;) / BE 4/ |3E3{Q 2} (&) dT’
Jorj =12,
(3.23)

(a) A{Z} - 47r/|r ) —r(Z

(b) As{z}001/0t = B3{z}001/dt
and

, (@) ,
(3.24) (@)= - / o A0 de

For simplicity, the temporal argument has been omitted.
When a horizontal bottom is present at z = 0

. r(z) —r(@) _ r(g) —r(e) > =
em v@=—g [ (5 e e e
where 7(%) = (z1, 22, —2(z1,22)). When 9(VAN)/0t is developed to write (3.12)(b)
as a Fredholm equation, we get
(3.26) 0N/ot + aB{z}0Q1/ot = E{Q, 2},

where

(327) o o
B =5 [ (75 p - e rem) %)
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(3.28) E=S+I+J

(3.29) —S=;{Vj<g+aV/\N) <TJ ( )>
- % aa <VTI2_%>}%+QW\N.

_=o e 0 <8z(5:‘)/8t — 02(%)/0t _ 02(Z)/0t +8z(:i:")/8t>
m r(Z) — r(2")[3 Ir(Z) —7(z")®
X ((z2 — 25)0(Z") — Q2(2)(z1 — 7)) dF’

and
(3.31)
a8 92(%) /0t — D2(F)/0t _ 02(%)/0t + 82(Z) /0t
fo= Ej; 0z, / {< Ir(2) - r(2")I3 Ir(2) - 7(2")[3 )
x(z; — 25)03(Z) (25 — 23)Qs(Z)
~ ((az(i’) /8t — 8z(Z')/0t)(2(Z) — ("))
r(&) - r(&")]3
(02(2) /0t + 02(2") /8t)(2(Z) + 2(Z')) \ (y [y | 1w
- @ - 7@)P )o@}
(3.32) )
S 82(Z) /0t — 0z(&')/t

"= T @ @P
@)= r@) oo
x{smm(z) (r(&) - (@) - O ))}

- SR TN (ot () () () - 042 .

Assume that 2(Z,t) fluctuates around some mean value h. As in two dimensions,
we isolate the linear contribution by writing

(3.33) 2(Z,t) = h+ n(Z,t).
For the two first components of B{z}9/dt, we write
(3.34)
%) + (7)) 2h 2(Z) +2(2) 2h
@ — 7@~ (G- 7+ P (@)~ r(@F (@ 2P + R

and, like in the case of the whole space, we make the replacement

(3.35) N3/0t = E3{Q, 2} — B3 {z}901/dt
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in the term which does not contain the interface gradient. We obtain

(3.36) GtJ +a / e Z4h2}3/2 O (&) e = —aAj{z}% LR {0,2)
for y = 1,2 and
(3.37) 003 /0t + A3{z}00/0t = F3{Q, z}.
For j =1,2
(3.38)

T; - T} Tj — T _4
(3F39{)Q =0 f <lr(f) —r@P " Ir(@ ~7(f')l3> Ba{ 2H(&) a7,

90 1 1 !
Atk = ‘If?/ (Ir(f) -r@F (@ - ?(f’>|3)

+ (@~ 2)Bsl2) (f)} + e e
2(Z) + 2(&") 2h o0, i
* { Ir(@) - F( @) {(f- )2 +4h2}8/2} g ()42
and
(3.40) A3{2}00/8t = B3{z}00/dt,
(3.41) F3{Q, 2} = E3{0, 2}.

The linear operator acting on /3t in the left-hand side of (3.36) is inverted by
taking the Fourier transform of the equation (see Appendix). We finally obtain

PROPOSITION 3.3. When the Rayleigh- Taylor problem is considered in the half-
space z > 0 and the interface can be resolved in the form z = z(Z,t) = h + n(Z,t),
the equations of motion read

0z 0z 0z

(a) 5 —Vat o Vl+5—V2_0

342 () %0 +ag@+ (402 50) 6@ RiRe) i-12,
(c) %ﬂté + Ag,{z}a—(t2 = F3{Q, 2},

where

(3.43) 6(@) = /0 %’éﬂ—ﬂ} dk

belongs to L'(R?) (see Appendiz) and where the operators A and F are defined in
(3.38)-(3.41).

4. A Cauchy-Kowalewski theorem for a nonlinear problem of Fred-
holm type. Let B = {B;} for 0 < s < s¢ be a scale of decreasing Banach spaces,
i.e. for any 0 < s’ < s < sg

Bs - BS’1 ” ”S' < “ ”8'
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Consider in B2 = {B?} the initial value problem for X = (X1, X3) of the form
(€ R)

(9X1/3t + aA(t,Xg)BXl/at = Fl(t,X), 8X2/8t = Fz(t,X),

(4.1)
X1(0) =X, X,(0) = x{?.
We assume that X(O) and X(O) are in B,, with ||X§0)||3 < R§°) and ||X§0)||3 < Réo).
We define
Es(Ry, Re) = {X € BI, | Xi1lls < Ry, [ Xalls < R2}

and assume the following hypothesis on F' = (Fy, F3) and A. For some positive
numbers Ry > 2R(()1), Ry > 2R((,2) and T, let (¢t,X) — F(t,X) be a continuous
mapping of [-T,T] x & (R, Rz) into B2, satisfying for any 0 < s’ < s < s¢ and all
X,X (S €3(R1,R2)

(H1) IF(t, X) — F(t, %)y < <F

11X = X,

where CFr is a constant independent of ¢, X, X ,8,8, but possibly dependent on R;
and R;. In addition, for 0 < s < sg

M
(H2) sup [|F(t, X)||s <
[t|<T so—s

In (H1) and (H2), the norm in B? is defined as
IYlls = Y1l + [[Yalls for Y = (Y1,Y) € B.

Let A(t, X2)Y1 be a continuous mapping of {X3,Y1 € B, with || X5| < Rs} into
Bs, linear in Y7 and satisfying, for any 0 < s < s¢ and all X5, Y7, Xg, Y1 € B, with
||X2||3 < R7 and ||X2||s < Rz,

(H3) |S|uI;‘ ”A(t»XQ)Yl - A(t, X?)flllls < CA”YI - lN/l”sa
ti<
(H4) lS‘ldp At X2)Y1 — A(t, X2)Yils < CallYalls X2 — Xalls,
t|<t

where C4 and C’; are constants independent of ¢, Xg,Xg,Yl,f’g,s but possibly
dependent on R,.

THEOREM 4.1. If there exists a constant c. < 1 such that (H1) and (H4) are
satisfied with |a|Ca < c., then there is a positive constant a and a unique function
X (t) which, for every s € (0,s0), s continuously differentiable in (—a(so — s),
a(so — 8)), valued in B? with

sup [ Xi(t)s <Ri and  sup [ Xa(t)]ls < Re

|t|<a(so—s) |t|<a(so—s)

and satisfies (4.1).

REMARK 4.1. If (H3) can be replaced by
(H'3) IA(t, X2)Y1 = A(t, X2)Yi1ls < CallXalls IV = Vi,
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the smallness condition on the constant C4 is replaced by a constraint on the initial
data, namely |a|C~'A||X§0)||s < 1, so that the coefficient of X /0t is not 0.

REMARK 4.2 If, in addition to (H1)-(H4) with ¢ complex, F' and A satisfy the
assumption:

If 0 < s < s < sg, and X holomorphic for ¢t € C, |t| < T valued in By, then
t — F(t,X(t)) and t — A(t, X2(t))Y1(t) are holomorphic functions for |t| < T
valued in B} and Bs, respectively, then X is a holomorphic function of ¢ with
values in (Bs)?.

Proof of Theorem 4.1. Baouendi and Goulaouic’s proof [14] of the Cauchy-
Kowalewski Theorem as formulated by Nishida [13] for (4.1) with A = 0 is easily
extended to equations of Fredholm type.

For every a > 0, E, denotes the Banach space of functions u(t) which for every
s € (0,s9) are continuous for |t| < a(sg — s), valued in Bs and satisfy

b\
4.2 ull|l, = su u(t)||ls(so—8) (1 — —— < 00.
62 = sl (o) (1 )
The space E, is equipped with the norm ||| |||4-
Denoting

(4.3) Y = (Y1,Y2) = dX/dt,
one has

¢
(4.4) X=Xy =x9+¢ / ) dr, X3 + / Ya(r) dr)

0

and (4.1) is rewritten as
(4.5) Y, + aA(t ){Y)Yl F, (t }(Y) Y, = Fz(t, }(Y)
Straightforward adaptation of Lemmas 1-3 of [14] to the case of nonzero initial

data leads to

LEMMA 4.1. Leta >0, s € (0,s0) and |t| < a(so — s). If X € (E,)?, one has
the following properties:

(4.6) i) XY ]ls < 1XOUs + 2a]||Y||]a-

1Y (7)lls Yle [ a(so—s)
dr < 8a
o s(r)—s so— s\ a(so —s) — t]
with s(1) = 3(1+ s —|7|/a).
(iii) If Y € (E,)* with [[|Y1|lla < R1/8a, [|[Y2[lla < R2/8a and Y € (E))?
with |||Y1||2« < R1/16a and |||Y2|||2a < R2/16a, then, under hypothesis (H1),

(4.7) (ii)

(4.8) |F(t, XY () — F(t, XY (t))]ls < C /0 I[¥( Ts: S Y (7)lls(r) o

(r)
where 5(7) is any continuous function on (0,t) satisfying s < s(1) < 3(s+s0—|7l/a).

XY (t) is defined in (4.4) and

(4.9) X(t) = ¥Y (¢t < /Yl )dr, X + /Yz(r >
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(4.1) is rewritten in the form
(4.10) Y =G(Y)
with
(4.11)  G(Y)=Fi(t,HY) = aA(t, XF2(t, XY ))Yq, G,(Y) = Fy(t, ¥Y).

Let b € (0,T). If for |t| < b(so — s) and s € (0,s0), Y € Ep and |||Y ||| < R/2b,
one has

IGY ()ls <IF(E, XY ()ls + |of | A, X Fa(t, XY )1l
(4.12) <|F(tHY (1) = F(t, XO)ls + [|1F(t, X )]
+ |af ||A(t, X F2(t, XY ))Y1]|s-
Lemma 4.1 and hypotheses (H1)-(H3) imply

8bc b(s M
(413) G O)lls < —IlI¥1lle (_0 _) + + | CallYills,
s)—|t| so—s
(4.14) NG )lls < 8bell[Y Il + M + [a|Call[Ya]lls.

This inequality insures that, for a € (0,T/2), Y € (E;)? with IIYilll < Ri/8a
and Y € (Eq,)? with |||Y;|||l2a < Ri/16a (i = 1,2), G(Y) and G(Y) are in (E,)?.
Furthermore,

e 8aC a(sg — s)
. GO (1) = GO <3 Y = Fllloy | 7 5
' + |a|cA||Y1(t) - Ya(t)lls
+ 1| CulIY1(t)lls [XFa(t, XY) — HFa(t, XY) |l
with

HEs (e XY) - X, X7 < [ I Ea(r, XY (7)) = Fa(r, X9 ()l dr

Y (1) =Y ()¢ .,
(4.16) / (/ s = s(r) dT) v

Ny = ¥ill. /* a(so — s)
S0 — 8 o V a(so—3s)—|7|

< 16Ca*|||Y - ¥|la.

< C8a

Substituting in (4.15) we obtain

(4.17) NIG(Y) - GVl < K[]Y = Y|l
with
(4.18) K = a(8C + 2|a|C"4C’R1) + |a|CA.

The constant K will be smaller than 1 if |¢|C4 < C < 1 and
a<a.=(1-C,)/(8C +2|a|C4CRy).
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Let E denote the closure of E, of the ball
,6‘211 = {Y € E2a7 HIK”'?G < Ri/160’7 1= 1’2}

E is a complete metric space contained in {Y € E,, [||Y;||la < Ri/16a (i = 1,2)}.
Under the conditions |a|C4 < C, < 1 and a < inf(T/2, a., a..) with

. —inf( (1-C.)Ry R,
- 16(Csup,R;, + M)’ 16(Csup, R, + M) )’

G is a contracting mapping of E into itself. Hence G has a unique fixed point Y in
E which is a solution of (4.1).
If (H3) is replaced by (H'3), the constant C4 is replaced by

Ca(lX5”lls + 16Ca®|[[Y [|la + aM)
in (4.14) and (4.15). The constant K in (3.16) becomes

K=a {8c +2|alC (CQRI +Ca sup Ri) + |a|M} + o] Cal| X5

1=1,2

The conditions which insure that G is a contracting mapping of E into itself are

now |a|Ca |X§0)Hs < C. <1 and a < inf(T/2,a., a.«.) with
" 8C +2/e|C(CaRy + Casup Ry) + |a| M’

a,. = inf (1= CIR: Ry
T 16(C'sup, R; + M)(1+ aC4R;)’ 16(CsupR; + M) |

5. Finite time analyticity for the Rayleigh-Taylor problem in the en-
tire space. We look for solutions of systems (2.16), (2.17) and (3.21) such that
{0, y.y.} in two dimensions and {(}, z, Vz} in three dimensions are analytic func-
tions defined in
(5.1) by = {(%,7), z € RY, |5| < s}, d=1or2,
with the additional condition that () and y, or Vz belong to L?(R? + i5) (|5] <
s. d =1.2). We defined the norms

luls = sup |u(z + i0)],
r+10€b,

lulls = |u|s + sup Julz + i) = u(z’ + io)|
(5.2) ' ) Iiiaggﬂ |:(; — I'|°‘
Tt+10 s

iy = sup [ Jula -+ io) Pz, el =l +

lo|<s

, O0<axl,

Lz

B and B* are, respectively, the spaces of analytic functions u defined in b, such
that |lu||s and |||u|||s are bounded.

a. Two dimensional flows. For [Imy;|s < 1 (so that the denominator is not
cancelled in (5.3)), V and A are continued analytically to the strip b, in the form
(5.3)

y(z +10) — y(z’' +10)

2+ 4z + i0) — (e 7o) & Ti0)dT

Vgt +io) = 5 [ o
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1 z—x
T o / (z — )% + (y(z + t0) — y(z' + 10))?

(55) (A@}%?) (2 + o)

_ =1 [ylatio)—y(@ +io) —ys(e+io) e =)y o
“u/ = 2) + Wt io)—y@ +io)2 T

(5.4) Vo{Q,y}(z+i0) Q(z' +1i0) dz’,

V1, V2 and A satisfy

PROPOSITION 5.1. Ify € B and y.,0,¢ € B with Imy.|s < & <
. Nwzllls < Rz, and similar conditions for §, 4z, (), £, then the analytic contin-
uatwn of V and and A to complex values of the space variable satisfies
(5.6) 5 5 5
V{9, y} = Vi{Q, 3}1ls < C(1+ RE)(Ilyallls 112 = Qs + Qs lllyz ~ Fallls),

5.7 [IIVa{, 5} = Va{QG}Ils < C(1+ R(IQ = Qlls + N5 yz — Fallls)s
(5.8) 11A{y}€ = A{y}éllls < Clllyzllls(1 + R3)IIIE = €llls,

(5.9) I1A{y}¢ - A{g}éllls < C(1+ R)IIENS lllyz — Fallls,

where C 1s a numerical constant.

PROOF. Inequalities (5.6) and (5.7) are established in [12] with an additional
term |y — §|s in the right-hand side. One can actually avoid the introduction of
this term by modifying in the estimate of [V;{Q,y} — Vi {{), §}| L2 the contribution
of the term

(5.10)

. 2
(Q(:c' +1i0) — Qz' + 10))(y(z + 10) — y(z' + i0))
b= [ ds (f ol = ) T G T R e + i)~y T i0))? ) |

where 02(|z|) = 1—6,(|z|) and 6, is a smooth function with compact support equal
to 1 in a neighborhood of z = 0. We write

bl < 12 — Qle/dx </d 502'””—“2/ lya(Az + (1 — )x’)|2dA>
2
(5.11) <i0- Q|L2/d b3l 'x| / / d\ye(Az + 2)[2 dA
SC|Q—Q|L3|%:|L§'

The inequalities (5.8) and (5.9) are easily obtained by noticing that
(5.12) A{y}e = Vi{y, &} +yaV2{y, &}

and using (5.6) and (5.7).
Using that an analytic function in by satisfies

1
. <
(513) 91Ul < —
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for s’ < s, one easily checks that the system of equations

o0 o0 dy _
(514) ‘5? + aA{y}—a—t— = F, a - V2 + szl = 0,
0 oV, 0
5% 3, + %(yxvl) =0,

with initial conditions
(5.15)
0(2,0) = Qo(z) € B, y(z,0) = yo(z) € BV, y(,0) = yz,0(z) € B,

satisfies the hypothesis of Theorem 4.1. Since only |||yz|||s (and not |||y|||s) appears
in the right-hand side of (5.8), the condition for existence of a solution will be
|a]||yz.0ll|s sufficiently small. We thus obtain

THEOREM 5.1. There exists a constant kg, such that for initial conditions
(yo,dyo/dz, Qo) whose analytic continuation belongs to Bgl) X B§2) X B£2) with
the conditions |Im(dyo/dz)|s, < k < 1 and |a||||dyo/dz|||s, < ko, there exists a
constant a, such that for |t| < a(sg — s), the system (5.14) has a unique solution
(y,dy/dz, Q) which is an analytic function of t with value in B x B{Y x B,

b. Three-dimensional flows. For |Vz|s < k < 1, the operators entering in (3.21)
are analytically continued to the strip bs according to the following procedure: if

(5.16) P(%) = o P(z,&')dT’

then

(5.17) P(Z+16) = o P(Z +1id,T +10)dT.
One has

PROPOSITION 5.2. If z € B{") and Vz,Q,¢ € B® with ImVz|, < K <
1, |||Vz]||s < Rz and similar conditions for z,V2,Q), £, then the analytic continua-
tion to b, of the operators defined in (3.24), (3.13), (3.16)—(3.18) and (3.23) satisfies
(0< s <s)

(5.18)  [|IV{ 2} = V{Q, 2}l]s < C(R2)(II1Q = Qs + [1ID1]s [V = VE][ls),

(5.19) 1115402} - St 2411 < ST el + 111 19 - 201,)
(520 (102} - 102 < SEE -y + g 192 - 211,
(.21) 4.2} - 7003l < SE o dy, + i 19 - vi,),
(5:22) l4,4z3€ - A€}l < CRNT=AIL e ~ €l

(5.23) 114;{23¢ — A;{Z}Elll < C(RIIENNs V2 = V2] ]5.
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PROOF. One uses the following inequalities proved in [10]:

. 7 1448 dz’
m/l" fl?+20’ —7- III'+1,U)|3£(I +ZO’) x
/

(5.24)

)|3£(5’ +16) dZ’

|F(Z + 20) —F( +16
< (1+ C(R)NIIIE = &llls + Rallléllls IV2 = VALY, =12,

525
x+ZO’ —z(x +ZO’) '
'H/ |r(Z +16) — r(&" + 0-)|3£(Z,+1U)dz'

2(Z +10) — 2(T +10)
|r(Z + i0) — F(T + i7)|3

< (14 CRIVILs (1€ = Ellls + 1€l V2 = V2Ils),

é(z + o) dz’

S

where

(T +10) = (z1 + 101,22 + 102, 2(Z + 17))

and

(& +16) = (21 + 01,22 + 102, 2(Z + 15)).

C(R2) denotes a constant depending on Rs.

To prove (5.21), we also use (3.21)(a),
(5.26)

oz o 1 dz 0z . i
at($+ 0') Bt($+ ) (x—I)'VA <V3_8_131V1_a_$2> ()\(E+(1—/\)$)dA
and (5.13). This leads to

THEOREM 5.2. There exists a constant ko such that, for initial conditions
(20, V20,Q0) whose analytic continuation belongs to Bgl) X Bg?,) X ng) with the
conditions |ImVzg|s, < K < 1 and |a||||Vzo|||s, < ko, there exists a constant a
such that for |t| < a(so — s), the system (3.21) has a unique solution (z,Vz,Q)

which is an analytic function of t with values in B{Y x B{Y x B?.

6. Local analyticity for the Rayleigh-Taylor problem in half a space.
We shall show in this section that the systems (2.28) and (3.42), for the Rayleigh-
Taylor problem in half a space, in two and three dimensions, respectively, satisfy
the hypothesis to the Cauchy-Kowalewski Theorem given in §4.
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(6.2) A{y}e(z +io) = Crh{n}é(z + i0) + /g(x — 2 \Cr{n}é(z' + io) da’
with

(6.3) Crin}é(z +10)
_a / {n(z +1i0) + n(z’ +1i0) — n2(z +io)(z — ')
27 (z —2')? + (y(z + 10) + y(z’' + 10))?
(n(z + 10)+n(z’ + i0))(y(z + t0) + y(z' + 10) + 2h)
((z — )2 + (y(z + i0) + y(a' + i0))?] [(z — z')? + 4h?]
_ n(z +i0) —n(z’ +i0) — nz(z +i0)(z — 2') }
(x —2')2 + (n(x + 10) — n(z’ + 10))?
x&(z' +10) dx’.

+2h

G(z) given in (2.31) and y(z + i0) = h + n(z + i0).

The denominators do not vanish if [Imy,|s < K < 1 and |n|s < ~h, where ~
is a positive number smaller than one. We shall see that the introduction of the
L?-norm of the functions y, and 1 can be avoided because the kernels of V; and
V3 decrease at least like |z — 2’| =2 at infinity.

PROPOSITION 6.1. For n,7n.,Q,¢ and ﬁ,f],,ﬁ,é in BV satisfying ||n|ls <
~h, Nzl < Rz, |Imy,| < K <1 and simalar conditions for n and 7, we have the
following estimates:

(6.4)
IVi{Q, 2} = Vi{Q, 2}|

< 0. { (1 1320y gy, ey, (Ve B )}

h h h h
(6.5) / )
IVa{, 21 -Vai 3l < O k) = g+ g, (e o D))
66)  ICmE~ Cuinbéll < aC(y Ra)ly + Imall e = €l

67 10w - Cutifells < ata. Ralll, (L 4 W2l

where C (v, Ry) s uniformly bounded for v € [0,40] with yo < 1 and R < R, R
arbitrary.

PROOF. We shall estimate the two terms of Vi, referred as Vy* and V2 sepa-
rately. We also separate the contribution of short and large distances and write

VA, Y} = UMy + U0,y

where (2 = 1,2)
(6.8)

Ul(i){ﬂ,y}(x+io)=—§1—7;/(

(y(z + i0) — y(z' +i0))(z' +i0)
z—12')2 + (y(z + i) — y(z' +10))

50:(]z — ']) dz’.
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where C(~, R2) s uniformly bounded for v € [0,~0] with vo < 1 and Ry < R, R
arbitrary.

PROOF. We shall estimate the two terms of V;, referred as V4 and V;Z sepa-
rately. We also separate the contribution of short and large distances and write

Vi {0) = U1 {0 ) + U {0},
where (i = 1,2)
(6.8)
i . 1 z +10) — y(z' +10))(z' +io P
U, y}(z +i0) = _%/ (x(g(ﬂ;; +)(y(i/(+ i:) —)3)/2-'5’ I w;)zaiqx — 7)) da’.

0, is a C*°-function with absolute value smaller than one and compact support in
[—2h,2h], 62 =1 — 6. It is shown in [10] that

6.9) 1U{0, 9} — UMD, G5 < C(1+ RE)(lly=ll 12 = Qls + 105 llyz — G2lls)

The introduction of the L?-norms of ) and y in the estimate of the contribution
from large distance is avoided by writing

(6.10) [U{P{0,} - U}, < C { Wlejy — 1 6 (1 4+ ) 112 e }
and
(6.11)

VU (0,5 - U, < 0+ B { i - a4 2Bl

To estimate Vlﬂ we proceed as above and write

(6.12) ViR, y) = UM {0, 4} + UP{0, g},
where

(i) (y(z +i0) + y(z' +10))Q(z' + i0) N
(6.13)  U"{fy} = / (x — /)% + (y(z + 10) + y(z’' + i0))? Oille - 2')) de

with 60 =Q -, 6y=y—y, én = n — 17; we have
U {n, y} URH{Q.v}

_ oy Y@ +i0) +y(2’ +10)80(z’ +40)
= /0 (lz—= D(:E 7')2 (y(:l:+20')+y(:l?'+20'))2

dz’

/0 Iz — (6y(x +i0) + by(z’ +10))Uz' + w)
(6.14) (z z')?2 + (y(z + i0) + y(z' + w))2
/0 - 7| (y z +10) + (2’ +i0))(6n(z + i0) + én(a’ + i0))
[(z = 2')? + (y(z +i0) + y(2’ +10))?]
o (y+9)(z +i0) + (y + §) (2’ +i0)) (e’ + o)
Gz~ )2 + (y(z + o) + y(&' + o))

dr.

For |n|s < «yh, the denominator
(6.15) Dy = (z—2')2 + (y(z + i0) + y(z' + i0))?
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is bounded from below by

(6.16) |D4| > h*(1-~)?

is the integral containing 6; and by

(6.17) IDy| > (z — 2')? — 4y%h?

is the integral containing f2. Consequently, for ||n||s < vh and ||7||s < A,

(6.18)
60, 16n]s 16n]s
uva,yr - uq, S<C{ | ST Y /| L To T /| B
| 1 { y} { y}| = ( ,7)2 | I (1—’)‘)2h I | (1_,7)4’1
and
(6.19)
US40, y} - UPH{Q, 3},
dz’
<
C{|b‘ﬂ| h/ T €2, I5nls/ (@ =) —47h2
dz’
+ |Q|sh?|6 s/
| | ] nl |z—z|>2h [(CB - xl)2 - 472h2]2}

1+~ [6m]s 1 2y 1+4)\ |69]s
<C{-ln—"! il _ _
C{ In - <l§ﬂ|s 5 Qs ) + il In T h 15

The constants

1,1 1/ 2 1
—nﬂ and -— T i
S e P AL=2 1—~

are uniformly bounded for ~ € [0,~o] with v < 1.
To estimate the difference

(620) A= (VP{Qy} - VE{Qu})( +io) — (VE{Q,u}VP{D,3}) (2 +10),

we first notice that

[T 2y(z + i0)Q(z + d0)
(6.21) m(z + i0) = /_OO @ - 97 + 42z 1 i0) d

The equality is obvious in the real domain. It extends to the complex domain
because of the uniqueness of the analytic continuation. We then compute the
difference A. Denoting

(6.22) D {y}(z + io,q +10) = (z — q)* + (y(z + io) + y(qg +i0))?
and

(6.23) Do{y}(z +10,q + i0) = (z — q)® + 4y%(z + i0)?

we write

2 2 2 ‘
(6.24) A= ZA(IU +As+ ZA:(;) + Ag+ ZAgz) + Ag,

=1 1=1 =1
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where

625) AP = o [0 - g { UL T AT LI T )
_ 2y(z +140)80(z + 10) } d

Do{y}(z + 10,9 + i0)
1 e (y(z' +i0) + y(g + 10))6Q(g + i0)
S or /0’(|x al { D, {y}(z' + 10,9 +i0)
_ 2y(a +i0)oQ(a’ +ia)} d

Do{y}(z' +i0,q + i0) ’

(6.26) Ay = -2—17;(59(35 +i0) - 6Q(z + i),
(6y(z +10) + by(q + i0))(g + io)
D {y}(z + 10,9 +i0)

_ 26y(z + i0)Q(q + 10) d
Do{y}(z + 10,9 + i0)

627) AP = / 6:(l= — al) {

~ % / 0.z — ) {(6y(a:’+io)+5y(q+i0))ﬂ(q+ia)

Di{y}(z' + 10,9+ i0)

_ 26y(a’ + i0)Q(q + 10) d
Do{y}(z’' + i0,q + 10) ’

_ 1 (én(z+is) én(a’+i0)
(6.28) Ai=3 ( y(z +1i0)  y(z' +io0) ) ’

e
AP ) LV D) o + o)
S ata).
i fo e

((y+§)(' +i0)+ (y +y)(g + i0)) ~ .
D @ tiogtio) @t
83’ + i0)on(x! +io)(y +§)(a +io)a +io) |
Do{u}(z 1 i0.q 1 i0) Do (g} (=’ + 10,9 + i0)

_ y(z +i0)on(z + i0)(y + §)(z + 10)Q(z + i0)
030 85=3 { Do{u}(z + i0q + i0) Doy} @ + io.q + o)

_ & +i0)on(’ +i0)(y + §)(z + io)Ua’ + io) } P

Dof{y}(z’ + 10,9 + i0) Do{y}(z’ + i0,q + i)
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Let us first assume that |z —z'| < 2h. In A“), we split the integration domain into

the ball £ = {q, |z — ¢| < 2|z — 2’|} and its complement R?\X. Let 6(1) and 5(1)
be the corresponding contribution. We have

(6.31) 1681+ 1651 + 1681 < Clz — 212 (1189115 + 195 1671ls/R)
and

—(1) <(1) =(1) o ~
(6.32) 1671+ 185 |+ 185 | < Clz — 2/ |*(|6Q|s + 9] [|6n]ls/R).

On the other hand,

on|ls
(639 120+ 01+ 108 <o - o1 (jon, + L2l )

1. 14+ 1 2 y+1
X{-HIT—‘F-@(I_ 2—1111-
~ v Y ~
1 d 1 od
+ 3 5#34’ 5—a/ 2 ”3
Y4 S sy (B2 =13y lul>1/~ (B2 = 1)

+i uz du N 1 / H2+a du
N ISV (T L L IR (7ol L I

When |z — | > 2h, the two terms of A;i) (t = 1,2, j = 1,3,5) are bounded
separately and we obtain the same upper bounds. On the other hand, we have

(6.34) |Aa] + |Ag] < CUI8Ds + 12 1Enlls /(1 = M)z — 2’|
Noticing finally that

(6.35) Ag = —% (%67)(:&5 +10) — yg(—(%én(x' + ia)) ,
we obtain
630 VP - VPR, < 06 fie - i, + 11Ty

where C(~) is uniformly bounded for all ~ in [0, ~o] with v; < 1.
Let us now turn to the estimates for V5. As previously, we write

(6.37) Vo{Q,u} = USO{Q, 9} + UV {0, 9}
with
(6.38) U2 {Q y}(z + 10) /9
Tr — il:
8 ((z “ )+ (y(z + i0) — y(@ +i0))?
r—1x

T @2 (ylztio) +y(@ + w))2> (s +i0) da.

Estimating the two terms of UQ(I) separately, we get, proceeding as previously

8nll -
IEle ), + onl 1. )

(6.39) [USD {0y} — USR5}, < Cly) (umus ;
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where C(n) is uniformly bounded for v € [0,70], 7o < 1. For the contribution
at large distance, we have to deal with the two terms of U (2) together in order to
avoid the introduction of L2-norms:

(6.40) U2(2){Q y}(z + i0)

4(z — z')y(z + io)y(z' + o)z’ + i0) ,
o /02(|z D +{y}(z +io,2' + i0)D_{y}(z + 10,2’ + i0) dz’,

where
D_{y}(z + 0,2’ +i0) = (z — ') + (y(z + i0) — y(z’ +10)),

and D, {y} is defined in (6.22). We have

(6.41) US2{Q, y}(z +io) — USD{D, §}(z +i0) = (d1 + da + d3 + dq + d5)(z + 70)

with
(6.42) di(z +i0) = UD{6Q,y}(z + i),
(6.43) )
4(z — z')én(z + i10)y(z' + 1i0)Q(z’ + i0) ,
da(z +10) /02 D +{y}(z + 10,2’ +i0)D_{y}(z + to,2’ + i0) dz’,
(6.44)
4(z — 2)j(z + i0)bn(z’ + 10)Q (2’ + i0)
da(z + o) /02 D +{yHz +i0,2' +i0)D_{y}(z + io, 2’ + w)
(6.45)

1 4z — )iz +i0)§(z’ +io) Az’ + io)(6n(x + i) + én(z’ + i0))
da(etio) = o7 / f2(|===) Di{y}(z + i0, 2’ + i0) D1 {G}(z + 0, &' + io)
o ((n+7)(z +70) + (n +7)(z' +10))

dz’,
D_{y}(z + i0,2' + t0) *

(6.46)

N _ Mz = 2)§(z + io)y(a’ +i0)A(a’ +i0)(8n(z + i0) — 6n(z’ + i0))
ds(zti0) = o / ba(lz=2') D{3}(z + 10,7 + i0)D_{y}(z + 10, 7' + i0)
5 (1 +7)(z +i0) — (n +7)(z’ +i0))
D_{g}(z + io,2' + i0)

For |[Imy,| < K <1 and |n|s < vh (v < Yo < 1), we have

dzx.

©40 ]+ i+ 1ol < € (ol + 0L 20) L)
and

o 0o Ly
(6.48) |d4| + |ds| < C|9Ys 41n(1 -4+ :ﬁln(l ) ).
Thus,

< . 6nlls  ~
649) U0 - P @ < oo {ia-al.+ 1y, |
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where C(+) is uniformly bounded for v € [0, 0], Yo < 1. To estimate the difference
di(z +10) — d;(2' +0) (1 =1,2,...,5), we write
1 4(x — q)y(z + v0)y(q + i0)6Qq + i0)

(6'50) di(z +1i0) = 27r/ 2(fz ql){D {y}(z + i0,9 +i0)D_{y}(z + i0,q + i0)
_ 4(z — q)y%(z + i0)6Q(z + io) }

Do{y}(z + i0,q + i0)(z — (1 + y2(z + o)) |
_ 1 B (z — q)y(z + i0)y(q + 10)6Qg + i0) — y(z + 10)6Q(z + i0)
- /492(1 1 { D+{y}(z + i0,q+ i0)D_{y}(z + i0,q + i0) }

1 (z - Q)y%(z + i0)6Q(z + i0)
+ 2 /492(“C —ab D_{y}(z + i0,q + i0)
{ (y(z +10) ~ y(g + i0))(3y(z + i0) + y(g + i0)) } dq
Do{y}(z + t0,q9 + 0,9 + i0) D+ {y}(z + 10,9 + i0)

1 B y2(z + 10)6Q(z + i0)
+ 27 /402(|x ah (z — ¢)Do{y}(z + i0,q + 10)
o { ((z — @)yz(z +i0) — (y(z + i0) — y(g +10)))
D_{y}(z +i0,q + i0)

X

((z = Qyz(z + i0) + y(z + io) — y(q + 10)) } dq
(1+y2(z +i0))
and similar expressions for ds, ..., ds.
When estimating d;(z + ¢0) — d;(z' 4 i0), we separate, as previously, the contri-
butions |z — 2’| < 2h and |z — 2’| > 2h and proceed as above. We obtain
(6.51)

~ . ~ onl|s ONs
||U§2>{n,y}—vé”{n,y}||sscm{un—nns Wl iy, 4 202, nnus}.

This concludes the proof of (6.4) and (6.5).

Let us now turn to the operator A. Noticing that the kernels G and d§G/dz
belongs to L!(R + o), it is sufficient to estimate the operator Cp{n}¢. Let us
rewrite Cp{n} in the form

(6.52)
Crln¥z +i0) = & [ 1Mz +i0) + (g + o)

D, {y}(z + 10,9 + 10) ¢lg + o) dg

n(z + io) (x +10) .
] D_{y}z +10,q+10) §lg+io)dg
Lo /2h(n(z +1i0) + n(z’ +10))(2h + y(z + o) + y(z' + ¢0))

2 Di{y}(z +io,q +1i0)((x — q)* + 4h?)

a . 4(zq)y(z + t0)y(g + i0)&(g + o)
) e b e e 4 T
Using the upper bounds of V; and V;, obtained previously, we get, for ||n]|s < ~vh
and ||7]II| < RZ»

(6.53) ICh{n}e = Ch{ii}ells < aC(v, Ra){lIE = Ells + lImzlls 1€ = €113,

£(q +i0)dg

dq.

Il =7lls | lmz = 7zlls
i == )

(650 lCa{n}e - Cutidell. < aC(r Ra)lel (12

where C(v, R2) is uniformly bounded for v € [0,7v0], 70 < 1, and R2 < R, R
arbitrary.
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THEOREM 6.1. There exists a constant kg, such that for initial conditions
(yo = h + no,dyo/dz, Qo) whose analytic continuation belongs to (Bgé))3 with
the conditions |Im(dyo/dz)|s < K < 1, ||dyo/dzlls < Yh, v < 7 < 1 and
a(y + ||dyo/dz||s) < ko, there exists a constant a such that, for |t| < a(so — s),
the system (2.28) has a unique solution (y,yz, ) which is an analytic function of t

with value in (BSV)3.

b. Three-dimensional flows. The operators V and A defined in (3.25), (3.39)
and (3.40) are analytically continued to the strip b; = {(Z + ¢5), ¥ € R?, |0| < s}
by replacing Z and &’ by £ +16 and &’ +¢¢ in the formulas (3.25) and (3.38)-(3.40).

The denominators will not vanish if ImVz|, < K < 1 and |n|s < ~vh, where v
is a positive number strictly smaller than one.

PROPOSITION 6.2. For 1,Vn, (), ¢ and 7, V7,0, € in B satisfying Inlls <
~h, ||Vn| < Rg, [Im|,Vn|, < K < 1, and similar conditions for 1 and V1, we
have the following estimates (z=h+n, Z=h+17):

V{9, 2} = V{Q, 2}s < Clv, Ra)(L + [|2lls/h + [Vl /Al - Qs
+ Qs {lln = 7lls/h + IV (n = 0)lls/R}

(6.56) 14;{z}¢ — A;{2}élls < C(v, R2)(Y + VIl 1€ = €lls,
(657)  114;{2}¢ — A3{E}Ells < O3, Rl (In = 7llo/h + ¥ n = W)l /h)
Let us define
(6.58) Di{2}(Z +1,2}6) = {(T - T) + (2(& +15) + 2(& +15))*}*/%,
(6.59) Do{z}(Z + 17, &’ +15) = {(& — ¥)% + 42%(F + 15)}%/%.

To estimate V, we separately consider the operators
(6.60) U{Q, 2}z + iF)

= [ou *'|>{ ik
B R U R P e ST
_ zj — &} L o g
D {2}(Z + 16,7 +10) } U +id)dz,

(6.55)

(6.61) W{Q, 2}(z + 15)
_ o | 2(Z410) — 2T + 1)
= /0‘“’3 -Z { D_{2}(7 16,7 + &)
2(z +10) + 2(T +19)
 Di{z}(Z +15, 2" +19)
where the functions 8; defined in (6.8) separate the contributions at short and large
distances. Like in two dimensions, the two terms of UJ(I) (7 = 1,2) and of W(1)

}n(fy +i5)d7,

and W(2) are estimated separately. We have
(6:62) U0, 2} - UMD, 3}

< o { (1 + 50 )y . + 102 iy, 4y, o

h h
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The first term of W (), denoted by W{"), is estimated like in [10]:

(6.63) IW{{Q, 2} — WA, 2}
< C(a) {<Il5zlls nzns> 12— fil,

e, (Dl sy i) ).

In the second term of W ("), denoted by WQ(i), we use for |n|s < yh,
(6.64) Dy > (1—~)3h3

in WZ(I) and

(6.65) D2 (7 - ) - 4y?h2)2

in W2(2). We thus get

(6.66) |[WiV{0, 2} - wi{Q, 2},

|2[s [67]s [om]s }
SC{—&Q + Qs + Qs
ATEE 16925 (L= ) 519 (L= )7 =1
and
(6.67)
< dp
Wi, 2} — WA, 5Y), < CL8Q|2]s + Q)6 / S A —
| 2 { } 2 { }‘ = {I ||l | ||77|} 52k (p2—4’72h2)}3/2

’ +4h%)pdp
Ql. 16 sh'-?/ (p* +4r%)pdp.
+ ClQs |6n] on (7 — AR

9 |2]s |6m]s
Smf/—? <|57I|s—h- + 10—

C o lons
MTEEO

To estimate the difference,
(6.68) A = (W{{0Q, 2} - W, 21)(Z+16) — (WH{Q, 2} - W, 3})(F +i8).
We notice that

° 22(Z 4 10)QUZ + 16) Lo
. - =270 .
(6.69) /0 242 (F + u_f,))B/zpdp (T + 15)

We then rewrite the difference A like in (6.24):

2 2 2
6700 A=Y aPrans Y al a3 Al + e

i=1 =1 =1
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where
@ [ [ (EE+16) + 2(7+i5))6T + i7)
671) A= / 0:(17 - 1) { Do} E 1 17,4+ i0)
| 22(Z +i8)6n(q + %) } i
Do{z}(Z + 1, § + 10)
Y (2(Z" + i0) + 2(q + 10))62(q + 15)
f otz m{ D, (z}(&' +10,q 1 i0)
~ 2z(:i:”+i&')6ﬂ(q‘+i&')} i
Do{z}(Z + 7,7+ 19) ’
(6.72) Ay = —1(8Q(Z + i6) — 8Q(F' + iF)),

@ _ [o. (62(Z + i6) + 62(7+ 15))U(F + 15)
(673)  A; ‘/ bille q'){ DG+ 17,0+ 17)

" Do{z}(Z + i0,q + 1)

(62(Z +16) + 62(7 + 15))Q(q + 15)
- /0"(“ ~ 4l { D)@ +15,4+ id)

262(Z + i6)Q(Z + i5) } .

_ 262(F +i5)QE + i)
Dolz}(@ +i6,q+16) [ °P
E+i6) 5 . . (@ +i6) s
.74 = ([21200 _ 9T Ti9)
(6.74) Ay (z(i‘+i&‘) (Z +10) (7 +0) Oz +10) ),
1
Dy {z}(Z +15,§ + 1)
1
T Di{3}(Z+15,0+15)
1
Do{z}(Z + 7, q + i)
1
" Do{3}(Z + 1, § + i6)
- o - - 1
_foi(|x (ﬂ){(z(z +w)+z(q+w))(D+{z}(5l+i5,d,+i&,)
1
T DL {Z}(& +15,q+i0)
1
Do{2}(& + i3, + i5)

(6.75) Ag") = /oi(li—ﬂ) {(E(:E+i&')+é'(é'+ic?))<

) UG+ io)

— 25(F +145) (

) ﬁ(z+ia)} dg

> (g + i0)

—25(% + i) (

1 R U
" Do{E}(#@ +i&',é’+i&‘)> (@ +“’)} aq,
We+i6), . . e +io) | '
6-76 A = —_:.5 _ = i - - . o .
( ) 6 2(f+ 20) 77(37 + 'LU) Z(.’l:' +—10') 67](22 + 7,0’) 677(2; + ZO')
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We obtain
(6.77) [Wa{Q, 2} — Wa{Q, 2}|s < C(v, R2)lI67lls + 1Qls]16n1s/R),

where C(v, Rz) is a constant uniformly bounded for v € [0,7], 70 < 1, and
R, < R, R arbitrary.
To estimate U ;2), we write

(6.78)

) . = (z; — 25)(D-{2} = D4{2})(£ + 46,7 +1id)
Uy {8, 2} (z+id) = /02 |)D+{z} (Z+ 16,2 + 16)D_{z}(Z + 10,7 + 17)

X QT + i0) d’

and we use
(6.79)
Dy{z} =D _{z}] _ o {218 = &> +2h* + Cla = 2'|(|F - & + 48%) "/}
|D{2}D_{z}| |z — 2'3(|z — 2’|2 — 4+2h2)2
Thus
(6.80)
dp pdp
U160, 2} < ¢|60 h2{/ —"————+h2/ S o
V5100, 24 < clotl, p>2h (P? = 472R?)? p>2h PP(P? — 472h?)?
pdp }
+ h — BT
. p>2n P(p? — 472h2)?
< D a——
Similarly,

6.81) |UPH{Q, 2} - U0, 2],

1 |57]!s 1 |67]|s 1 |6n|3
SC(R2)|Q|2{1_72 R T- h - h

To estimate
(UPH{Q, 2} ~ U, 2))( +16) — (ULH{Q, 2} - UP{Q, 2))(& + i),
we rewrite UJ(~2){Q, z}(Z + 1) in the form
(6.82)
U, 2}(z + o)
/02(|I al { D+{z}%;)g-Dw{Z}4- wD)B{Z{}z)}((zzizjaqq:z:o)) ~ (2= 4T +19)
y { - @31 + (Z- @)/|Z — q] - V2(F +15))%? — Do{2}(Z + 15, G + i7)} } di
Do{z}(Z + 16, +15)|z — q]3(1 + (T — §)/|Z — q] - V2(Z + 15))3/? ’
where the last integral vanishes by symmetry. After lengthy but straightforward
calculations, we get

6.83)  [UP{Q, 2} - UP{Q, 2}|s < (v, Ra) {”Q gy, 187l ”677“3 IVén]ls }

T h

This completes the proof of (6.55).
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The kernel G, defined in (3.43), and its gradient belong to L!(R? + 10). It is
thus sufficient to estimate the operators A;{z}¢ for 7 = 1,2,3. These estimates
follow from those on V{(Q, z}. Thus,

(6.84) 14;{2}€ — Aj{z}€]ls < aC(y, R2)(v + [Vnlls) 1€ = Ells,

(6.85)  [lA;{z}¢ — A;{Z}¢ls < aC(v, R2)II€]ls (||77 —hﬁils N ||V(77; 77)||s> _

To estimate the second term of (3.42), we proceed as in §5 and get the same
estimates (5.19)-(5.21) with the norm [|| - |||s replaced by the Hélder norms || - ||5.
This leads to

THEOREM 6.2. There exists a constant ko such that for initial conditions (zp =
h+n+0,Vz9,Q) whose analytic continuation belongs to B(l) (ng))2 X (ng))3
with the conditions Im Vzo|s < K < 1, |nolls < vh, ¥ < v < 1, and

afy + [|Vnlls} < ko,

there exists a constant a, such that for |t| < a(so — s), the system (3.42) has a

unique solution (z,Vz,Q) which is an analytic function of t with values in B(l)
(BS)) x (B&)>.

REMARK. In the presence of a bottom, the initial interface perturbation is not
required to vanish at infinity as it is the case when the Rayleigh-Taylor (or the
Kelvin-Helmholtz) problem is considered in the entire space. The reason is the
faster decay of the gradient of the Green function of the Poisson equation which
relates a divergence free velocity and vorticity. This insures integral-convergence
without additional assumptions. A similar situation is encountered in the proof of
existence in the large of a unique solution to the two-dimensional Euler equation
with smooth initial data (Holder continuous vorticity) (Wolibner [16], Kato [17]).
In the entire space, the initial vorticity is required to be bounded in L!(R?) (Bardos
and Benachour [18]). This condition is relaxed when the flow is considered in half
a plane or a strip (Sulem [19)).

7. Open problems. The existence theorems presented in §§5 and 6 assume
an initial interface with sufficiently small corrugations. One can, however, notice
in two dimensions that, defining pu(z,t) as a primitive of (z,t), (2.19)(b) may be
written in the form

z,t /a/zz (2/,t)dz’ = F(x,t).
When the problem is considered in the real domain, the operator

Au aG
Ak (2) = o) o) de

has all its eigenvalues with a modulus strlctly larger than one. This property is a
consequence of the irrotationality of the flow in the two domains separated by the
interface {20, 21]. For a < 1, the operator 1 + oA is thus invertible. However,
the property is not necessarily preserved when the equations are continued to the
complex domain if the norm of a4 is not smaller than 1.
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Another questions concerns the shallow water limit [22] for the Rayleigh-Taylor
problem in the presence of a horizontal bottom. It corresponds to the situation
where t = ¢~ 1/2t, y(z,t) = ey(®) (z,t) and Q(z,t) = €1/2Q() (z,t) with € — 0. One
can show that if () and Q(¢) tend uniformly to n(®) and Q(%), then Vi=e"12y; -
Q© and Vy = e73/2V, — 9(QOy(0)) /024y 0 /3. The equations of motion
then reduce to

ay© 9 800 9 /@2 24
1 9 ((0),,(0)y _ o0 o (A 20 ) _
(71) =5 + 5@y =0, ot oz \ 2 Tar1¥ 0,

where, in the shallow water limit, () identifies with the rescaled horizontal com-
ponent of the velocity jump e ~!/2[u] across the interface.

Similarly, in three dimensions, if 2(¢)(z,y,t) = ez(z,y,t) and QE)(z,y,t) =
€'/2Q)(z,y,t) have uniform limits 2(®) and (%) when ¢ — 0, then V; = ¢/2V; —
—Q(O), ‘72 = —61/2V2 — Q(IO) and

N 1[ o o 9 ont®
Ve = 32y, 1, 119 (L0 %" 9/ (0O 0%
3T€ Vs 2{8x (Z 1 )+z oz +8y (z t >+Z Jy

Noticing that in the shallow water limit 2{*) = [u{")] and 0% = —[u{”] with
uEO) = lim,_g e /2y, ugo) = lim¢_0 €~ "/?uy, and taking into account that the
flow is irrotational in the two subdomains, we recover the Saint-Venant equations:

920

¢ o
(72) 9 p0 4 yo . yyo 4 2 9,0 _g

ot a+1

with U© = ([u(lo)], [ugo)]).

However, we did not succeed in proving uniform convergence of the solution of the
Rayleigh-Taylor problem when ¢ — 0. Indeed, estimates (6.4), (6.5) and (6.55) do
not lead to uniform estimates for Va = e=3/2V, in two dimensions or V3 = ¢=3/2V;
in three dimensions in terms of the Holder norm of Q(¢) = ¢~1/2Q0. Uniform
estimates have only been obtained in terms of the gradient of (). The Cauchy-
Kowalewski Theorem concerning first order systems V{1l must be considered as an
additional unknown. But the equation for V(2 introduces higher order derivatives
such as VVz (or y., in two dimensions) as additional variables inside a first order
operator and the hierarchy can probably not be closed. Clearly, the difficulty
originates from the necessity of considering the equation for the interface gradient
(yz or Vz) to prove well-posedness of the Rayleigh-Taylor problem.

These two difficulties disappear for a = 1 (water waves problem) in two dimen-
sions when the approach of Ovsjannikov [3] and Kano and Nishida [4] is used.
This method is based on a conformal mapping of the flow domain on a strip. It
is, however, unclear how to extend this method, even in two dimensions to the
Rayleigh-Taylor problem where the coupled dynamics of the two fluids must be
considered.
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Appendix. Large distance behaviour of the Green function of the
equation:.
(A1) (@) + o / 2h (&) di = 8(7)
: (|1Z — |2 + 4h2)3/2 - )

The solution is obtained by taking the two-dimensional Fourier transform (F.T.)
of (A.1) and noticing that the F.T. of the kernel is equal to e~2**. One obtains

(A.2) £(@) = / G()S(Z - 7)dZ
with (z = |Z])

. —zk:c © k] k
(A3) 6@= [ it [

The asymptotic behaviour of §(z) when z — oo is obtained by using iteratively
the following procedure:
(1) Make the substitution

(A.4) Jo(kz) = %%(M (zk)).

(ii) Integrate by parts.
(iil) Make the substitution

(A5) Ty (kz) = -1 diJo(kz)
Defining

2h
(A.6) fk) = 1T o2k
and

df _ 4ahZe?hk

(A7) g(k) = ak = (11 ae- o)
we have
o 1 [, d

(A8) /0 F Rk Jo(ka) dk = > /0 J(K) 3 (ks (k) d
- % /0 g(k)kJy (kz) dk
-2 /O ka(k) - Jo(ka) dk

(A9) -/ %(kg(k))']o(kz) dk

1 [*1d d

kJi (kz)) dk

- %/0 a‘fE (Ilcjk(k )(k )) kJy (kz) dk
-5 [TF(2)

:v30
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with

A 2d [1d A
(A0 P(z) e a i (o (2)))
and
(A.11) g(A/z) = ahe 2D /(1 4 ae—zh(A/I)Z)'

F()\/7) is uniformly bounded in z and A; J;(\) ~ A when A — 0 and J;(\) ~ A~1/2
when A — co. It follows that the integral in the last term of (A.9) is bounded. As
a consequence, G(z) € L}(R?).
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