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FREE LATTICE-ORDERED GROUPS REPRESENTED

AS 0-2 TRANSITIVE /-PERMUTATION GROUPS'

BY

STEPHEN H. MCOLEARY

Abstract. It is easy to pose questions about the free lattice-ordered group Fv of

rank tj > 1 whose answers2 are "obvious", but difficult to verify. For example:

1. What is the center of F,?

2. Is Fv directly indecomposable?

3. Does Fv have a basic element?

4. Is Fv completely distributive?

Question 1 was answered recently by Medvedev, and both 1 and 2 by Arora and

McCleary, using Conrad's representation of Fv via right orderings of the free group

Gv. Here we answer all four questions by using a completely different tool: The

(faithful) representation of Fv as an o-2-transitive /-permutation group which is

pathological (has no nonidentity element of bounded support). This representation

was established by Glass for most infinite tj, and is here extended to all q > 1.

Curiously, the existence of a transitive representation for Fv implies (by a result of

Kopytov) that in the Conrad representation there is some right ordering of Gv which

suffices all by itself to give a faithful representation of Fv. For finite tj, we find that

every transitive representation of Fv can be made from a pathologically o-2-transitive

representation by blowing up the points to o-blocks; and every pathologically

o-2-transitive representation of Fv can be extended to a pathologically o-2-transitive

representation of F  .

Whether F has a pathologically o-2-transitive representation when tj is finite was

described by Glass as a "basic unsolved problem" [7, p. 138]. Appropriately,

establishing the existence of such a representation will make the four introductory

questions exceedingly easy to answer.

For background, see [7 or 8]. The present paper is almost completely independent

of[l].

1. Background. Let x be a subset of an /-group F. F is free on x if every function

from x into an arbitrary /-group H can be extended uniquely to an /-homomorphism

from F into H. Any two /-groups free on sets of the same cardinality r\ are

/-isomorphic.

F is free if it is free on some subset x. The rank of F means the cardinality of x,

which is well defined by [1, Proposition 1].
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Thus for each cardinality tj, there is a unique free /-group F of rank tj. As is well

known, Fx is the direct sum Z EE Z of two copies of the integers Z. Most of our

results (including the answers to all four introductory questions) fail for tj = 1, and

we shall usually assume that tj > 1.

When dealing with F^, we shall always envision a fixed x on which F is free. The

subgroup generated by x is a free group on x, the free group Gv of rank tj. If x' ç x,

then the /-subgroup l(x') generated by x' is the free /-group on x'. Thus when tj' < tj,

Fv< is an /-subgroup of F .

A substitution for Fv in A(ii), ß a chain and A(S1) the /-group of all automor-

phisms of ß, is simply a function x -» A(£i), an assignment to each free generator x

of an o-automorphism x of ß; or equivalently, an /-homomorphism w -» w from F^

into A(ii), known also as an action of F on ß. When the action is a representation

(i.e., faithful) and when there is no danger of confusion, we shall sometimes denote x

by x, i.e., we shall speak of x as actually being an o-automorphism of ß.

Each w g F can be put in a standard form w = V, A w, , a finite sup of finite infs

of elements of G, i.e, of reduced group words in the elements of x. Of course, this

standard form is far from unique.

Our fundamental tool is the notion of a diagram for w [9], which we now define.

Each group word wtj has the form x*1 • • • x*1 (n 3s 0). The points of the diagram

are the initial segments x?1 ■ ■ ■ x,*1 (k > 0) of the w,/s. (Of course, a given point

may arise from several w,y's). For each ordered pair (a, ß) of points such that

ax*1 = ß, the diagram includes an x ¡-arrow from a to ß if the exponent on x¡ is +1,

otherwise from ß to a. The remaining aspect of the diagram is a total order on the

set D of points which is consistent with the arrows in that if there are x-arrows from

ax to ßf and from a2 to ß2 (same /' for both), then ax < a2 iff ßx < ß2.

An x,-arrow from a to ß may alternately be described as an x,_1-arrow from ß to

a. We emphasize that a diagram is necessarily connected, meaning that for all points

a, ß, there must be at least one sequence of arrows leading from a to ß; and

loop-free, meaning that there cannot be more than one such sequence. (The latter

property is essential for some of the later results, though not for Theorem 1.)

Given any substitution x -> x for Fv in A(£l), and any a G ß, there arises a

diagram for w (with jc,*1 ■ • • x*1 «-> ax*1 • • ■ xf1, and with an xf narrow from

ax*1 • • • Jc,*1 to ax*1 ■ ■ ■ x,*1) provided the points ax*1 ■ ■ ■ x*1 are distinct.

For any e # w g F and any a e Q (Q the rational numbers), there is a substitution

for F in A(Q) from which there arises a diagram for w which shows e # w by having

a ¥= max, min ¡aw,- ■ = aw [9].

2. The pathologically o-2-transitive representation of Fr A lattice-ordered permuta-

tion group (/-permutation group) (F, ß) is o-2-transitive if for all a < ß and y < 8 in

ß, there exists / g F such that af = y and /?/ = 5. If in addition, noe#/ef has

bounded support, (F, ß) is called pathological.

Main Theorem 1 (Glass - McCleary). The free l-group Fv (tj > 1) Aas a (faith-

ful) pathologically o-2-transitive representation.



free lattice-ordered groups 71

Remarks about infinite tj. This case is basically due to Glass [6, Corollary 2 or

7, p. 137], who established the result for nonregular tj with the aid of the Generalized

Continuum Hypothesis. Glass' proof was slightly modified by the present author to

get rid of these restrictions. Since Glass' proof serves as a starting point for the

present proof, and since the modification just referred to appears only in the Errata

for [7], we give the modified proof here:

Proof for infinite tj. Fv can be (faithfully) represented on ß = ß^ for some

ordered field ß,, of cardinality tj [7, p. 332], and hence also on any open interval A of

ß (since A is o-isomorphic to ß). We select a set ^ of pairwise disjoint open intervals

of ß such that there is no greatest one and their union is cofinal in ß, and select a

representation of Fv on each iei Since tj is infinite, we can establish a one-to-one

correspondence between the free generating set x and the set of ordered pairs

((a, ß), (y, 8)) of ß with a < ß and y < 8. The desired representation of F^ is

obtained by using the multiple transitivity of ß to arrange two things about the

image x of an arbitrary free generator x (corresponding to ((a, ß),(y, 8))):

(a) ax = y and ßx = 8; and

(b) for each AeS such that a, ß, y, 8 < inf A g ß, x acts according to the

selected representation on A.

Clearly the image (F, ß) is o-2-transitive. For each e # w g Fv, w involves only

finitely many free generators, so e ¥= w on a cofinal set of A's. Thus the representa-

tion is faithful and pathological.

Proof for finite tj. We shall represent F on Q. For each x g x, the action of its

image x on Q will be specified at enough points to guarantee the desired results.

F is countable, and we enumerate its nonidentity elements: w0, wx,_In the

interval [0,1], we lay out a copy of a diagram for w0 = VlAjVlkxÈk showing e # w0,

with the smallest point r0 of the diagram taken to be 0 and the largest point t0 taken

to be 1. We specify about the x's that the point (corresponding to) x*jX ■ ■ ■ x*1k_x

be sent by xt*k to the point (corresponding to) x¡*x • ■ ■ x¡*1k_1x¡*k1. Similarly, in

each interval [2n,2n + 1], we lay out such a diagram for w„ and make such

specifications.

This is enough to give a faithful action of Fn on Q, but we need more. We want all

the points in the various diagrams to lie in the same orbit of Fn. For this it suffices to

arrange that for each n = 0,1,..., the points 2n + 1 and 2(« + 1) lie in the same

orbit, and now we construct the appropriate " bridges".

We begin with the interval [1,2]. In the original diagram for w0, t0 («-» 1) must

have been moved by at least one free generator, say x, ; and in the diagram for wx, rx

( «-» 2) must have been moved by some free generator xr. We decree that

(ax) lx, = f if t0 was moved up by x,,

(a2) lx"1 = f if t0 was moved down by xlo,

(bx) f xr = 2 if rx was moved up by xr,

(b2) f Jî"1 ■■ 2 if Tj was moved down by xr.

To connect f and f, we further decree that |Jc,o = f if (ax) obtains (or that fjc,"1 = f

if (a2) obtains); except that this may conflict with (b2) or (bf) if x, = xr¡, so in that

case we pick any other x g x (tj > 1) and decree that fjc = f.
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Figure 1

We build similar bridges in the other intervals [2n + 1,2« + 2],n = 1,2,_

We decree also that (-I)^*1 = -1 and (-l)x*x = 0; and, picking any x' + xr,

that   -(n + l)x' = -n, n = 2,3,...,   and that (-1 - l/n)x' = -1 - l/(n + 1),

n = 1,2,_Now all diagram points, and all negative (as well as positive) integers,

and all points of the form -1 — 1/n do indeed lie in some one orbit ß' of F, and

the action of F on ß' is faithful. Because of x', the stabilizer subgroup of -1 has a

(convex) orbit which includes all points in ß' that are less than -1, forcing the action

of jFjj on ß' to be o-2-transitive.

Finally, we modify the above procedure so that each e # w g Fv is used for

infinitely many of the intervals [2n,2n + 1], and then the action of Fn on ß'

becomes pathological as well. Since ß' is countable, dense in itself, and lacks end

points, ß' is o-isomorphic to Q.

Now we use Theorem 1 to answer the four questions raised in the abstract.

Corollary 2 (Medvedev [14], and [1]). Fv (tj > 1) has trivial center.

Proof. Every o-2-transitive /-permutation group (F, ß) has trivial center. For let

e # / g F. Then a =£ af for some a g ß, and we pick g g F such that ag = a but

(af)g # af. Then a(gf) = af * a(fg).
The next corollary gives a negative answer to Question 2.

Corollary 3 (Arora and McCleary [1]). F (tj > 1) is finitely subdirectly

irreducible.

Proof. No transitive /-permutation group can have two nontrivial /-ideals whose

intersection is trivial: If H and K are /-ideals, and if e < h G H and e < k g K, then

some conjugate A^of A fails to be disjoint from h, and e<h/\kfe.HC\K.

Corollary 4. Fv (tj > 1) has no basic elements.

Proof. No o-2-transitive /-permutation group (F, ß) has basic elements. Let

e < f g F, and pick a g ß such that a < af. Since ß is dense in itself, we may pick

ßx, ß2 g ß such that a < ßf < ß2< af. Now pick g,, g2 g G such that ßxgx = ßx

but ß2gf > ß2, and ß2g2 = ß2 but ßxg2 > ßx. Let A, = (g, A /) V e, so that e < k,

< f. Then kx and A2 are incomparable, so fis not basic.

Now we can answer a question raised in [1].

Corollary 5. The free group G, (ij > 1) has no finite subset S for which there is a

unique right ordering of Gv making all elements of S positive.
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Proof. The existence of such an S is equivalent to the existence of a basic element

in F [1, Proposition 20].

Corollary 6. F (tj > 1) has the following properties:

(a) Fn is not completely distributive.

(b) The distributive radical D(Fn) is Fn itself.

(c) Fv has no proper closed prime subgroups.

(d) F has no proper closed l-ideals.

Moreover, every nontrivial l-ideal oj'F enjoys these same four properties.

Proof. These properties are enjoyed by all pathologically o-2-transitive /-permuta-

tion groups. The first three are part of [12, Theorem 1] and the fourth is part of

[11, Theorem 9]. Furthermore, [12, Theorem 6] says that every nontrivial /-ideal of a

pathologically o-2-transitive /-permutation group is itself pathologically o-2-transi-

tive.

An element / of an /-group F is singular if e < f and if e < g < / implies that

fg1 A g = e (g g G). It has been thrice proved that the free abelian /-group An

(tj > 1) has no singular elements [5, 2, 4].

Corollary 7. Fn (tj > 1) has no singular elements.

Proof. No o-2-transitive /-permutation group (F, ß) can have singular elements,

for ß is necessarily dense in itself. Thus if e < f, we have a < af for some a g ß;

and picking ß such that a < ß < af, and h G F such that ah = ß, g = (h A /) V e

violates the singularity condition.

Corollary 8. Every nonidentiy element of F^ (tj > 1) has at least 2S° values.

Proof. Let e ¥• w g F. Pick an o-2-transitive representation (Fn, ß). For each

«efi moved by w, the stabilizer (F )s omits w and is a maximal proper convex

/-subgroup of Fn since (F, ß) is o-2-transitive [8, Theorem 4.1.1]. Hence (Fr))& is a

value of w. Since every Dedekind complete chain which is dense in itself has

cardinality at least 2*°, and since these stabilizers are distinct [12, Lemma 2], we

have exhibited 2N° values for w.

Corollary 9. Let e < w g F.„ (tj > 1). Then the infimum of all conjugates of w in

F„ is e.

Proof. Pick an o-2-transitive representation (F, ß). For any a < ß g ß, some

conjugate of w must move a to ß.

In contrast to the present paper, [1] was based on the other important technique

for studying free /-groups F„, the Conrad representation using the various right

orderings of the free group Gv [3]. For any one right ordering, Gn acts on itself via

the right regular representation, and this action is extended to F in the unique

possible way. Kopytov [10, Corollary 1] has shown that if F has any transitive

representation whatsoever, then in the Conrad representation of F , some one right

ordering of Gv will suffice! He applied this to obtain the following result for

countable tj, and of course he could have stated the result for other infinite tj. Now
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we complete the picture:

Corollary 10. In the Conrad representation of Fv (tj > 1), there exists some one

right ordering of the free group G^ on which the (transitive) representation is faithful.

Corollaries 3 and 10 hint at the possibility that F might be (infinitely) subdirectly

irreducible. That would mean that Fn would have a smallest nontrivial /-ideal L. Pick

e ¥= w G L. Then for any substitution in A(Q) making any û = e (e # u G F), w

would be e (since otherwise the kernel of the substitution would be a nontrivial

/-ideal not containing L). Such a w "should not" exist, and we conclude with an

argument due to Charles Holland showing that this intuition is correct.

Theorem 11 (Holland). F is not subdirectly irreducible.

Proof. Suppose e + w g F. We shall produce a substitution in ^l(R), R the real

numbers, for which w # e, but û = e for some e # u g F .

We lay out on R a copy of the diagram for w in which 0 # Ow. Since the diagram

is loop-free, no x fixes any point in the diagram. What matters about an x is only

what it does to points in the diagram; it can be changed at other points without

interfering with the desired "0 # Ow". Hence it can be further arranged that

between any two consecutive points of the diagram (and above the largest point, and

below the smallest), x have at most one fixed point.

We do this for two free generators x and y (if tj = 1, the theorem is obvious), and

arrange further that y move each fixed point of x to a point not fixed by x. Then |Jc|

and y^l^y have no common fixed points, and thus \x\ V y_1|jc|y has no fixed

points at all. Moreover, since the points of the diagram are all contained in some

bounded interval, we can arrange that some tx/m < \x\ Vy_1|jc|y, where m g Z+

and tx/m denotes the translation r -> r + 1/m. Finally, we can arrange that y < tn

for some n g Z+. Then y < (|jc| V y-l\x\y)mn. Letting u = (|x| V y"1|x|y)m"y"1 A

e, we have a substitution making w ¥= e but û = e. Finally, u # e as an element of Fn

since y < (|x| V y'^xly)1"" is not an /-group identity (it fails in Z).

Since Fv is finitely subdirectly irreducible but not subdirectly irreducible, we have

Corollary 12. F (tj > 1) has no minimal proper l-ideal.

3. Other transitive representations of F. A transitive /-permutation group (F, ß) is

o-primitive if it has no proper convex congruences. If in addition, the centralizer of

Fv in A(ti) is a cyclic group (z) with e < z and with the orbits of (z) coterminal in

ß, (F, ß) is called periodically o-primitive. Every o-primitive (F, ß) is o-2-transitive,

the regular representation of a subgroup of R, or periodically o-primitive [8,

Theorem 4.3.1]. The results of this section and the next apply even when tj = 1

because Fx, being abelian but not totally ordered, has no transitive representation.

Proposition 13. Every o-primitive representation of Fv is pathologically o-2-transi-

tive.

Proof. By Corollary 6, Fv is not completely distributive, and among o-primitive

/-permutation groups, it is precisely those which are pathologically o-2-transitive

which fail to be completely distributive [12, Theorem 1].
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Lemma 14. (a) For finite tj, \xx\ V ■ • • V l*^ is a strong order unit of F , and thus in

any transitive action (F,, ß), must move every weil.

(b) For infinite tj, Fv has no strong order units.

Proof. Let w = \xx\ V • • • V \xv\. Any group word g in xx,...,xn is exceeded by

wp, where/? is the number of occurrences of letters in g, because each x*1 < w. But

for infinite tj, no power of any w could exceed any letter x not involved in the

spelling of w—just choose a substitution making the involved letters be e but x > e.

For any convex congruence #of a transitive /-permutation group (F, ß), F acts

(not necessarily faithfully) on the chain ß/^of ^-classes (also known as o-blocks),

via A -» A/ (the image of the set A in (F, ß)). The next theorem tells us that every

transitive representation of F, (tj finite) is "almost" pathologically o-2-transitive,

being obtained from a pathologically o-2-transitive representation by blowing the

points up to o-blocks. In particular, this holds for the representations of Corollary

10.

Theorem 15. Let tj be finite, and let (Fv ß) be any transitive representation of Fr

Then (F,, ß) has a largest convex congruence #=£ {ß}, the chain Sl/*&is o-isomorphic

to Q, and the action of F^ on ß/''eis faithful and pathologically o-2-transitive.

Proof. There must be a largest ## {ß}. Otherwise, picking any a g ß, there

would be an o-block A ¥= ß containing a and all of the finitely many points ax

(x g x), forcing AF, = A and contradicting the transitivity of the representation.

Suppose w lies in the kernel of the action of Fn on ß/#. Since \xx\ V ■ • • V |jc,|

moves all ß g ß (Lemma 14), and in particular moves up all o-blocks in (ê, all of its

conjugates exceed \w\, forcing w = e by Corollary 9. Therefore, F acts faithfully on

ß/#, and also o-primitively since any proper convex congruence would yield a

proper convex congruence of (F , ß) exceeding Sf. By Proposition 13, this represen-

tation of F on ß/^must be pathologically o-2-transitive. Hence ß/^is dense in

itself, and being countable because F, acts transitively on it, must be o-isomorphic to

Q
A prime subgroup P of an /-group F is called a representing subgroup of F if the

action (Ph)f= P(hf) of F on the chain F/P of right cosets Ph is a (faithful)

representation, i.e., if the intersection of all conjugates of F in Fis {e}. In the root

system 0 of prime subgroups of F, the set of representing subgroups is downward

closed. For free /-groups F , much more is true of a21,.

Corollary 16. For finite tj, every branch of 0* has a largest element, and any one

branch consists either entirely of representing subgroups or entirely of nonrepresenting

subgroups.

Proof. Let P =¿ Fv be a prime subgroup of Fr Whether or not the action of Fv on

Fn/P is faithful, the proof of the theorem guarantees the existence of a largest

t? =t {ß}. For the #-class A containing the point P, the stabilizer (F )A is a largest

proper prime subgroup containing P (since the o-blocks containing a point a are in

one-to-one order-preserving correspondence with the prime subgroups containing

(Ff)a via A «-» (F )A, by [8, Theorem 1.6.2]). Moreover, if Pc Q .# F„, with P
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representing and Q a prime subgroup, then since the action of F_ on ß/'g'is faithful

and since Q ç (F )A, (F7))A and thus also Q are representing.

Theorem 17. Let tj be infinite. Then

(1) For every chain 1 of cardinality at most tj, F rtaí a transitive representation in

which the tower of covering pairs of convex congruences is o-isomorphic to T.

(2) If a transitive representation (F,, ß) has a largest convex congruence ## {ß},

then the action of Fn on üfemust be o-2-transitive (but need not be pathological).

Proof. For (1), let A be a totally ordered field of cardinality tj, as in the proof of

Theorem 1. Form the generalized wreath product with index chain T and all factors

equal (A(A), A), with base point 0 G A (see [8]). Let ß be the subchain of the

wreath chain consisting of all points p such that the yth coordinate p(y) = 0 for all

but finitely many y g T, so that card(ß) = tj. We shall represent F on ß. For each

free generator x¡ of F, we shall specify an element of the wreath product such that

for each point, only finitely many of its coordinates are changed by the relevant

o-primitive components of x¡. Thus the restriction of xi to ß will give an o-automor-

phism of ß.

First suppose T has no largest element. Pick 0 < a < t g A, pick a representation

<p of F on the interval (a, t), and for w g F, let w\p G A(A) act like wtp on (a, t)

and be the identity elsewhere. For each y g T, let Ay ç ß be the interval (ay, ry),

where ay is the element of ß having ay(y) = a and all other components zero, and

similarly for r. . The set 3) of these A Y's is pairwise disjoint and its union is cofinal in

ß. Partition x into subsets xx and x2 whose cardinalities are also tj. Establish

one-to-one correspondences between xx and ß, and between x2 and {(y, (X, n))\y G

r, 0>X, jugA). The desired representation is obtained by arranging about the

o-primitive components x a (at the level y g T for the point w G ß) of each free

generator x that:

(af) If x g xx and x «-» p, then 0xy0 = p(y) for all y's at which p(y) ¥= 0. (The

subscript 0 refers to the point 0 G ß such that 0(y) = 0 G A for all y.)

(a2) If x g x2andx «-» (y,(X, n)), then0xyO = 0 and\xy0 = /x.

(b) When y' exceeds the largest y in (af), or the y in (a2), then xy> 0 = x\p.

(c) All other o-primitive components of x be the identity.

Then (a,) assures that the action of F is transitive on ß; (a2) assures that between

any covering pair (<€ , (êy) of convex congruences of the wreath product (and thus

also of (F,, ß)), there are no other convex congruences of (Fv ß), so that the chain

of covering pairs of convex congruences of (F,, ß) is just T; and (b) and (c) assure

that the action of F, on 0 is faithful.

Now suppose that T has a largest element y. Choose a pairwise disjoint set S> of

intervals of A, all to the right of 0, whose union is cofinal in A. For each ieS pick

a representation (¡da of F on A. Arrange as before the correspondences involving xx

and x2 and the conditions (af), (af), and (c). Also arrange

(b) For all A (in case (a^, all A for which p < inf A), the one y-component xy act

on A in accordance with rpA, and act like the identity elsewhere.

For (2), if the o-primitive action (F,, ß/#) were regular or periodically o-primi-

tive, there would exist u g Fv such that for any w g Fv there would exist p G Z+
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such that Aw'' > Aw for every A e û/f. (In the periodically o-primitive case, any û

exceeding the period z would do.) Then u would be a strong order unit of Fn,

violating Lemma 14.

To see that the o-2-transitive action of F- on ß/'g'need not be pathological, apply

the proof of (1) to a 2-element chain T, but choose each A within a natural o-block

{a e ß|w(y) = X}, X G A, permitting the action on ß/"^ of all xfs to have

bounded support.

4. Extensions of pathologically o-2-transitive representations.

Theorem 18. Every pathologically o-2-transitive representation of F^ (in finite) on a

chain ß can be extended to a pathologically o-2-transitive representation of Fu on ß.

(Here F, is to be taken to be l(xx,... ,xf), where x = {xx, x2,...} is a free generating

set for FUa)

To prove the theorem, we need a technical lemma. By a diagram 3 in xv...,xn

(without reference to any w g F,), we mean a finite totally ordered set D, together

with a (finite) set of "x,-arrows" (ordered pairs of elements of D, each labelled with

some x¡, 1 < /' < tj) which is consistent with the order on D in the sense of §1, with

3 connected and loop-free. Deleting the connectedness requirement gives us a

multidiagram.

Lemma 19. Let (F, ß) be a pathologically o-2-transitive representation of Fv, and let

[ß, y] be an interval o/ß. Then

(1) Every diagram 3)in xx,...,x, arises in (Fn, ß) as a diagram for some w G Ff

and if 3 is a diagram for a particular w g Fv, 3 arises for that same w.

(2) Every multidiagram in xx,...,xn arises in (F,, ß).

Moreover, it can be arranged that either all the points of the (multi)diagram lie below ß

or all lie above y.

Proof. Let a be any point of 3. We shall make a «-» D (the empty word). For

each way of beginning at a and following a sequence of arrows (perhaps stopping

before running out of arrows), we get a group word g . Since 3 is loop-free, we

obtain only finitely many gy's in this way. For these gfs the points agj are distinct

since 3 is loop-free, and they include all points of the diagram since 3 is connected.

Let w = A{gkgJ1\agJ < agk} V e. Laying out a copy of this diagram in Q, we see

that a < aw for some substitution in A(Q), so that e < w in F. Pick a' G ß so that

in the given representation (Fv, ß), a' < a'w. Then a'gj < a'gk iff agj < agk, so that

3 arises in (F, Ö). This proves the first part of (1). For the second part, simply

choose D as a. Even though A{ gkgfx \ agj < agk} =£ w, a diagram for it will also be a

diagram for w.

Now let Jf be a multidiagram. We claim that J( can be augmented to create a

(connected) diagram 3 by adding some extra points and extra xx- and x2-arrows.

(Since F, has a transitive representation, tj > 1.) To establish the claim, we give a

procedure for reducing the number of connected components.

Pick a component. Since J(is loop-free, we may pick a point ¡if in that component

which is an end point of at most one arrow, and thus with no loss of generality not
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of an Xj-arrow. While maintaining the consistency of the multidiagram, add an

x^^arrow whose tail is at ¡if and whose head ii2 is a new point exceeding at least

one more point of the multidiagram than does it,. Proceed in this fashion, alternat-

ing between x*1- and x2±1-arrows, until a point ju.1 is obtained which exceeds all

points of the current multidiagram. Repeat this for another component, obtaining v..

This makes p., < v¡ the largest two points in the current multidiagram. Let the last

arrow used to reach /x, be, say, an x^narrow. Finally, add an xY* narrow from /x, to

vf except that this will be impossible if the last arrow used to reach Vj was also an

xx* narrow, in which case we connect jti, to v¡ with an x2-arrow. This proves the

claim.

Now apply (1) to 3, and from a copy of 3arising in (Fv, ß), delete all points and

arrows involved in augmenting^ to make 3.

Now for the last sentence of the lemma: Since (F , ß) has no nonidentity element

of bounded support, either all nonidentity elements have support unbounded above,

or dually; suppose the former. To make all points in the copy just produced of ^(or

J() lie above y, we choose a' so that a' > ygj1 (and thus a'gj > y) for eachy.

Proof of Theorem 18. Our task is to specify xv+l, xn+2,... so that the resulting

action of Fu on ß is faithful—and thus automatically o-2-transitive since F already

acts o-2-transitively on ß, and pathological by Proposition 13.

Let e J= w g Fu . Pick a diagram showing w ¥= e. Delete from this diagram all

arrows for x's other than xu...xn (but without deleting any points), obtaining a

multidiagram involving some subset of xv.. .,xr By Lemma 19, this multidiagram

arises in the given representation of F. We then specify the remaining letters x_+1,

x +2,... occurring in the spelling of w at the appropriate points of this multi-

diagram so as to restore it to the original diagram showing w =#= e. We have shown

that for any one e + w g F, the given representation of F can be extended to an

action of F, on ß in which w ¥= e.

Now we enumerate the nonidentity elements of Fu : w0, wlt_As above, we

specify finitely many of x, + 1, xv + 2,... at finitely many points so as to make wQ =£ e.

Inductively, we do the same for w¡, using Lemma 19 to choose the multidiagram for

h>, so that all its points lie above (or all lie below) all points involved in the previous

multidiagrams. This makes it possible to meet all the specifications simultaneously,

so that every w¡ # e.

Corollary 20. There exists a pathologically o-2-transitive representation of F„o on

Q in which some element moves every r G R = Q.

Proof. By Theorem 1, there exists a pathologically o-2-transitive representation of

F2 on Q. By Lemma 14, the strong order unit \xx\ V |x2| moves every element of Q.

Now apply Theorem 18.
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